北师大版2019高中数学选修2-3精练:第二章 概率 测评_含答案
- 格式:doc
- 大小:374.00 KB
- 文档页数:12
§4 二项分布A组1.任意抛掷三枚质地均匀的硬币,恰有2枚正面朝上的概率为( )A. B. C. D.解析:每枚硬币正面朝上的概率为,所以所求概率为.故选B.答案:B2.流星穿过大气层落在地面上的概率为0.002,流星数量为10的流星群穿过大气层有4个落在地面上的概率为( )A.3.32×10-5B.3.32×10-9C.6.64×10-5D.6.64×10-9解析:相当于1个流星独立重复10次,其中落在地面有4次的概率,故所求的概率为(0.002)4(1-0.002)6≈3.32×10-9.故应选B.答案:B3.(2016·济南模拟)位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是.质点P移动五次后位于点(2,3)的概率是( )A. B.C. D.解析:因为质点每次移动一个单位,移动的方向为向上或向右,移动五次后位于点(2,3),所以质点P必须向右移动两次,向上移动三次,故其概率为,故选B.答案:B4.某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次射击时,首次击中目标的概率是0.12×0.9;②他第3次射击时,首次击中目标的概率是×0.9×0.12;③他恰好击中目标3次的概率是0.93×0.1;④他恰好击中目标3次的概率是×0.93×0.1.其中正确的是( )A.①③B.②④C.①④D.②③解析:在他第3次射击时,才击中,说明前两次都没有击中,故其概率为0.12×0.9,故①正确;击中目标的次数服从二项分布,所以恰好击中目标3次的概率为×0.93×0.1,故④正确,故选C.答案:C5.如果X~B,Y~B,那么当X,Y变化时,下列关于P(X=k)=P(Y=j)(k,j=0,1,2,…,20)成立的(k,j)的个数为( )A.10B.20C.21D.0解析:根据二项分布的特点可知,(k,j)(k,j=0,1,2,…,20)分别为(0,20),(1,19),(2,18),…,(20,0),共21个,故选C.答案:C6.(2016·湖南师大附中高二期中)某班有4位同学住在同一个小区,上学路上要经过1个路口.假设每位同学在路口是否遇到红绿灯是相互独立的,且遇到红灯的概率都是,则最多1名同学遇到红灯的概率是 .解析:P=.答案:7.某同学进行了2次投篮(假定这两次投篮互不影响),每次投中的概率都为p(p≠0),如果最多投中1次的概率不小于至少投中1次的概率,那么p的取值范围为 .解析:(1-p)2+p(1-p)≥p(1-p)+p2,解得0<p≤.答案:0<p≤8.某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”“中立”“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为,他们的投票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.(1)求该公司决定对该项目投资的概率;(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率.解(1)该公司决定对该项目投资的概率为P=.(2)该公司放弃对该项目投资且投票结果中最多有一张“中立”票,有以下四种情形:“同意”票张数“中立”票张数“反对”票张数事件A003事件B102事件C111事件D012P(A)=,P(B)=,P(C)=,P(D)=.∵A,B,C,D互斥,∴P(A+B+C+D)=P(A)+P(B)+P(C)+P(D)=.9.导学号43944037现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X-Y|,求随机变量ξ的分布列.解依题意知,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的概率为.设“这4个人中恰有k人去参加甲游戏”为事件A k(k=0,1,2,3,4).则P(A k)=.(1)这4个人中恰有2人去参加甲游戏的概率为P(A2)=.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则B=A3+A4.由于A3与A4互斥,故P(B)=P(A3)+P(A4)=.所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为.(3)ξ的所有可能取值为0,2,4.由于A1与A3互斥,A0与A4互斥,故P(ξ=0)=P(A2)=,P(ξ=2)=P(A1)+P(A3)=,P(ξ=4)=P(A0)+P(A4)=.所以ξ的分布列是ξ024PB组1.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率p的取值范围是( )A.[0.4,1]B.(0,0.4]C.(0,0.6]D.[0.6,1)解析:∵P(1)≤P(2),∴·p(1-p)3≤p2(1-p)2,∴4(1-p)≤6p,∴0.4≤p≤1.答案:A2.口袋里放有大小、形状、质地都相同的两个红球和一个白球,每次有放回地摸取一个球,定义数列{a n},a n=如果S n为数列{a n}的前n项和,那么S7=3的概率为( )A. B.C. D.解析:由S7=3知,在7次摸球中有2次摸取红球,5次摸取白球,而每次摸取红球的概率为,摸取白球的概率为,则S7=3的概率为,故选B.答案:B3.设随机变量X~B,则函数f(x)=x2+4x+X存在零点的概率是( )A. B. C. D.解析:∵函数f(x)=x2+4x+X存在零点,∴Δ=16-4X≥0,∴X≤4.∵X~B,∴P(X≤4)=1-P(X=5)=1-.答案:C4.某篮球决赛在广东队与山东队之间进行,比赛采用7局4胜制,即若有一队先胜4场,则此队获胜,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为.据以往资料统计,第一场比赛组织者可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元,则组织者在此次决赛中要获得的门票收入不少于390万元的概率为 .解析:依题意,每场比赛获得的门票收入数组成首项为40,公差为10的等差数列,设此数列为{a n},则易知a1=40,a n=10n+30,所以S n=.由S n≥390得n2+7n≥78,所以n≥6.所以若要获得的门票收入不少于390万元,则至少要比赛6场.①若比赛共进行了6场,则前5场比赛的比分必为2∶3,且第6场比赛为领先一场的球队获胜,其概率P(6)=;②若比赛共进行了7场,则前6场胜负为3∶3,其概率P(7)=.所以门票收入不少于390万元的概率P=P(6)+P(7)=.答案:5.设在一次试验中事件A发生的概率为p,在n次独立重复试验中事件A发生k次的概率为P k,则P0+P1+…+P n=.解析:P0+P1+…+P n=(1-p)n p0+(1-p)n-1·p1+…+(1-p)0p n=(1-p+p)n=1.答案:16.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分.求乙队得分X的分布列.解(1)设“甲队以3∶0,3∶1,3∶2胜利”分别为事件A,B,C,则P(A)=, P(B)=,P(C)=.(2)X的可能的取值为0,1,2,3,则P(X=0)=P(A)+P(B)=,P(X=1)=P(C)=,P(X=2)=,P(X=3)=.所以X的分布列为X0123P7.导学号43944038(2016·内蒙古师范大学附属中学高二练习)某射手每次射击击中目标的概率是,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;(3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记ξ为射手射击3次后的总的分数,求ξ的分布列.解(1)设X为射手在5次射击中击中目标的次数,则X~B.在5次射击中,恰有2次击中目标的概率P(X=2)=.(2)设“第i次射击击中目标”为事件A i(i=1,2,3,4,5);“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A,则P(A)=P(A1A2A3)+P(A2A3A4)+P(A3A4A5)=.(3)由题意可知,ξ的所有可能取值为0,1,2,3,6.P(ξ=0)=P()=;P(ξ=1)=P(A1)+P(A2)+P(A3)=;P(ξ=2)=P(A1A3)=;P(ξ=3)=P(A1A2)+P(A2A3)=;P(ξ=6)=P(A1A2A3)=.所以ξ的分布列是ξ01236P。
§3 条件概率与独立事件A组1.设A与B是相互独立事件,则下列命题正确的是( )A.A与B是对立事件B.A与B是互斥事件C.不相互独立D.A与是相互独立事件解析:若A与B是相互独立事件,则A与也是相互独立事件.答案:D2.国庆节放假,甲去北京旅游的概率为,乙、丙去北京旅游的概率分别为.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( )A. B. C. D.解析:因甲、乙、丙去北京旅游的概率分别为.因此,他们不去北京旅游的概率分别为,所以,至少有1人去北京旅游的概率为P=1-.答案:B3.如图,用K,A1,A2三类不同的元件连接成一个系统.当K正常工作且A1,A2至少有一个正常工作时,系统正常工作.已知K,A1,A2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( ) A.0.960 B.0.864 C.0.720 D.0.576解析:方法一 由题意知K,A1,A2正常工作的概率分别为P(K)=0.9,P(A1)=0.8,P(A2)=0.8,∵K,A1,A2相互独立,∴A1,A2至少有一个正常工作的概率为P(A2)+P(A1)+P(A1A2)=(1-0.8)×0.8+0.8×(1-0.8)+0.8×0.8=0.96.∴系统正常工作的概率为P(K)[P(A2)+P(A1)+P(A1A2)]=0.9×0.96=0.864.方法二 A1,A2至少有一个正常工作的概率为1-P()=1-(1-0.8)(1-0.8)=0.96,故系统正常工作的概率为P(K)[1-P()]=0.9×0.96=0.864.答案:B4.已知A,B,C是三个相互独立事件,若事件A发生的概率为,事件B发生的概率为,事件C发生的概率为,则A,B,C均未发生的概率为 .