高层建筑第三讲-结构抗风设计.共100页文档
- 格式:ppt
- 大小:8.53 MB
- 文档页数:100
高层建筑结构抗风设计在现代城市的天际线上,高层建筑如雨后春笋般拔地而起,成为城市繁荣与发展的象征。
然而,这些高耸入云的建筑在面对大自然的力量时,尤其是强风的袭击,需要具备坚固的结构以确保安全和稳定。
高层建筑结构抗风设计便是保障这些建筑能够屹立不倒的关键所在。
风对于高层建筑的影响是多方面且复杂的。
首先,风会对建筑表面产生直接的压力和吸力。
当风速较快时,这种压力和吸力可能会非常巨大,导致建筑结构的变形甚至破坏。
其次,风在绕过建筑时会产生漩涡和分离流,从而引起结构的振动。
如果这种振动与建筑的固有频率接近,就可能发生共振现象,对建筑造成严重的损害。
此外,高层建筑之间的风相互干扰,也会增加风荷载的不确定性和复杂性。
为了有效地进行高层建筑结构抗风设计,第一步是要准确地评估风荷载。
这需要通过风洞试验和数值模拟等手段来实现。
风洞试验是将建筑模型放置在风洞中,模拟实际的风环境,测量风对模型的作用力和响应。
数值模拟则是利用计算机软件对风场和建筑的相互作用进行计算和分析。
通过这些方法,可以获得风在建筑表面的分布规律以及建筑所受到的风力大小和方向。
在了解风荷载的基础上,设计师需要选择合适的结构体系来抵抗风的作用。
常见的高层建筑结构体系包括框架结构、剪力墙结构、框架剪力墙结构和筒体结构等。
框架结构具有较好的灵活性,但抗侧刚度相对较弱;剪力墙结构则具有较大的抗侧刚度,但空间布局不够灵活;框架剪力墙结构结合了两者的优点,能够在满足建筑功能需求的同时提供较好的抗风性能;筒体结构如框筒、筒中筒等,由于其封闭的空间形式,能够有效地抵抗风荷载。
结构构件的设计也是抗风设计的重要环节。
柱子、梁和剪力墙等构件需要具备足够的强度和刚度,以承受风荷载引起的内力。
在设计过程中,要考虑材料的力学性能、构件的尺寸和形状等因素。
例如,增加柱子和梁的截面尺寸可以提高其承载能力,但同时也会增加建筑的自重和成本。
因此,需要在安全和经济之间找到一个平衡点。
为了减少风对高层建筑的振动影响,还可以采用一些减振措施。
建筑结构抗风设计在如今经济高速发展的同时,建筑的高度也飞速增高,而且建筑体型越来越复杂。
高楼引来“风速杀手”。
由于高层、超高层建筑鳞次栉比而引发峡谷效应,使城市街道风速加大,以致危及行人和行车安全。
这种峡谷效应还表现在某些高楼部分外墙表面因风速过大产生巨大负压,玻璃幕墙或大墙板块会像雪崩一样脱落,高档门窗等也常常会发生突然崩塌、坠落伤人事故。
所以,建筑高度的增高和复杂的体型使得建筑结构抗风设计的难度也在不断提高。
我们要明白风对建筑的危害机理才能更好地进行抗风设计。
风是紊乱的随机现象。
风对建筑物的作用十分复杂,规范中关于风荷载值的确定适用于大多数体型较规则、高度不太大的单幢高层建筑。
目前还没有有效的预测体型复杂、高柔建筑物风作用的计算方法;摩天大楼可能造成很强的地面风,对行人和商店有很大影响;当附近还有别的高层建筑时,群体效应对建筑物和建筑物之间的通道也会造成危害。
风对建筑物表面的作用力大小,与建筑物体型、高度、建筑物所处位置、结构特性有关。
我国是世界上遭受台风灾害最为严重的国家之一,每年因台风灾害造成的经济损失十分惨重。
城市各类建筑物的损坏与倒塌是风灾直接损失的主要组成部分,快速预测和评估城市建筑物遭受风灾后的损伤情况,对城市防灾减灾工作至关重要,也是目前土木工程领域急待解决的一个问题。
接下来让我们看一些比较成功的抗风设计的实例。
1974年美国芝加哥建成443m高(加上天线达500m)110层的西尔斯大楼成为当时世界最高的建筑,纽约的世界贸易中心大厦(412m,110层)只能让位,退居第二。
大楼由9个标准方形钢筒体(22.9mx22.9m)组成。
该结构由SOM设计.建筑师为FazlurKahn。
建造到52层减少2个简体.到67层再减少2个简体.到92层再减少3个简体.到顶部变成2个简体。
这种独特结构的确引人人胜。