解析:A,B,C均未发生的概率为P()=.答案:5.甲、乙二人进行射击游戏,目标靶上有三个区域,分别涂有红、黄、蓝三色,已知甲击中红、黄、蓝三区域的概率依次是,乙击中红、黄、蓝三区域的概率依次是,二人射击情况互不影响,若甲、乙各射击一次,试预测二人命中同色区域的概率为 .解析:同命中红色区域的概率为,同命中黄色区域的概率为,同命中蓝色区域的概率为,∴二人命中同色区域的概率为.答案:6.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为,且各轮问题能否正确回答互不影响.(1)求该选手顺利通过三轮考核的概率;(2)该选手在选拔中回答两个问题被淘汰的概率是多少?解(1)设“该选手能正确回答第i轮的问题”的事件记为A i(i=1,2,3),且它们相互独立.则P(A1)=,P(A2)=,P(A3)=,设“该选手顺利通过三轮考核”为A事件,则P(A)=P(A1A2A3)=P(A1)·P(A2)·P(A3)=.(2)因为回答2个问题被淘汰即第一轮答对,第二轮答错,概率是P=. 7.某大学开设甲、乙、丙三门选修课,学生之间是否选修哪门课互不影响.已知学生小张只选甲的概率为0.08,只选甲和乙的概率为0.12,至少选一门的概率为0.88,用ξ表示小张选修的课程门数和没有选修的课程门数的乘积.(1)求学生小张选修甲的概率;(2)记“函数f(x)=x2+ξx为R上的偶函数”为事件A,求事件A的概率;(3)求ξ的分布列.解(1)由题意知,学生小张三门选修课一门也不选的概率为1-0.88=0.12.设学生小张选修甲、乙、丙三门选修课的概率分别为x,y,z.则解得所以学生小张选修甲的概率为0.4.(2)若函数f(x)=x2+ξx为R上的偶函数,则ξ=0,当ξ=0时,表示小张选修了三门功课或三门功课都不选.所以P(A)=P(ξ=0)=xyz+(1-x)(1-y)(1-z)=0.4×0.6×0.5+(1-0.4)×(1-0.6)×(1-0.5)=0.24,故事件A的概率为0.24.(3)依题意知ξ=0,2,所以ξ的分布列为ξ02P0.240.768.导学号43944034甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X为比赛决出胜负时的总局数,求X的分布.解用A表示“甲在4局以内(含4局)赢得比赛”,A k表示“第k局甲获胜”,B k表示“第k局乙获胜”,则P(A k)=,P(B k)=,k=1,2,3,4,5.(1)P(A)=P(A1A2)+P(B1A2A3)+P(A1B2A3A4)=P(A1)P(A2)+P(B1)P(A2)P(A3)+P(A1)P(B2)·P(A3)P(A4)=.(2)X的可能取值为2,3,4,5.P(X=2)=P(A1A2)+P(B1B2)=P(A1)P(A2)+P(B1)P(B2)=,P(X=3)=P(B1A2A3)+P(A1B2B3)=P(B1)P(A2)P(A3)+P(A1)P(B2)P(B3)=,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=P(A1)P(B2)P(A3)P(A4)+P(B1)P(A2)P(B3)·P(B4)=,P(X=5)=1-P(X=2)-P(X=3)-P(X=4)=.所以X的分布列为X2345PB组1.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A.B.C.D.解析:设A表示“第一个圆盘的指针落在奇数所在的区域”,P(A)=,B表示“第二个圆盘的指针落在奇数所在的区域”,P(B)=.则P(AB)=P(A)P(B)=.答案:A2.一个盒子中有20个大小、形状、质地相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )A. B. C. D.解析:记A:取的球不是红球.B:取的球是绿球.则P(A)=,P(AB)=,∴P(B|A)=.答案:C3.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率是( )A. B. C. D.解析:设事件A发生的概率为x,事件B发生的概率为y,则由题意得(1-x)(1-y)=,x(1-y)=(1-x)y,联立解得x=,故事件A发生的概率为.答案:D4.把一枚质地均匀的硬币任意抛掷两次,事件A={第一次出现正面},事件B={第二次出现正面},则P(B|A)=( )A. B. C. D.解析:P(A)=,P(AB)=,所以P(B|A)=.故选A.答案:A5.箱子里有除颜色外都相同的5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为( )A. B.C. D.解析:因为每次取出黑球时都放回,所以在取到白球以前,每次取出黑球的概率都是,在第4次取球后停止表示前3次取出的都是黑球,第4次才取出白球,故所求概率为.答案:B6.某种元件的使用寿命超过1年的概率为0.6,使用寿命超过2年的概率为0.3,则使用寿命超过1年的该元件还能继续使用1年的概率为 .解析:设事件A为“该元件的使用寿命超过1年”,B为“该元件的使用寿命超过2年”,则P(A)=0.6,P(B)=0.3,易知P(AB)=P(B)=0.3,于是P(B|A)==0.5.答案:0.57.根据资料统计,某地车主购买甲种保险的概率为0.5,购买乙种保险的概率为0.6,购买甲、乙保险相互独立,各车主间相互独立.(1)求一位车主同时购买甲、乙两种保险的概率;(2)求一位车主购买乙种保险但不购买甲种保险的概率;(3)求一位车主至少购买甲、乙两种保险中1种的概率.解记A表示事件“购买甲种保险”,B表示事件“购买乙种保险”,则由题意得A与B,A与与B,都是相互独立事件,且P(A)=0.5,P(B)=0.6.(1)记C表示事件“同时购买甲、乙两种保险”,则C=AB.∴P(C)=P(AB)=P(A)·P(B)=0.5×0.6=0.3.(2)记D表示事件“购买乙种保险但不购买甲种保险”,则D= B.∴P(D)=P(B)=P()·P(B)=(1-0.5)×0.6=0.3.(3)方法一:记E表示事件“至少购买甲、乙两种保险中的一种”,则事件E包括B,A,AB,且它们彼此为互斥事件.∴P(E)=P(B+A+AB)=P(B)+P(A)+P(AB)=0.5×0.6+0.5×0.4+0.5×0.6=0.8.方法二:事件“至少购买甲、乙两种保险中的一种”与事件“甲、乙两种保险都不购买”为对立事件.∴P(E)=1-P()=1-(1-0.5)×(1-0.6)=0.8.8.导学号43944035设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求X的分布列.解记A i表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.(1)D=A1·B·C+A2··C+A2B.P(B)=0.6,P(C)=0.4,P(A i)=×0.52,i=0,1,2,所以P(D)=P(A1·B·C+A2·B+A2··C)=P(A1·B·C)+P(A2·B)+P(A2··C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P()P(C)=0.31.(2)X的可能取值为0,1,2,3,4,P(X=0)=P(·A0·)=P()P(A0)P()=(1-0.6)×0.52×(1-0.4)=0.06.P(X=1)=P(B·A0··A0·C+·A1·)=P(B)P(A0)P()+P()P(A0)P(C)+P()·P(A1)P() =0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25. P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25.P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38.∴X的分布列为X01234P0.060.250.380.250.06。
§5二项式定理A组1.(x+2)n的展开式共有12项,则n等于()A.9B.10C.11D.8解析:∵(a+b)n的展开式共有n+1项,而(x+2)n的展开式共有12项,∴n=11.故选C.答案:C2.的展开式中x2y3的系数是()A.-20B.-5C.5D.20解析:由已知,得T r+1=(-2y)r=·(-2)r x5-r y r(0≤r≤5,r∈Z),令r=3,得T4=(-2)3x2y3=-20x2y3.故选A.答案:A3.在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.210解析:∵(1+x)6展开式的通项公式为T r+1=x r,(1+y)4展开式的通项公式为T h+1=y h,∴(1+x)6(1+y)4展开式的通项可以为x r y h.∴f(m,n)=.∴f(3,0)+f(2,1)+f(1,2)+f(0,3)==20+60+36+4=120.故选C.答案:C4.已知展开式的第4项等于5,则x等于()A.B.-C.7 D.-7解析:T4=x4=-x=-35x=5,所以x=-.答案:B5.(2-)8的展开式中不含x4项的系数的和为()A.-1B.0C.1D.2解析:采用赋值法,令x=1,得(2-)8的展开式的系数和为1,x4项系数为20(-1)8=1,所以(2-)8的展开式中不含x4项的系数和为0.答案:B6.设a=sin x d x,则二项式的展开式中的常数项等于.解析:a=sin x d x=(-cos x)=2,二项式展开式的通项为T r+1=(2=(-1)r·26-r·x3-r,令3-r=0得,r=3,∴常数项为(-1)3·23·=-160.答案:-1607.已知(2x-3)7=a0(x-1)7+a1(x-1)6+…+a6(x-1)+a7.(1)求a0+a1+a2+…+a7;(2)求a0-a7.解(1)令x=2,得a0+a1+a2+…+a7=(4-3)7=1.(2)令x=1,得a7=(2×1-3)7=-1,x7的系数a0=27(-3)0=128,∴a0-a7=129.8.(1)求(1+2x)7的展开式中第四项的系数;(2)求的展开式中x3的系数及二项式系数.解(1)(1+2x)7的展开式的第4项为T3+1=(2x)3=280x3,∴(1+2x)7的展开式中第四项的系数是280.(2)∵的展开式的通项为T r+1=x9-r=(-1)r·x9-2r.令9-2r=3,r=3,∴x3的系数为(-1)3=-84.x3的二项式系数为=84.9.在的展开式中,求:(1)第5项的二项式系数及第5项的系数;(2)倒数第3项.解(1)二项式展开式的通项为T r+1=(2x2)8-r·,所以T5=·(2x2)8-4··24·,则第5项的二项式系数是=70,第5项的系数是·24=1 120.(2)展开式中的倒数第3项即为第7项,T7=·(2x2)8-6·=112x2.B组1.若(1+)5=a+b(a,b为有理数),则a+b等于()A.45B.55C.70D.80解析:由二项式定理得(1+)5=1+·()2+·()3+·()4+·()5=1+5+20+20+20+4=41+29,即a=41,b=29,所以a+b=70.答案:C2.(2016·江西临川一中等九校联考)二项式的展开式的第二项的系数为-,则x2d x 的值为()A. B.3C.3或D.3或-解析:二项展开式的第二项T2=(ax)5×,则由题意有a5=-,解得a=-1,所以x2d x=x3=-.答案:A3.(2016·河南郑州一中联考)若在的展开式中含有常数项,则正整数n取得最小值时的常数项为()A.-B.-135C.D.135解析:的展开式的通项为T r+1=·(3x2)n-r3n-r x2n-5r,展开式中含有常数项需满足2n-5r=0,即n=,r∈N.所以当r=2时,正整数n取得最小值为n=5,此时常数项为,故选C.答案:C4.(x2+2)的展开式中的常数项是()A.2B.3C.-2D.-3解析:二项式的展开式的通项为T r+1=(-1)r=(-1)r x2r-10,易知(x2+2)的展开式中的常数项为·(-1)4+2··(-1)5=3.答案:B5.若的展开式中x3项的系数为20,则a2+b2的最小值为.解析:的展开式的通项为T r+1=(ax2)6-r·a6-r b r x12-3r,令12-3r=3,得r=3.由a6-r b r=a3b3=20,得ab=1.所以a2+b2≥2ab=2×1=2.答案:26.求的展开式中的有理项.解的展开式的通项为T r+1=)8-r·(r=0,1,2,…,8),为使为有理项,r必须是4的倍数,所以r=0,4,8,故共有3个有理项,分别是T1=x4=x4,T5=x=x,T9=x-2=.7.导学号43944018已知的展开式中偶数项的二项式系数的和比(a+b展开式中奇数项的二项式系数的和小120,求第一个展开式的第三项.解(a+b)2n展开式中奇数项的二项式系数的和为22n-1,展开式中偶数项的二项式系数的和为2n-1.依题意,有2n-1=22n-1-120,即(2n)2-2n-240=0.解得2n=16,或2n=-15(舍).∴n=4.于是,第一个展开式中第三项为T3=)2=6.。
习题课——离散型随机变量的均值与方差的应用1.设样本数据x1,x2,…,x10的均值和方差分别为1和4,若y i=x i+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a解析:==+a=1+a.s2===4.答案:A2.若X~B(n,p),且EX=6,DX=3,则P(X=1)的值为()A.3×2-2B.2-4C.3×2-10D.2-8解析:由题意知解得所以P(X=1)==3×2-10.答案:C3.从装有除颜色外完全相同的3个白球和m个黑球的布袋中随机摸取一球,有放回地摸取5次,设摸得的白球数为X,已知EX=3,则DX=()A. B. C. D.解析:由题意知,X~B,所以EX=5×=3,解得m=2,所以X~B,所以DX=5×.答案:B4.(2016·湖南常德石门一中月考)若X是离散型随机变量,P(X=x1)=,P(X=x2)=,且x1<x2,又已知EX=,DX=,则x1+x2的值为()A.3B.C.D.解析:由题意得即解得∵x1<x2,∴∴x1+x2=3.答案:A5.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为,乙在每局中获胜的概率为,且各局胜负相互独立,则比赛停止时已打局数ξ的期望Eξ为()A. B. C. D.解析:依题意知,ξ的所有可能取值为2,4,6,设每两局比赛为一轮,则第一轮结束时比赛停止的概率为.若第一轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.易知P(ξ=2)=,P(ξ=4)=,P(ξ=6)=,所以Eξ=2×+4×+6×,故选B.答案:B6.设离散型随机变量ξ可能取的值为1,2,3,4.P(ξ=k)=ak+b(k=1,2,3,4),又ξ的均值Eξ=3,则a+b=.解析:设离散型随机变量ξ可能取的值为1,2,3,4,P(ξ=k)=ak+b(k=1,2,3,4),所以(a+b)+(2a+b)+(3a+b)+(4a+b)=1,即10a+4b=1,又ξ的数学期望Eξ=3,则(a+b)+2(2a+b)+3(3a+b)+4(4a+b)=3,即30a+10b=3,所以a=,b=0,所以a+b=.答案:7.设ξ是服从二项分布B(n,p)的随机变量,又Eξ=15,Dξ=,则n的值为,p的值为.解析:由ξ~B(n,p),得Eξ=np=15,Dξ=np(1-p)=,所以p=,n=60.答案:608.设一随机试验的结果只有A和,且P(A)=p,令随机变量X=则X的方差DX等于.解析:X的分布列为X01P1-p p,故DX=p(1-p).答案:p(1-p)9.某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;如果失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:投资成功投资失败192例8例则该公司一年后估计可获收益的均值是元.解析:由题意知,一年后获利6 000元的概率为0.96,获利-25 000元的概率为0.04,故一年后收益的均值是6 000×0.96+(-25 000)×0.04=4 760(元).答案:4 76010.导学号43944043(2016·广东揭阳模拟)某学校900名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)若成绩小于14秒认为优秀,求该样本中百米测试成绩优秀的人数.(2)请估计本年级900名学生中,成绩属于第三组的人数.(3)若样本第一组中只有一个女生,其他都是男生,第五组则只有一个男生,其他都是女生,现从第一、五组中各抽取2个同学组成一个实验组,设其中男同学的数量为ξ,求ξ的分布列和均值.解(1)由频率分布直方图知,成绩在第一组的为优秀,频率为0.06,人数为50×0.06=3.所以该样本中成绩优秀的人数为3.(2)由频率分布直方图知,成绩在第三组的频率为0.38,以此估计本年级900名学生中成绩属于第三组的概率为0.38.人数为900×0.38=342.所以估计本年级900名学生中,成绩属于第三组的人数为342.(3)第一组共有3人,其中2男,1女,第五组共有50×0.08=4人,其中1男,3女,则ξ的可能取值为1,2,3.P(ξ=1)=,P(ξ=2)=,P(ξ=3)=.所以ξ的分布列为所以Eξ=1×+2×+3×.11.导学号43944044某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的均值较大?解(1)由已知得,小明中奖的概率为,小红中奖的概率为,且两人中奖与否互不影响.记“这2人的累计得分X≤3”为事件A,则事件A的对立事件为“X=5”,因为P(X=5)=,所以P(A)=1-P(X=5)=,即这2人的累计得分X≤3的概率为.(2)(方法一)设小明、小红都选择方案甲抽奖的中奖次数为X1,都选择方案乙抽奖的中奖次数为X2,则这两人选择方案甲抽奖累计得分的均值为E(2X1),选择方案乙抽奖累计得分的均值为E(3X2).由已知可得,X1~B,X2~B,所以EX1=2×,EX2=2×,因此E(2X1)=2EX1=,E(3X2)=3EX2=.因为E(2X1)>E(3X2),所以他们都选择方案甲进行抽奖时,累计得分的均值较大.(方法二)设小明、小红都选择方案甲所获得的累计得分为Y1,都选择方案乙所获得的累计得分为Y2,则Y1,Y2的分布列为:所以EY1=0×+2×+4×,EY2=0×+3×+6×,因为EY1>EY2,所以两人都选择方案甲抽奖,累计得分的均值较大.。
*§6正态分布A组1.下列函数是正态分布密度函数的是()A.f(x)=,μ和σ(σ>0)都是实数B.f(x)=C.f(x)=D.f(x)=解析:根据正态分布密度函数f(x)=进行判断.答案:B2.设随机变量ξ服从正态分布N(2,9),若P(ξ>c+1)=P(ξ<c-1),则c=()A.1B.2C.3D.4解析:因为ξ~N(2,9),所以正态密度曲线关于x=2对称,又概率表示它与x轴所围成的面积,所以=2,所以c=2.答案:B3.服从正态分布N(0,1)的随机变量X在区间(-2,-1)和(1,2)内取值的概率分别为P1,P2,则()>P2 B.P1<P2A.PC.P1=P2D.不确定解析:∵X~N(0,1),∴正态曲线关于y轴对称.∴随机变量在(-2,-1)和(1,2)内取值的概率相等,即P1=P2.答案:C4.已知随机变量ξ服从正态分布N(2,σ2),P(ξ≤4)=0.84,则P(ξ<0)=()A.0.16B.0.32C.0.68D.0.84解析:由ξ~N(2,σ2),可知正态曲线的对称轴为直线x=2,易知P(ξ<0)=P(ξ>4)=1-P(ξ≤4)=1-0.84=0.16.答案:A5.在正态分布N中,随机变量在(-∞,-1)∪(1,+∞)内的概率为()A.0.997B.0.046C.0.03D.0.003解析:∵μ=0,σ=,∴P(x<-1或x>1)=1-P(-1≤x≤1)=1-P(μ-3σ≤x≤μ+3σ)=1-0.997=0.003.答案:D6.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为.解析:∵ξ服从正态分布N(1,σ2),∴ξ在(0,1)与(1,2)内取值的概率相同,均为0.4.∴ξ在(0,2)内取值概率为0.4+0.4=0.8.答案:0.87.若随机变量X的概率分布密度函数是φμ,σ(x)=(x∈R),则E(2X-1)=.解析:∵σ=2,μ=-2,∴EX=-2.∴E(2X-1)=2EX-1=2×(-2)-1=-5.答案:-58.在一次测试中,测量结果X服从正态分布N(2,σ2)(σ>0),若X在(0,2)内取值的概率为0.2,求:(1)X在(0,4)内取值的概率;(2)P(X>4).(1)由X~N(2,σ2),得对称轴为x=2,画出示意图,∵P(0<X<2)=P(2<X<4),∴P(0<X<4)=2P(0<X<2)=2×0.2=0.4.(2)P(X>4)=[1-P(0<X<4)]=×(1-0.4)=0.3.9.已知某地农民工年均收入ξ服从正态分布,某密度函数图像如图所示.