它是多筒结构中的巨型结构.每一个筒体都是单独简体,本身具有很好的刚度和强度,能够单独工作。
超高层建筑的结构抗风设计大跨、柔、轻质和低阻尼方向发展,使得结构对风的敏感性大大增强,风荷载正逐渐成为结构设计时的主要侧向荷载之一,甚至是决定性的设计荷载。
因此对于高、长等柔性结构的抗风计算和设计是结构抗风安全的关键,具有重要意义。
合理的进行结构抗风设计,是保证结构安全的重要因素,特别是超限高层建筑,由于它们的结构设计计算己经超出了相关规范及规程的要求。
因此,在设计时应进行专门的研究,对于实际工程具有现实的指导意义。
一、风对建筑结构的作用及结构抗风设计要求风荷载是建筑物的主要荷载之一,虽然其作用幅度比一般地震荷载小,但其作用频度却较地震荷载高得多。
随着结构规模的增加(高度与长度),风荷载变得越来越重要以至于最后成为结构设计中控制性荷载,即非抗震设计时的荷载效应组合控制结构的设计。
1.1 建筑结构的风致效应建筑结构的风致效应包括静力效应和动力效应。
静力风效应是指由于结构上的静力风荷载所引起的结构的静内力和静位移;动力风效应是指由结构上的脉动风荷载和漩涡干扰力所引起的结构的振动反应,包括振动内力、振动位移和振动加速度。
1.2 风对建筑结构的作用在风力的作用下处在风场中的建筑物承受由风引起的静力荷载与动力荷载。
按风对建筑物作用力的方向不同可分为:1.在建筑物的迎风面上产生的压力(气流流动产生的阻力),包括静压力和动压力;2.在横风向产生横风向干扰力(气体流动产生的漩涡扰力与湍流脉动压力);3.空气流经建筑物后在建筑物的背后产生的涡流干扰力(包括背风向的吸力)。
1.3 建筑结构抗风设计要求建筑物抗风设计必须保证结构在使用过程中不出现破坏现象,主要涉及以下几个方面:1.结构抗风设计必须满足强度设计的要求,也就是说结构的构件在风荷载和其他荷载的共同作用下内力必须满足强度设计的要求。
确保建筑物在风力的作用下不会产生倒塌、开裂和大的残余变形等破坏和损伤。
2.结构抗风设计必须满足刚度设计的要求,以防止建筑物在风力作用下产生过大的变形,引起隔墙的开裂、建筑装饰和非结构构件损坏。
高层建筑结构的抗风设计高层建筑在现代城市中随处可见,其挺拔的外形和巨大的体量给城市增添了独特的景观。
然而,由于地处风力较大的区域或者建筑本身的高度,高层建筑的抗风设计变得尤为重要。
本文将介绍高层建筑抗风设计的重要性、设计原则和一些常用的抗风措施。
一、高层建筑抗风设计的重要性由于高层建筑的高度和体量较大,容易受到风的侵袭。
强风对建筑物的影响主要有两个方面:一是风力作用产生的压力、抗力和振动,可能导致结构破坏;二是风载荷对建筑物产生的侧向力和扭矩,可能引发倾覆和侧倒。
因此,高层建筑的抗风设计至关重要,直接关系到其安全性和可靠性。
二、高层建筑抗风设计的原则1. 强度与刚度相匹配原则:高层建筑的抗风设计应确保结构足够坚固和刚性,以承受风的作用力。
结构的强度和刚度应与风荷载相匹配,避免过于保守或不足的设计,从而实现最佳的抗风效果。
2. 正确分析风荷载原则:高层建筑的抗风设计需要准确分析风荷载的作用机理和大小。
根据建筑物的地理位置、高度、形状等特点,合理选取适用的风荷载标准,并综合考虑各个方向上的荷载作用,确保设计的科学性和合理性。
3. 整体系统性原则:高层建筑的抗风设计需要将结构系统作为一个整体来考虑,包括主体结构、防风墙、剪力墙等组成部分。
各个组成部分应通过合理的布置和协同作用来提高整体系统的抗风性能,防止局部强度不足而导致的结构损坏。
三、高层建筑抗风措施1. 增加结构抗风强度:采用高强度的材料,增加结构的抗风强度。
例如,使用高强度混凝土和钢材作为建筑物的主要构件材料,提高整体的刚度和稳定性。
2. 优化建筑形状:合理设计建筑物的形状,减小风阻力。
通过调整建筑物的平面布置和立面形态,减小建筑表面的投影面积,降低风的作用力。
3. 设置防风墙和剪力墙:在高层建筑的立面或者内部设置防风墙和剪力墙,增加建筑物的抗风能力。
防风墙可以减小横向风荷载对建筑的冲击,而剪力墙则可以提高结构的承载能力。