(1)写出此地农民工年均收入的概率密度曲线函数式;(2)求此地农民工年均收入在8 000~8 500元之间的人数百分比.解设农民工年均收入ξ~N(μ,σ2),结合图像可知μ=8 000,σ=500.(1)此地农民工年均收入的正态分布密度函数表达式为P(x)=,x∈(-∞,+∞).(2)∵P(7 500<ξ≤8 500)=P(8 000-500<ξ≤8 000+500)=0.683,∴P(8 000<ξ≤8 500)=P(7 500<ξ≤8 500)=0.341 5.∴此地农民工年均收入在8 000~8 500元之间的人数百分比为34.15%.B组1.设随机变量X服从正态分布N,集合A={x|x>X},集合B=,则A⊆B的概率为()A. B. C. D.解析:由A⊆B得X≥.∵μ=,∴P.答案:C2.关于正态曲线的性质:①曲线关于直线x=μ对称,并且曲线在x轴上方;②曲线关于y轴对称,且曲线的最高点的坐标是;③曲线最高点的纵坐标是,且曲线无最低点;④σ越大,曲线越“高瘦”;σ越小,曲线越“矮胖”.其中正确的是()A.①②B.②③C.④③D.①③答案:D3.(2016·武汉市重点中学高二期末联考)随机变量ξ~N(2,10),若ξ落在区间(-∞,k)和(k,+∞)的概率相等,则k等于()A.1B.10C.2D.解析:∵区间(-∞,k)和(k,+∞)关于x=k对称,∴x=k为正态曲线的对称轴,∴k=2,故选C.答案:C4.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为f(x)=(x∈R),则下列命题不正确的是()A.该市这次考试的数学平均成绩为80分B.分数在120分以上的人数与分数在60分以下的人数相同C.分数在110分以上的人数与分数在50分以下的人数相同D.该市这次考试的数学成绩方差为100解析:因为μ=80,σ=10,所以A,D正确,根据3σ原则知C正确.答案:B5.已知X~N(0,1),则X在区间(-∞,-2)内取值的概率为.解析:因为X~N(0,1),所以X在区间(-∞,-2)和(2,+∞)内取值的概率相等.又知X在(-2,2)内取值的概率是0.954,所以X在(-∞,-2)内取值的概率为=0.023.答案:0.0236.已知随机变量ξ服从正态分布N(μ,σ2),且P(ξ<1)=,P(ξ>2)=0.4,则P(0<ξ<1)=.解析:由P(ξ<1)=得μ=1,所以随机变量ξ服从正态分布N(1,σ2),所以曲线关于x=1对称.因为P(ξ<2)=0.6,所以P(0<ξ<1)=0.6-0.5=0.1.答案:0.17.导学号43944046假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.(1)求p0的值;(参考数据:若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.683,P(μ-2σ<X≤μ+2σ)=0.954,P(μ-3σ<X≤μ+3σ)=0.997)(2)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A,B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?解(1)由于随机变量X服从正态分布N(800,502),故有μ=800,σ=50,P(700<X≤900)=0.954.由正态分布的对称性,可得p0=P(X≤900)=P(X≤800)+P(800<X≤900)=P(700<X≤900)=0.977.(2)设A型、B型车辆的数量分别为x,y,则相应的营运成本为(1 600x+2 400y)元.依题意,x,y 还需满足:x+y≤21,y≤x+7,P(X≤36x+60y)≥p0.由(1)知,p0=P(X≤900),故P(X≤36x+60y)≥p0等价于36x+60y≥900.于是原问题等价于求满足约束条件且使目标函数z=1 600x+2 400y达到最小的x,y.作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R(15,6).由图可知,当直线z=1 600x+2 400y经过可行域的点P时,直线z=1 600x+2 400y在y轴上截距最小,即z取得最小值.故应配备A型车5辆、B型车12辆.8.导学号43944047为了解一种植物的生长情况,抽取一批该植物样本测量高度(单位:cm),其频率分布直方图如图所示.(1)求该植物样本高度的平均数和方差s2(同一组中的数据用该组区间的中点值作代表);(2)假设该植物的高度Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2,利用该正态分布求P(64.5<Z<96).附:≈10.5,若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.683,P(μ-2σ<Z<μ+2σ)=0.954.解(1)=55×0.1+65×0.2+75×0.35+85×0.3+95×0.05=75,s2=(55-75)2×0.1+(65-75)2×0.2+(75-75)2×0.35+(85-75)2×0.3+(95-75)2×0.05=110.(2)由题意知,Z~N(75,110),从而P(64.5<Z<75)=×P(75-10.5<Z<75+10.5)=×0.683=0.341 5,P(75<Z<96)=×P(75-2×10.5<Z<75+2×10.5)=×0.954=0.477.所以P(64.5<Z<96)=P(64.5<Z<75)+P(75<Z<96)=0.341 5+0.477=0.818 5.。
姓名,年级:时间:第二章§2A级基础巩固一、选择题1.袋中有除颜色外完全相同的3个白球和2个红球,从中任取2个,那么下列事件中发生的概率为710的是( D )A.都不是白球B.恰有1个白球C.至少有1个白球D.至多有1个白球[解析] P(都不是白球)=错误!=错误!,P(恰有1个白球)=错误!=错误!,P(至少有1个白球)=错误!=错误!,P(至多有1个白球)=错误!=错误!,故选D.2.有20个零件,其中16个一等品,4个二等品,若从这20个零件中任取3个,那么至少有一个是一等品的概率是( D )A.错误!B.错误!C.错误!D.以上均不对[解析]至少有一个是一等品的概率是错误!或错误!。
3.某电视台有一次对收看新闻节目观众的抽样调查中, 随机抽取了45名电视观众,其中20至40岁的有18人,大于40岁的有27人.用分层抽样方法在收看新闻节目的观众中随机抽取5名,在这5名观众中再任取2人,则恰有1名观众的年龄在20至40岁的概率为( B )A.15B.35C.错误!D.错误![解析] 由于是分层抽样,所以5名观众中,年龄为20至40岁的有错误!×5=2人.设随机变量X表示20至40岁的人数,则X服从参数为N=5,M=2,n=2的超几何分布,故P(X =1)=错误!=错误!。
4.若在甲袋内装有8个白球、4个红球,在乙袋内装有6个白球,6个红球.今从两袋里任意取出1个球,设取出的白球个数为X,则下列概率中等于错误!的是( C ) A.P(X=0)B.P(X≤2)C.P(X=1) D.P(X=2)[解析]当X=1时,有甲袋内取出的是白球,乙袋内取出的是红球或甲袋内取出的是红球,乙袋内取出的是白球个数是X=1时,有P(X=1)=错误!.5.一批产品共50件,次品率为4%,从中任取10件,则抽到1件次品的概率是( A ) A.错误!B.错误!C.错误!D.错误![解析]50件产品中,次品有50×4%=2件,设抽到的次品数为X,则X服从N=50,M=2,n=10的超几何分布,其中抽到1件次品的概率是P(X=1)=错误!。
第二章 §3A 级 基础巩固一、选择题1.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( D )A .29B .118C .13D .23[解析] 由P (A ∩B )=P (B ∩A )得P (A )P (B )=P (B )·P (A ),即P (A )[1-P (B )]=P (B )[1-P (A )],∴P (A )=P (B ).又P (A ∩B )=19,∴P (A )=P (B )=13.∴P (A )=23.2.三个元件T 1,T 2,T 3正常工作的概率分别为12,34,34,且是互相独立的.将它们中某两个元件并联后再和第三个元件串联接入电路,在如图的电路中,电路不发生故障的概率是( A )A .1532B .932C .732D .1732[解析] 记“三个元件T 1,T 2,T 3正常工作”分别为事件A 1,A 2,A 3,则P (A 1)=12,P (A 2)=34,P (A 3)=34. 不发生故障的事件为(A 2∪A 3)∩A 1, ∴不发生故障的概率为P =P [(A 2∪A 3)∩A 1] =[1-P (A 2)·P (A 3)]·P (A 1) =(1-14×14)×12=1532.故选A .3.(2019·烟台高二检测)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( B )A .18B .14C .25D .12[解析] P (A )=C 23+C 22C 25=25,P (AB )=C 22C 25=110.由条件概率公式得P (B |A )=P (AB )P (A )=14.故选B . 4.甲、乙两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( B )A .12B .512C .14D .16[解析] 所求概率为23×14+13×34=512或P =1-23×34-13×14=512.5.从甲袋内摸出1个白球的概率为13,从乙袋内摸出1个白球的概率是12,从两个袋内各摸1个球,那么概率为56的事件是( C )A .2个球都是白球B .2个球都不是白球C .2个球不都是白球D .2个球中恰好有1个白球[解析] 从甲袋内摸出白球与从乙袋内摸出白球两事件相互独立,故两个球都是白球的概率为P 1=13×12=16,∴两个球不都是白球的概率为P =1-P 1=56.6.(2019·烟台期末)袋中有大小形状都相同的4个黑球和2个白球.如果不放回地依次取出2球,那么在第1次取到的是黑球的条件下,第2次取到黑球的概率为( C )A .12B .25C .35D .23[解析] 设事件A 表示“第一次取出黑球”,事件B 表示“第二次取出黑球”, P (A )=46=23,P (AB )=46×35=25,∴在第1次取到的是黑球的条件下,第2次取到黑球的概率为: P (B |A )=P (AB )P (A )=35. 