4. 引入阻尼器和减振器:在高层建筑中引入阻尼器和减振器,用于吸收和分散风力作用引起的结构振动能量,保证建筑物的稳定性和舒适性。
高层建筑结构的抗风设计在当今城市的天际线中,高层建筑如林立的巨人般矗立。
它们不仅是城市繁荣的象征,更是建筑工程领域的杰作。
然而,这些高耸入云的建筑在面临自然力量时,尤其是风的考验时,需要精心的设计来确保其安全性和稳定性。
风,这个看似无形却力量强大的自然元素,对高层建筑结构的影响不容小觑。
因此,高层建筑结构的抗风设计成为了建筑设计中至关重要的一环。
风对高层建筑的作用是复杂而多样的。
首先,风会在建筑物表面产生压力和吸力。
当风正面吹向建筑物时,会产生正压力;而当风绕过建筑物时,会在建筑物的背面和侧面产生负压力,也就是吸力。
这种压力和吸力的分布不均匀,会导致建筑物在水平方向上产生变形和振动。
如果这种变形和振动过大,就会影响建筑物的结构安全和使用功能。
其次,风还会引起建筑物的涡激振动。
当风流经建筑物时,可能会在建筑物的后方形成漩涡。
这些漩涡的脱落频率如果与建筑物的自振频率接近,就会引发共振,导致建筑物产生较大的振动。
此外,强风还可能带来风荷载的突然变化,如阵风,这对建筑物的结构也是一种严峻的考验。
为了应对风的影响,高层建筑结构的抗风设计需要从多个方面入手。
首先是建筑的外形设计。
一个合理的外形可以有效地减小风的阻力和压力。
例如,流线型的外形能够使风更加顺畅地流过建筑物,减少风的漩涡和分离,从而降低风荷载。
常见的流线型外形包括圆形、椭圆形和倒角的方形等。
此外,建筑的高宽比也会影响其抗风性能。
一般来说,高宽比较小的建筑在抗风方面更具优势,因为它们在水平方向上的稳定性更好。
结构体系的选择也是抗风设计的关键。
常见的高层建筑结构体系包括框架结构、剪力墙结构、框架剪力墙结构和筒体结构等。
框架结构具有较好的灵活性,但抗侧刚度相对较小;剪力墙结构则具有较大的抗侧刚度,但空间布局相对受限。
框架剪力墙结构结合了两者的优点,能够在提供较大抗侧刚度的同时,保持一定的空间灵活性。
筒体结构,如框筒结构和筒中筒结构,具有非常好的抗风性能,特别适用于超高层建筑。
高层建筑结构抗风设计在现代城市的天际线上,高层建筑如同一颗颗璀璨的明珠,展现着人类建筑技术的伟大成就。
然而,这些高耸入云的建筑在面对大自然的力量时,尤其是强风的袭击,需要具备出色的抗风能力。
高层建筑结构抗风设计成为了确保建筑安全与稳定的关键环节。
风对于高层建筑的影响不可小觑。
当风遇到高层建筑时,会在其表面产生压力和吸力,导致结构的振动和变形。
如果抗风设计不合理,可能会引起建筑的摇晃、窗户破裂、外墙材料脱落,甚至结构的破坏,严重威胁着人们的生命和财产安全。
在进行高层建筑结构抗风设计之前,需要对风的特性有深入的了解。
风的速度、方向、湍流强度等因素都会对建筑产生不同程度的影响。
通常,风工程师会通过气象数据、风洞试验和数值模拟等手段来获取风的相关信息。
气象数据是了解当地风况的重要来源。
通过长期的气象观测,可以得到平均风速、最大风速、风向频率等基本参数。
然而,这些数据往往是在一定高度和开阔区域测量得到的,与高层建筑所处的复杂环境可能存在差异。
风洞试验则是一种更加直观和准确的研究方法。
在风洞中,可以按照实际建筑的比例制作模型,模拟不同风速和风向条件下的风场,测量模型表面的风压分布和结构的响应。
通过风洞试验,可以获得详细的风荷载数据,为设计提供可靠的依据。
数值模拟则是利用计算机软件对风场和建筑结构进行建模和计算。
它可以快速地模拟各种复杂的风况和结构形式,但需要对计算模型和参数进行合理的选择和验证。
有了风的相关数据,接下来就是进行高层建筑结构的抗风设计。
结构的形式和布局对于抗风性能有着重要的影响。
常见的结构形式包括框架结构、剪力墙结构、筒体结构等。
框架结构具有较好的灵活性,但抗侧刚度相对较小;剪力墙结构和筒体结构则能够提供较大的抗侧刚度,适用于高度较高的建筑。
在结构布局方面,应尽量使建筑的外形规则、对称,减少风的绕流和漩涡的产生。
同时,合理设置加强层、伸臂桁架等结构构件,可以有效地提高结构的整体抗风能力。
结构材料的选择也不容忽视。
高层建筑结构的抗风能力高层建筑的结构设计是一项复杂而重要的工作,其中之一就是确保建筑物具有良好的抗风能力。
面对自然灾害中的风力,高层建筑必须经受住强大的风载荷,确保建筑物的稳定和安全。
本文将探讨高层建筑结构的抗风能力,包括抗风设计原则、影响抗风能力的因素以及相关的技术手段。
1. 抗风设计原则在高层建筑的结构设计中,抗风能力是一个至关重要的考虑因素。
以下是几个设计原则,用于确保高层建筑的抗风性能:1.1. 强度设计原则:高层建筑的结构材料及构件强度需要符合相应的设计标准,以承受外部风载荷带来的压力。
设计师通常会使用混凝土、钢筋等高强度材料,并采用适当的构件尺寸和连接方式,以提高整体结构的强度和稳定性。
1.2. 刚度设计原则:高层建筑的结构刚度对于抵抗风力的作用至关重要。
通过合理的刚度设计,可以减小建筑物在风中的位移,从而减小风力对建筑物的影响。
在设计过程中,通常会通过增加结构的刚性来提高整体的抗风性能。
1.3. 减震设计原则:减震技术在高层建筑的结构设计中扮演着重要角色,能够有效地减小结构在风力作用下的振动响应。
常用的减震技术包括剪力墙、阻尼器等。
这些技术可以通过增加结构的阻尼,降低结构的振动幅度,提高抗风能力。
2. 影响抗风能力的因素除了设计原则之外,还有一些因素会对高层建筑的抗风能力产生重要影响。
2.1. 建筑形态:建筑物的形态会直接影响风力对其的作用。
通常情况下,较窄的建筑比较容易受到风力的影响,因此设计师可以通过合理的建筑形态设计来减小风力的作用。
例如,采用流线型的建筑外形,可以减小局部区域的风速,降低风力的作用。
2.2. 建筑材料:不同材料的抗风能力有所不同。
轻质材料容易受到风力的影响,而重质材料则相对较好地抵抗风力。
在高层建筑的结构设计中,选择合适的材料对提高抗风能力至关重要。
2.3. 建筑组合体系:建筑的组合体系对于抗风能力起着重要作用。
例如,在群楼式建筑中,建筑与建筑之间的间隙可以减小风力的作用,提高整体的抗风性能。
高层建筑框架结构的抗风设计随着经济的发展和城市化的进程,高层建筑在我们的城市中越来越常见。
在建造这些高耸入云的建筑物时,抗风设计成为了至关重要的考虑因素。
高层建筑框架结构的抗风设计是确保建筑物能够在恶劣天气条件下保持稳定性和安全性的关键。
本文将探讨高层建筑框架结构的抗风设计的原则和技术。
首先,了解高层建筑抗风设计的原则至关重要。
抗风设计需要考虑风载、结构强度、建筑形态和场地条件等几个重要因素。
风载是指风力对建筑物表面的压力。
风力的大小与风速、风向、建筑物的高度和形态有关。
因此,计算和模拟风载是抗风设计的第一步。
其次,高层建筑框架结构的强度是抗风设计的关键。
通常,使用钢筋混凝土或钢结构作为高层建筑的框架。
这些材料具有良好的强度和韧性,能够抵抗风力对建筑物的挤压和剪切力。
同时,建筑物的基础也需要足够强大,以确保建筑物的整体稳定性。
此外,高层建筑的形态也对抗风设计产生影响。
具有较小截面的建筑物能够减小风阻力,从而减小风力对建筑物的影响。
因此,很多高层建筑采用了独特的外形设计,如圆形或流线型,以减小风阻力。
同时,在建筑物的顶部设置避风设施也能够有效减少风力的作用。
最后,场地条件也是抗风设计的重要考虑因素。
在选择建筑地点时,需要对周围环境进行分析。
例如,如果建筑物位于开阔地区,那么风力的作用将更加明显。
因此,在这些地区,需要采取额外的抗风措施,如增加建筑物的刚度和使用风洞试验来评估建筑物的抗风能力。
综上所述,高层建筑框架结构的抗风设计是确保建筑物在恶劣天气条件下保持稳定性和安全性的关键。
通过了解抗风设计的原则和技术,可以设计出更加稳定和安全的高层建筑。
然而,需要注意的是,抗风设计只是抗自然灾害的一种手段,也需要结合其他因素来确保高层建筑的整体安全。
因此,在设计和建造高层建筑时,我们需要充分考虑各种因素,确保建筑物的可持续发展和人员安全。