故选C . 二、填空题7.已知P (A )=0.3,P (B )=0.5,当事件A 、B 相互独立时,P (A ∪B )=__0.65__,P (A |B )=__0.3__.[解析] ∵A 、B 相互独立,∴P (A ∪B )=P (A )+P (B )-P (A )·P (B )=0.3+0.5-0.3×0.5=0.65. P (A |B )=P (A )=0.3.8.在一次三人象棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛顺序如下:第一局,甲对乙;第二局,第一局胜者对丙;第三局,第二局胜者对第一局败者;第四局,第三局胜者对第二局败者,则乙连胜四局的概率为__0.09__.[解析] 乙连胜四局,即乙先胜甲,然后胜丙,接着再胜甲,最后再胜丙,∴概率P =(1-0.4)×0.5×(1-0.4)×0.5=0.09.三、解答题9.本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算),有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12,两小时以上且不超过三小时还车的概率分别为12,14;两人租车时间都不会超过四小时.求甲、乙两人所付的租车费用相同的概率. [解析] 由题意得,甲、乙在三小时以上且不超过四小时还车的概率分别为14,14.设甲,乙两人所付的租车费用相同为事件A , 则P (A )=14×12+12×14+14×14=516,即甲、乙两人所付的租车费用相同的概率为516.10.抛掷红、蓝两颗骰子,记事件A 为“蓝色骰子的点数为4或6”,事件B 为“两颗骰子的点数之和大于8”,求:(1)事件A 发生的条件下事件B 发生的概率; (2)事件B 发生的条件下事件A 发生的概率.[解析] 抛掷红、蓝两颗骰子,事件总数为6×6=36,事件A 的基本事件数为 6×2=12, 则P (A )=1236=13.∵3+6=6+3=4+5=5+4>8,4+6=6+4=5+5>8,5+6=6+5>8,6+6>8, ∴事件B 的基本事件总数为4+3+2+1=10. ∴P (B )=1036=518.又4+5>8,4+6>8,6+3>8,6+4>8,6+5>8,6+6>8, ∴事件AB 的基本事件数为6. 故P (AB )=636=16.由条件概率公式,得 (1)P (B |A )=P (AB )P (A )=1613=12.(2)P (A |B )=P (AB )P (B )=16518=35.B 级 素养提升一、选择题1.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一个荷叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 荷叶上,则跳三次之后停在A 荷叶上的概率是( A )A .13B .29C .49D .827[解析] 由已知逆时针跳一次的概率为23,顺时针跳一次的概率为13.则逆时针跳三次停在A上的概率为P 1=23×23×23=827,顺时针跳三次停在A 上的概率为P 2=13×13×13=127.所以跳三次之后停在A 上的概率为P =P 1+P 2=827+127=13.2.一盒中装有5个产品,其中有3个一等品,2个二等品,从中不放回地取出产品,每次1个,取两次,已知第二次取得一等品的条件下,第一次取得的是二等品的概率是( A )A .12B .13C .14D .23[解析] 解法一:设A =“第一次取到二等品”,B =“第二次取得一等品”,则AB =“第一次取到二等品且第二次取到一等品”,∴P (A |B )=P (AB )P (B )=2×35×42×3+3×25×4=12. 解法二:设一等品为a 、b 、c ,二等品为A 、B ,“第二次取到一等品”所含基本事件有(a ,b ),(a ,c ),(b ,a ),(b ,c ),(c ,a ),(c ,b ),(A ,a ),(A ,b ),(A ,c ),(B ,a ),(B ,b ),(B ,c )共12个,其中第一次取到二等品的基本事件共有6个,∴所求概率为P =612=12.二、填空题3.如图,四边形EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则(1)P (A )=__2π__;(2)P (B |A )=__14__.[解析] (1)由题意可得,事件A 发生的概率P (A )=S 正方形EFGH S 圆O=2×2π×12=2π.(2)事件AB 表示“豆子落在△EOH 内”,则P (AB )=S △EOH S 圆O =12×12π×12=12π.故P (B |A )=P (AB )P (A )=12π2π=14. 4.已知随机变量ξ只能取三个值:x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围是__⎣⎡⎦⎤-13,13__. [解析] 由条件知,⎩⎪⎨⎪⎧P (ξ=x 3)+P (ξ=x 1)=2P (ξ=x 2)P (ξ=x 1)+P (ξ=x 2)+P (ξ=x 3)=1, ∴P (ξ=x 2)=13,∵P (ξ=x i )≥0,∴公差d 取值满足-13≤d ≤13.三、解答题5.甲箱的产品中有5个正品和3个次品,乙箱的产品中有4个正品和3个次品. (1)从甲箱中任取2个产品,求这2个产品都是次品的概率;(2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取一个产品,求取出的这个产品是正品的概率.[解析] (1)从甲箱中任取2个产品的事件数为 C 28=8×72=28,这2个产品都是次品的事件数为C 23=3. ∴这2个产品都是次品的概率为328.(2)设事件A 为“从乙箱中取出的一个产品是正品”,事件B 1为“从甲箱中取出2个产品都是正品”,事件B 2为“从甲箱中取出1个正品1个次品”,事件B 3为“从甲箱中取出2个产品都是次品”,则事件B 1、事件B 2、事件B 3彼此互斥.P (B 1)=C 25C 28=514,P (B 2)=C 15C 13C 28=1528,P (B 3)=C 23C 28=328,P (A |B 1)=23,P (A |B 2)=59,P (A |B 3)=49,∴P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A |B 3)=514×23+1528×59+328×49=712.6.甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112.甲、丙两台机床加工的零件都是一等品的概率为29.(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.[解析] (1)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.由题设条件有⎩⎪⎨⎪⎧ P (A ·B )=14,P (B ·C )=112,P (AC )=29,即⎩⎪⎨⎪⎧P (A )·[1-P (B )]=14, ①P (B )·[1-P (C )]=112, ②P (A )·P (C )=29. ③由①、③得P (B )=1-98P (C ),代入②得27[P (C )]2-51P (C )+22=0. 解得P (C )=23或 119(舍去).将P (C )=23分别代入③、②可得P (A )=13、P (B )=14,即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是13、14、23.(2)记D 为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件,则 P (D )=1-P (D )=1-[1-P (A )][1-P (B )][1-P (C )]=1-23×34×13=56.故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为56.C 级 能力拔高甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6道题,乙能答对其中的8道题.规定每次考试都从备选题中随机抽出3道题进行测试,至少答对2道题才算合格.(1)分别求甲、乙两人考试合格的概率; (2)求甲、乙两人至少有一人考试合格的概率.[解析] (1)设甲、乙两人考试合格的事件分别为A 、B ,则P (A )=C 26C 14+C 36C 310=60+20120=23,P (B )=C 28C 12+C 38C 310=56+56120=1415. (2)解法一:因为事件A 、B 相互独立,所以甲、乙两人至少有一人考试合格的概率为 P =P (A B )+P (A B )+P (AB )=P (A )·P (B )+P (A )·P (B )+P (A )·P (B )=23×115+13×1415+23×1415=4445. 答:甲、乙两人至少有一人考试合格的概率为4445.解法二:因为事件A 、B 相互独立,所以甲、乙两人考试均不合格的概率为 P (AB )=P (A )·P (B )=⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-1415=145. 所以甲、乙两人至少有一人考试合格的概率为 P =1-P (AB )=1-145=4445.答:甲、乙两人至少有一人考试合格的概率为4445.。
见开试卷)))(时间分钟,满分分)一、选择题(本大题共小题,每小题分,满分分.在每小题给出的四个选项中,只有一项是正确的).下列表格可以作为的分布列的是( )....解析:根据分布列的性质各概率之和等于,易知正确.答案:.设服从二项分布~(,)的随机变量的均值与方差分别是和,则,的值分别是( ) .,.,.,.,解析:由(\\(=,(-(=(),))得(\\(=(),=.))答案:.若随机变量服从正态分布,其正态曲线上的最高点的坐标是,则该随机变量的方差等于( )..解析:由正态分布密度曲线上的最高点知,=,∴=σ=.答案:.甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为,则恰有一人击中敌机的概率为( )....解析:设事件,分别表示甲、乙飞行员击中敌机,则()=,()=,事件恰有一人击中敌机的概率为(+)=()·(-())+(-())·()=.答案:.某地区气象台统计,该地区下雨的概率是,刮风的概率为,既刮风又下雨的概率为,设为下雨,为刮风,那么()等于( )解析:()=,()=,由条件概率公式()===.答案:.如图,用,,三类不同的元件连接成一个系统.当正常工作且,至少有一个正常工作时,系统正常工作.已知,,正常工作的概率依次为,则系统正常工作的概率为( ) ....解析:法一:由题意知,,正常工作的概率分别为()=,()=,()=.∵,,相互独立,∴,至少有一个正常工作的概率为()+()+()=(-)×+×(-)+×=.∴系统正常工作的概率为()[()+()+()]=×=.法二:,至少有一个正常工作的概率为-()=-(-)(-)=,∴系统正常工作的概率为()[-()]=×=.答案:.设随机变量服从正态分布(),且(>)=,则(-<<)等于( ).-.--解析:由于随机变量服从正态分布(),由正态分布图可得(-<<)=-(<-)=-(>)=-.答案:.将枚硬币连掷次,如果出现次正面向上的概率等于出现+次正面向上的概率,则的值为( )....。