通过以上论述,我们可以看到高层建筑框架结构的抗风设计不仅仅是一个工程问题,更是关乎人们生命安全和财产保护的重要任务。
超高层建筑的结构抗风设计超高层建筑的结构抗风设计超高层建筑的结构抗风设计摘要:高层特别是超高层建筑的风荷载,是结构设计中位移和扭转超限的主要控制因素,也是结构设计的重点和难点之一。
本文结合工程实例和目前国内比较常见的风振控制措施,简要介绍在设计中的一些抗风措施。
关键词:高层建筑;风荷载;抗风措施;阻尼器Abstract: The high-rise building wind loads, the structural design displacement and torsion overrun the main controlling factor also focus on structural design and one of the difficulties. In this paper, integrate the engineering example and the more common wind-induced vibration control measures to a brief introduction in the design of some of the control measures。
Key words: high-rise building;wind load;structural control measures Damper中图分类号:[TU208.3]文献标识码:A文章编号:引言:伴随城市化的快速进展,建筑高度和高宽比的增加及钢结构的大量应用,高层建筑的刚度越来越柔,阻尼比越来越小。
一方面要求建筑尽量轻柔化,可以减少自重减轻地震力等的影响,另一方面又要求建筑有较大的承载力和刚度来解决水平荷载的影响,高层建筑物如果设计的太过轻柔则达不到足够的刚度,在风荷载作用下会导致水平位移过大,因此高层建筑如何做好抗风设计,除了做好合理的结构分析与设计,可以结合控制结构振动的方法来解决以上问题。
高层建筑结构的抗风设计在当今城市的天际线中,高层建筑如林立的巨人般矗立。
它们不仅是城市繁荣的象征,更是人类建筑技术和智慧的结晶。
然而,在这些高耸入云的建筑背后,隐藏着一个至关重要的设计考量——抗风设计。
风,这个看似无形却力量强大的自然元素,对于高层建筑来说,是一个不容忽视的挑战。
风对高层建筑的影响是多方面的。
首先,强风会对建筑物产生直接的水平推力。
想象一下,狂风呼啸而过,用力地推搡着高楼,这可能导致建筑物的结构变形甚至损坏。
其次,风的作用还可能引起建筑物的振动。
持续的振动不仅会让居住或工作在其中的人们感到不适,长期下来还可能对建筑结构的耐久性产生负面影响。
此外,风在建筑物周围形成的复杂气流,可能导致局部的压力差异,从而影响窗户、外墙等构件的性能。
为了应对风的挑战,工程师们在进行高层建筑结构的抗风设计时,需要综合考虑多个因素。
建筑的形状和体型就是其中的关键之一。
流线型的设计能够有效地减小风的阻力,减少风对建筑物的作用力。
比如,一些现代高层建筑采用了逐渐收窄的外形,类似于竹笋的形状,这样的设计可以使风更顺畅地流过建筑,降低风的冲击。
结构体系的选择对于抗风性能也起着决定性的作用。
框架结构、剪力墙结构、筒体结构等不同的结构形式,在抵抗风荷载方面具有不同的特点。
框架结构具有较好的灵活性,但在抗侧力方面相对较弱;剪力墙结构则能够提供较强的抗侧刚度,适合抵抗较大的风荷载;筒体结构则集合了框架和剪力墙的优点,具有出色的抗风性能。
在实际设计中,工程师需要根据建筑的高度、用途、地理环境等因素,选择最合适的结构体系。
在抗风设计中,风洞试验是一项不可或缺的手段。
通过在风洞中模拟真实的风环境,对建筑模型进行测试,可以获取风对建筑物的作用力、压力分布等详细数据。
这些数据为设计师提供了宝贵的依据,帮助他们优化建筑的设计。
例如,根据风洞试验的结果,可以调整建筑的外形、优化窗户的布置,或者增加一些抗风构件。
除了结构设计,建筑材料的选择也与抗风性能息息相关。