§5 离散型随机变量的均值与方差A组1.设随机变量X的分布列为P(X=k)=,k=1,2,3,4,则EX的值为( )A. B. C. D.2解析:EX=1×+2×+3×+4××10=.答案:A2.某食品企业一个月内被消费者投诉的次数用ξ表示,据统计,随机变量ξ的分布列如下:ξ0123P0.10.32a a则a的值和ξ的数学期望分别是( )A.0.2,1.8B.0.2,1.7C.0.1,1.8D.0.1,1.7解析:由题意得0.1+0.3+2a+a=1,解得a=0.2.Eξ=0×0.1+1×0.3+2×0.4+3×0.2=1.7.答案:B3.有10件产品,其中3件是次品,从中任取2件,若X表示取到次品的件数,则EX等于( )A. B. C. D.1解析:离散型随机变量X服从N=10,M=3,n=2的超几何分布,∴EX=.答案:A4.已知X~B(n,p),EX=2,DX=1.6,则n,p的值分别为( )A.100,0.8B.20,0.4C.10,0.2D.10,0.8解析:由题意可得解得p=0.2,n=10.答案:C5.同时抛掷两枚均匀的硬币10次,设两枚硬币同时出现反面的次数为ξ,则Dξ=( )A. B. C. D.5解析:两枚硬币同时出现反面的概率为,则ξ~B,故Dξ=10×.答案:A6.已知X的分布列为X-202P0.40.30.3若Y=3X+5,则DY的值为( )A.24.84B.2.76C.4.4D.29.84解析:∵EX=-2×0.4+0×0.3+2×0.3=-0.2,∴DX=(-2+0.2)2×0.4+(0+0.2)2×0.3+(2+0.2)2×0.3=2.76,∴DY=D(3X+5)=9DX=24.84.答案:A7.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的均值EX= .解析:∵P(X=0)=×(1-p)2=,∴p=.则P(X=1)=×2=,P(X=2)=×2+,P(X=3)=.则EX=0×+1×+2×+3×.答案:8.随机变量ξ的取值为0,1,2,若P(ξ=0)=,Eξ=1,则Dξ= .解析:设ξ=1时的概率为p,则Eξ=0×+1×p+2×=1,解得p=,故Dξ=(0-1)2×+(1-1)2×+(2-1)2×.答案:9.(2016·赣州模拟)2016年里约的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:编号12345x169178166175180y7580777081(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量.(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量.(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值.解(1)乙厂生产的产品总数为5÷=35.(2)样品中优等品的频率为,乙厂生产的优等品的数量为35×=14.(3)ξ=0,1,2,P(ξ=i)=(i=0,1,2),ξ的分布列为ξ012P均值Eξ=1×+2×.10.导学号43944040设袋子中装有除颜色外都相同的a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=,Dη=,求a∶b∶c.解(1)由题意得ξ=2,3,4,5,6.故P(ξ=2)=,P(ξ=3)=,P(ξ=4)=,P(ξ=5)=,P(ξ=6)=,所以ξ的分布列为ξ23456P(2)由题意知η的分布列为η123P所以Eη=,Dη=,化简得解得a=3c,b=2c,故a∶b∶c=3∶2∶1.B组1.袋中装有大小、形状、质地完全相同,标号分别为1,2,3,…,9的九个球.现从袋中随机取出3个球.设ξ为这3个球的标号相邻的组数(例如:若取出球的标号为3,4,5,则有两组相邻的标号3,4和4,5,此时ξ的值是2),则随机变量ξ的均值Eξ为( )A. B. C. D.解析:依题意得,ξ的所有可能取值是0,1,2.且P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,因此Eξ=0×+1×+2×.答案:D2.随机变量ξ的分布列如下,其中a,b,c为等差数列,若Eξ=,则Dξ的值为( )ξ-101P a b cA. B. C. D.解析:由分布列得a+b+c=1,①由均值Eξ=得-a+c=,②由a,b,c为等差数列得2b=a+c,③由①②③得a=,b=,c=,所以Dξ=.答案:B3.随机变量X的分布列为:X01mP n且EX=1.1,则DX= .解析:由分布列的性质得+n+=1,所以n=.又EX=0×+1×+m×=1.1,解得m=2.所以DX=(0-1.1)2×+(1-1.1)2×+(2-1.1)2×=0.49.答案:0.494.随机变量ξ的分布列如下:ξ-101P a b c其中a,b,c成等差数列,若Eξ=,则Dξ= .解析:由题意得2b=a+c①,a+b+c=1②,c-a=③,由①②③得a=,b=,c=,易求得Dξ=.答案:5.一个口袋中有5个相同的球,编号分别为1,2,3,4,5,从中任取3个球,以ξ表示取出球的最大号码,则Eξ= .解析:由题意知ξ的分布列为ξ345P所以Eξ=3×+4×+5×=4.5.答案:4.56.某网站针对某歌唱比赛的歌手A,B,C三人进行网上投票,结果如下:观众年龄支持A支持B支持C20岁以下20040080020岁以上(含20岁)100100400(1)在所有参与该活动的人中,用分层抽样的方法抽取n人,其中有6人支持A,求n的值;(2)若在参加活动的20岁以下的人中,用分层抽样的方法抽取7人作为一个样本,从7人中任意抽取3人,用随机变量X表示抽取出3人中支持B的人数,写出X的分布列,并计算EX,DX.解(1)因为利用分层抽样的方法抽取n个人时,从“支持A”的人中抽取了6人,所以,解得n=40.(2)X的所有可能取值为0,1,2,则分布列为X012P所以EX=0×+1×+2×,DX=.7.导学号43944041某大学对参加了“世博会”的该校志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分.假设该校志愿者甲、乙、丙考核为优秀的概率分别为,他们考核所得的等次相互独立.(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;(2)记这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量ξ,求随机变量ξ的分布列和均值Eξ.解(1)记“甲考核为优秀”为事件A,“乙考核为优秀”为事件B,“丙考核为优秀”为事件C,“志愿者甲、乙、丙三人中至少有一名考核为优秀”为事件E,则事件A,B,C相互独立,与事件E是对立事件.则P(E)=1-P()=1-P()·P()·P()=1-.(2)ξ的可能取值为,2,,3.P=P()=,P(ξ=2)=P(A·)+P(·B·)+P(·C)=,P=P(A·B·)+P(A··C)+P(·B·C)=,P(ξ=3)=P(A·B·C)=.所以ξ的分布列为ξ23P所以Eξ=+2×+3×.。
第一章测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.某铁路所有车站共发行132种普通客票,则这段铁路共有车站数是()A.8B.12C.16D.24解析:∵=n(n-1)=132.∴n=12.故选B.答案:B2.若=6,则m等于()A.9B.8C.7D.6解析:由m(m-1)(m-2)=6·,解得m=7.答案:C3.(1+2x)5的展开式中,x2的系数等于()A.80B.40C.20D.10解析:(1+2x)5的展开式的通项为T r+1=(2x)r=2r x r,令r=2,则22=4×10=40.答案:B4.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是()A.40B.74C.84D.200解析:分三类:第一类,前5个题目的3个,后4个题目的3个,第二类,前5个题目的4个,后4个题目的2个,第三类,前5个题目的5个,后4个题目的1个,由分类加法计数原理得=74.答案:B5.有1,2,3,4共四个数字,排成2行2列,要求每行数字之和不能为5,则排法的种数为()A.8B.10C.12D.16答案:D6.某校园有一椭圆形花坛,分成如图四块种花,现有4种不同颜色的花可供选择,要求每块地只能种一种颜色,且有公共边界的两块不能种同一种颜色,则不同的种植方法共有()A.48种B.36种C.30种D.24种解析:由于相邻两块不能种同一种颜色,故至少应当用三种颜色,故分两类.第一类,用4色有种,第二类,用3色有4种,故共有+4=48种.答案:A7.(2016·浙江宁波效实中学第一学期期末)在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C在实施时必须相邻,则在该实验中程序顺序的编排方法共有()A.144种B.96种C.48种D.34种解析:首先将B,C捆绑在一起作为整体,共有两种,又A只能出现在第一步或者最后一步,故总的编排方法为×2=96种,故选B.答案:B8.现有三种类型的卡片各10张,这些卡片除类型不同外其他全部相同,现把这三种类型的卡片分给5个人,每人一张,要求三种类型的卡片都要用上,则分法的种数为()A.30B.75C.150D.300解析:分为两类:第一类,5人中有3人卡片类型相同,则分法有=60种;第二类,5人中各有2人卡片类型相同,则分法有=90种.所以由分类加法计数原理得,分法的种数为60+90=150.答案:C9.(2016·湖北孝感高中高二上学期期中考试)已知(1+x)10=a0+a1(1-x)+a2(1-x)2+…+a10(1-x)10,则a8=()A.-180B.45C.-45D.180解析:由于(1+x)10=[2-(1-x)]10,因此其展开式的通项为T k+1=(-1)k210-k·(1-x)k,令k=8,得a8=4=180,故答案:为D.答案:D10.(2016·山东莱芜一中高三1月自主考试)在(ax+1)7的展开式中,x3项的系数是x2项系数和x5项系数的等比中项,则实数a的值为()A.B.C.D.解析:展开式的通项为T r+1=(ax)7-r,∴x3项的系数是a3,x2项的系数是a2,x5项的系数是a5,∵x3项的系数是x2的系数与x5项系数的等比中项,∴(a3)2=a2×a5,∴a=.故选A.答案:A11.有4位同学在同一天的上、下午参加“身高与体重”“立定跳远”“肺活量”“握力”“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人,则不同的安排方式有()A.264种B.240种C.200种D.120种解析:由条件上午不测“握力”,则4名同学测四个项目,有;下午不测“台阶”但不能与上午所测项目重复,如下午甲测“握力”,乙、丙、丁所测不与上午重复有2种,甲测“身高与体重”“立定跳远”“肺活量”中一种有3×3=9(种),故(2+9)=264种.答案:A12.有两条平行直线a和b,在直线a上取4个点,直线b上取5个点,以这些点为顶点作三角形,这样的三角形共有()A.70个B.80个C.82个D.84个解析:分两类,第一类:从直线a上任取一个点,从直线b上任取两个点,共有种方法;第二类:从直线a上任取两个点,从直线b上任取一个点,共有种方法.所以满足条件的三角形共有=70个.故选A.答案:A二、填空题(本大题共4小题,每小题5分,共20分)13.(2016·湖北孝感高中高二上学期期中考试)回文数是指从左到右读与从右到左都是一样的正整数.如121,94 249是回文数,则4位回文数有个.解析:4位回文数的特点为中间两位数相同,千位和个位数字相同但不能为零,第一步,选千位和个位数字,共有9种选法;第二步,选中间两位数字,共有10种选法.故4位回文数有9×10=90(个).答案:9014.某公园现有甲、乙、丙三只小船,甲船可乘3人,乙船可乘2人,丙船可乘1人,今有三个成人和2个儿童分乘这些船只(每船必须坐人),为安全起见,儿童必须由成人陪同方可乘船,则分乘这些船只的方法有种.解析:分两类:第一类,两个儿童同坐甲船,则三个成人应分别坐到三个船上,有种坐法;第二类,两个儿童分别坐甲船和乙船,有种坐法,三个成人应分别坐到三个船上,有种坐法,共有=12种坐法,所以由分类加法计数原理得,分乘这些船只的方法共有6+12=18种.答案:1815.(2016·辽宁沈阳高中高二上学期期中考试)设a,b是两个整数,若存在整数d,使得b=ad,称“a 整除b”,记作a|b.给出命题:①2|(n2+n+1);②100|(9910-1);③5|(24n-1)(n∈N+).其中正确命题的序号是.解析:对于①,∵n2+n=n(n+1)必为偶数,∴n2+n+1为奇数,即2|(n2+n+1)不正确.对于②,9910-1=(100-1)10-1=·10010-·1009+…-·100,∴②正确.对于③,24n-1=(15+1)n-1=·15n+·15n-1+…+·15,∴③正确.答案:②③16.在()100的展开式中,无理项的个数是.解析:T r+1=)100-r·()r=.若第r+1项为有理项,则50-均为整数,故r为6的倍数时,第r+1项为有理项,又0≤r≤100,∴r=0,6,12,…,96,∴有理项共有17个,从而无理项共有101-17=84(个).答案:84三、解答题(本大题共6小题,共70分)17.(本小题满分10分)(2016·山东青岛高二联考)从-1,0,1,2,3这5个数中选3个不同的数组成二次函数y=ax2+bx+c(a≠0)的系数.(1)开口向上的抛物线有多少条?(2)开口向上且不过原点的抛物线有多少条?解(1)要使抛物线的开口向上,必须a>0,∴=36(条).(2)开口向上且不过原点的抛物线,必须a>0,c≠0,∴=27(条).18.(本小题满分12分)设有编号为1,2,3,4,5的五个小球和编号为1,2,3,4,5的五个盒子,现将这五个小球放入5个盒子中.(1)若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?(2)每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?解(1)间接法:-1=119种.(2)分为三类:第一类,五个球的编号与盒子的编号完全相同的投放方法有1种;第二类,三个球的编号与盒子的编号相同,球的编号与盒子的编号相同的投放方法有种,球的编号与盒子的编号不同的投放方法有1种,所以投放方法有×1=10种;第三类,两个球的编号与盒子的编号相同,球的编号与盒子的编号相同的投放方法有种,球的编号与盒子的编号不同的投放方法有2种,所以投放方法有×2=20种.根据分类加法计数原理得,所有的投放方法有1+10+20=31种.19.(本小题满分12分)已知,i是虚数单位,x>0,n∈N+.(1)如果展开式中的倒数第3项的系数是-180,求n的值;(2)对(1)中的n,求展开式中系数为正实数的项.解(1)由已知,得(2i)2=-180,即4=180,所以n2-n-90=0,又n∈N+,解得n=10.(2)展开式的通项为T k+1=·(2i)10-k x-2k=(2i)10-k.因为系数为正实数,且k∈{0,1,2,…,10},所以k=2,6,10.所以所求的项为T3=11 520,T7=3 360x-10,T11=x-20.20.导学号43944023(本小题满分12分)(2016·浙江宁波效实中学第一学期)设n≥2,n∈N,=a0+a1x+a2x2+…+a n x n.(1)求a0+a1+a2+…+a n.(2)记|a k|(0≤k≤n)的最小值为T n.①求T8;②若n为奇数,求T n.解(1)令x=1,即可得a0+a1+a2+…+a n=;(2)①由题意得|a k|=|22k-8-32k-8|,∴当k=4时,T8=|a4|=0;②由①可知|a k|=|22k-n-32k-n|,∴当k<时,|a k|=(22k-n-32k-n),记b k=22k-n-32k-n,则b k≥b k-1⇔22k-n-32k-n≥22k-n-2-32k-n-2⇔k≤-1,∴当k<时b k递增,而也递增,因此最小值为|a0|=,当k>时,|a k|=(32k-n-22k-n)≥>|a0|,综上T n=.21.导学号43944024(本小题满分12分)在(x-y)11的展开式中,求:(1)通项T r+1;(2)二项式系数最大的项;(3)项的系数绝对值最大的项;(4)项的系数最大的项;(5)项的系数最小的项;(6)二项式系数的和.解(1)T r+1=(-1)r x11-r y r.(2)二项式系数最大的项为中间两项:T6=-x6y5,T7=x5y6.(3)项的系数绝对值最大的项也是中间两项:T6=-x6y5,T7=x5y6.(4)因为中间两项系数的绝对值相等,一正一负,第7项为正,故项的系数最大的项为T7=x5y6.(5)项的系数最小的项为T6=-x6y5.(6)二项式系数的和为+…+=211.22.导学号43944025(本小题满分12分)已知(x2+1)n展开式中的各项系数之和等于的展开式的常数项,若(x2+1)n的展开式中系数最大的项等于54,求x的值.解的展开式的通项为T r+1=.令=0,得r=4,∴展开式的常数项为T5==16.∵(x2+1)n展开式中的各项系数之和等于2n,∴2n=16,∴n=4.又(x2+1)n展开式中系数最大的项是中间项,即第3项,∴x4=54,∴x=±.。
第二章测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.若随机变量ξ的分布列如下表所示,则p=()A.0B.C.D.1解析:由分布列性质p i=1,n=1,2,3,…,n,得+p1=1.所以p1=.答案:B2.已知事件A,B发生的概率都大于零,则()A.如果A,B是互斥事件,那么A与也是互斥事件B.如果A,B不是相互独立事件,那么它们一定是互斥事件C.如果A,B是相互独立事件,那么它们一定不是互斥事件D.如果A∪B是必然事件,那么它们一定是对立事件解析:对A,若A,B互斥,则A与不互斥;对B,若A,B不相互独立,则它们可能互斥,也可能不互斥;对C,是正确的.对D,当A∪B是必然事件,A∩B是不可能事件时,A,B才是对立事件.答案:C3.(2016·山东青岛教学质量调研)某校高考的数学成绩近似服从正态分布N(100,100),则该校成绩位于(80,120)内的人数占考生总人数的百分比约为()A.22.8%B.45.6%C.95.4%D.97.22%解析:设该校高考数学成绩为X,由X~N(100,100)知,正态分布的两个参数为μ=100,σ=10, 所以P(80<X<120)=P(100-20<X<100+20)=P(μ-2σ<X<μ+2σ)=0.954.答案:C4.若Y~B(n,p),且EY=3.6,DY=2.16,则此二项分布是()A.B(4,0.9)B.B(9,0.4)C.B(18,0.2)D.B(36,0.1)解析:由题意得np=3.6,np(1-p)=2.16,所以n=9,p=0.4.答案:B5.某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三人中至少有一人达标的概率为()A.0.015B.0.005C.0.985D.0.995解析:三人都不合格的概率为(1-0.9)×(1-0.8)×(1-0.75)=0.005.所以至少有一人合格的概率为1-0.005=0.995.答案:D6.设由“0”“1”组成的三位数组中,若用A表示“第二位数字为‘0’的事件”,用B表示“第一位数字为‘0’的事件”,则P(A|B)=()A. B.C. D.解析:∵P(B)=,P(A∩B)=,∴P(A|B)=.答案:C7.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生2次的概率,则事件A在1次试验中发生的概率p的取值范围是()A.[0.4,1)B.(0,0.4]C.(0,0.6]D.[0.6,1)解析:由题意知p(1-p)3≤p2(1-p)2,化简得2(1-p)≤3p,解得p≥0.4,又因为0<p<1,所以0.4≤p<1.故选A.答案:A8.由正方体ABCD-A1B1C1D1的8个顶点中的任意3个顶点构成的所有三角形中,任取其中的两个,这两个三角形不共面的概率为()A. B.C. D.解析:从8个顶点中任选3个顶点组成三角形的个数为=56,从56个三角形中任选2个有种选法.正方体中四点共面的情况共有12种,每共面的四个顶点可组成=4个三角形,在4个三角形中任取2个的取法有=6种,所以8个顶点中的任意3个顶点构成的所有三角形中,任取其中的两个,这两个三角形共面的概率为,所以所求概率为1-.答案:A9.设集合A={1,2},B={1,2,3},分别从集合A和集合B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件C n(2≤n≤5,n∈N+),当事件C n发生的概率最大时,n的所有可能取值为()A.3B.4C.2和5D.3和4解析:由题意知点P的坐标可能为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),故事件C2发生的概率为,事件C3发生的概率为,事件C4发生的概率为,事件C5发生的概率为,故选D.答案:D10.利用下列盈利表中的数据进行决策,应选择的方案是()A.A1B.A2C.A3D.A4解析:分别求出方案A1,A2,A3,A4盈利的均值,得EA1=43.7,EA2=32.5,EA3=45.7,EA4=44.6,故选C. 答案:C11.(2016·四川绵阳市高二月考)设10≤x1<x2<x3<x4≤104,x5=105.随机变量ξ1取值x1,x2,x3,x4,x5的概率均为0.2,随机变量ξ2取值的概率也均为0.2.若记Dξ1,Dξ2分别为ξ1,ξ2的方差,则()A.Dξ1>Dξ2B.Dξ1=Dξ2C.Dξ1<Dξ2D.Dξ1与Dξ2的大小关系与x1,x2,x3,x4的取值有关解析:因为Eξ1和Eξ2相等,且第二组数据是第一组数据的两两平均值,所以比第一组更“集中”、更“稳定”,根据方差的概念,可得Dξ1>Dξ2.答案:A12.(2016·甘肃天水一中高二段考)一袋中有大小、形状、质地相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是;②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.其中所有正确的结论是()A.①②④B.①③④C.②③④D.①②③④解析:①恰有一个白球的概率P=,故①正确;②每次任取一球,取到红球次数X~B,其方差为6×,故②正确;③设A={第一次取到红球},B={第二次取到红球},则P(A)=,P(AB)=,所以P(B|A)=,故③错;④每次取到红球的概率P=,所以至少有一次取到红球的概率为1-,故④正确.答案:A二、填空题(本大题共4小题,每小题5分,共20分)13.(2016·湖北省孝感高中高二上学期期中考试)已知离散型随机变量X的分布列为:则常数q=.解析:由离散型随机变量的分布列意义得得q=1-.答案:1-14.在等差数列{a n}中,a4=2,a7=-4.现从{a n}的前10项中随机取数,每次取出一个数,取后放回,连续抽取3次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为(用数字作答).解析:由a4=2,a7=-4可得等差数列{a n}的通项公式为a n=10-2n(n=1,2,…,10).由题意,三次取数相当于三次独立重复试验,在每次试验中取得正数的概率为,取得负数的概率为,在三次取数中,取出的数恰好为两个正数和一个负数的概率为.答案:15.某射手射击所得环数ξ的分布列如下:已知ξ的期望Eξ=8.9,则y的值为.解析:依题意得即解得答案:0.416.甲、乙两人进行一场比赛,已知甲在一局中获胜的概率为0.6,无平局,比赛有3种方案:①比赛3局,先胜2局者为胜者;②比赛5局,先胜3局者为胜者;③比赛7局,先胜4局者为胜者.则方案对乙最有利.解析:设三种方案中乙获胜的概率分别为P1,P2,P3,每种方案都可以看成独立重复试验,则P1=×0.42+×0.6×0.42=0.352,P2=×0.43+×0.6×0.43+×0.62×0.43≈0.317,P3=×0.44+×0.44×0.6+×0.44×0.62+×0.44×0.63≈0.290.由于P1>P2>P3,所以方案①对乙最有利.答案:①三、解答题(本大题共6小题,共70分)17.(本小题满分10分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X表示所取3张卡片上的数字的中位数,求X的分布列与均值.(注:若三个数a,b,c满足a≤b≤c,则称b为这三个数的中位数.)解(1)由古典概型中的概率计算公式知所求概率为P=.(2)X的所有可能值为1,2,3,且P(X=1)=,P(X=2)=,P(X=3)=,故X的分布列为从而EX=1×+2×+3×.18.(本小题满分12分)某高校设计了某实验学科的考核方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题才可提交通过.已知6道备选题中,考生甲有4道题能正确完成,2道题不能正确完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;(2)试从两位考生正确完成题数的数学期望及至少正确完成2道题的概率分析比较两位考生的实验操作能力.解(1)设考生甲、乙正确完成实验操作的题数分别为ξ,η,则ξ的所有可能取值为1,2,3,η的所有可能取值为0,1,2,3.∵P(ξ=1)=,P(ξ=2)=,P(ξ=3)=,∴考生甲正确完成题数的概率分布列为Eξ=1×+2×+3×=2.∵P(η=0)=,P(η=1)=,P(η=2)=,P(η=3)=,∴考生乙正确完成题数的分布列为Eη=0×+1×+2×+3×=2.(2)∵P(ξ≥2)==0.8,P(η≥2)=≈0.74,∴P(ξ≥2)>P(η≥2).从做对题数的数学期望考核,两人水平相当;从至少正确完成2道题的概率考核,甲获得通过的可能性大.因此可以判断甲的实验操作能力较强.19.(本小题满分12分)某班从6名班干部(其中男生4人,女生2人)中,任选3人参加学校的义务劳动.(1)设所选3人中女生人数为X,求X的分布列;(2)求男生甲或女生乙被选中的概率;(3)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P(B)和P(A|B).解(1)X的所有可能取值为0,1,2,依题意得P(X=0)=,P(X=1)=,P(X=2)=.∴X的分布列为(2)设“男生甲、女生乙都不被选中”为事件C,则P(C)=,∴所求概率为P()=1-P(C)=1-.(3)由题意得P(B)=,又∵P(AB)=,∴P(A|B)=.20.导学号43944048(本小题满分12分)某球类总决赛采取7局4胜制,预计本次比赛两队的实力相当,每场比赛组织者可获利200万元.(1)求组织者在本次比赛中获利不低于1 200万元的概率;(2)组织者在本次比赛中获利的期望为多少万元?解设本次比赛组织者获利为X万元,当X=800时,这两队只进行四场比赛,两队有一队全胜,P(X=800)=2×=0.125;当X=1 000时,这两队进行五场比赛,两队中有一队前四场比赛是胜三场,败一场,第五场胜,P(X=1 000)=2=0.25;当X=1 200时,这两队进行六场比赛,P(X=1 200)=2=0.312 5;当X=1 400时,这两队比赛满七场,P(X=1 400)=2=0.312 5.所以X的分布列为(1)组织者在本次比赛中获利不低于1 200万元的概率是0.312 5×2=0.625.(2)EX=800×0.125+1 000×0.25+1 200×0.312 5+1 400×0.312 5=1 162.5.故组织者在本次比赛中获利的期望为1 162.5万元.21.导学号43944049(本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,均值EX及方差DX.解(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个”,因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=×(1-0.6)3=0.064,P(X=1)=×0.6×(1-0.6)2=0.288,P(X=2)=×0.62×(1-0.6)=0.432,P(X=3)=×0.63=0.216.分布列为因为X~B(3,0.6),所以EX=3×0.6=1.8,方差DX=3×0.6×(1-0.6)=0.72.22.导学号43944050(本小题满分12分)某厂用鲜牛奶在某台设备上生产A,B两种奶制品,生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200元,要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B 两种产品时间之和不超过12小时,假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.(1)求Z的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.解(1)设每天A,B两种产品的生产数量分别为x,y,相应的获利为z,则有①目标函数为z=1 000x+1 200y.当W=12时,①表示的平面区域如图1,三个顶点分别为A(0,0),B(2.4,4.8),C(6,0).将z=1 000x+1 200y变形为y=-x+,当x=2.4,y=4.8时,直线l:y=-x+在y轴上的截距最大,最大获利Z=z max=2.4×1 000+4.8×1 200=8 160.当W=15时,①表示的平面区域如图2,三个顶点分别为A(0,0),B(3,6),C(7.5,0).图1图2将z=1 000x+1 200y变形为y=-x+,当x=3,y=6时,直线l:y=-x+在y轴上的截距最大,最大获利Z=z max=3×1 000+6×1 200=10 200.当W=18时,①表示的平面区域如图3.图3四个顶点分别为A(0,0),B(3,6),C(6,4),D(9,0).将z=1 000x+1 200y变形为y=-x+,当x=6,y=4时,直线l:y=-x+在y轴上的截距最大,最大获利Z=z max=6×1 000+4×1 200=10 800.故最大获利Z的分布列为因此,EZ=8 160×0.3+10 200×0.5+10 800×0.2=9 708.(2)由(1)知,一天最大获利超过10 000元的概率p1=P(Z>10 000)=0.5+0.2=0.7,由二项分布,得3天中至少有1天最大获利超过10 000元的概率为p=1-(1-p1)3=1-0.33=0.973.。