高层建筑基础结构设计探析
- 格式:doc
- 大小:25.50 KB
- 文档页数:6
基于高层建筑结构设计中的基础设计问题探究【摘要】随着我国国民经济的飞速发展,人民生活水平与居住水平也相应地得到了提高,使人们对高层建筑条件提出了更高的要求,本文在此提出了自己的一些观点,首先概述了高层建筑结构设计中的基础设计,然后分析了高层建筑结构基础设计中应注意的问题,希望对提高高层建筑结构设计质量有所帮助。
【关键词】高层建筑基础设计;基础刚度;作用理论前言高层建筑的上部结构,基础及地基组成了一个共同作用的体系,在高层建筑基础设计中,要有效利用上部结构刚度,充分考虑地基条件对基础受力的影响,合理选择基础形式,运用共同作用的理论设计地基和基础,达到减少基础内力与沉降、降低基础造价的目的。
一、高层建筑基础的设计理论分析1、上部结构的刚度对基础受力状况的影响。
假设上部结构为绝对刚性,当地基变形时,各竖向构件只能均匀下沉;如忽略竖向构件端部的抗转动能力,则竖向构件支座可视为基础梁的不动铰支座,亦即基础梁犹如倒置的连续梁,不产生整体弯曲,却以基底分布反力为外荷载,产生局部弯曲。
反之,假设上部结构为绝对柔性,对基础的变形毫无约束作用,于是基础梁在产生局部弯曲的同时,还经受很大的整体弯曲。
于是,两种情况下基础梁的内力(例如弯矩)分布形式与大小产生很大的差别。
实际结构物常介于上述两种情况,其整体刚度的考虑非常困难,只能依靠计算软件分析。
在地基、基础和荷载条件不变的情况下,增加上部结构的刚度会减少基础的相对挠曲和内力,但同时导致上部结构自身内力增加,即是说,上部结构对减少基础内力的贡献是以在自身中产生不容忽视的次应力为代价的。
还应注意的是上部结构的刚度贡献也并不是无限。
2、基础刚度对基底反力分布的影响。
绝对柔性基础当上部结构刚度可以忽略时,对荷载传递无扩散作用,如同荷载直接作用在地基上,反力分布 p(x,y)则与荷载 q(x,y)大小相等、方向相反。
当荷载均匀时,基础呈盆形沉降;如欲使基础沉降均匀,则需使荷载从中部向两端逐渐增大,呈不均匀状。
论高层建筑结构中的基础设计摘要:高层建筑结构设计中,基础设计方面尤其重要。
所谓“地基不牢地动山摇”,基础如果不打好,那么建筑物就会出现严重问题!轻则建筑出现裂缝,严重可导致整个高层建筑倾塌。
本文依据已有的工程实践,进行了初浅的介绍,以供设计人员参考。
关键词:高层建筑;结构设计;基础;问题中图分类号: tu318 文献标识码: a 文章编号:在经济迅速发展的今天,高层建筑成为城市空间利用的重要角色,同时,迅速发展的高层建筑也给设计师提出了诸多新的挑战。
高层建筑的基础作为高层建筑结构体系的一个非常重要的部分至关重要。
高层建筑基础选型基础工程设计中的关键问题是如何根据各个地区地质条件的差异,来选择安全经济的基础形式。
一般情况下,高层建筑应需考虑以下几种条件:①高层建筑基础应支承在坚固或均匀的地基上,应充分考虑到持力层以及下卧层的稳定性,不宜在同一栋建筑采用多种类型的基础形式;②高层建筑基础应保证基础本身的强度要求,同时,基础上部传递的荷载分布应达到最大的均匀;③高层建筑基础应满足上部结构的正常使用要求;④高层建筑基础应满足相关构造要求,如高层建筑箱基的埋置深度和高度,基底平面形中心应与结构竖向静荷载重心重合,对偏心距的要求、沉降控制等;⑤高层建筑基础一般埋置较深,在施工过程中,为了保证施工过程中的安全和质量,高层建筑的基础应充分考虑到深基坑开挖和地下水抽排对周围建筑物的影响。
高层建筑在设计基础时一般采用筏板基础、桩筏基础、箱形基础等,具体选择哪种基础形式是基础设计考虑的首要问题,设计工作的过程可以遵循以下几步进行。
首先,充分掌握施工场地的岩土勘报告,根据场地的地层分布及各层地基承载力特征值确定明确的持力层;其次根据持力层的位置及建筑专业确定的上部结构类型、层数、地下室层高初步选定基础形式,并核查是否满足该种基础形式的基本要求;最后根据上部结构的荷载及地基承载力特征值进行基础估算,同时要考虑持力层下是否有软弱下卧层、基础施工的工艺方法、邻近建筑物基础的影响等。
高层建筑结构设计与抗震性能分析高层建筑在现代都市中起到了举足轻重的作用,但由于其复杂的结构以及高度,抗震性能成为设计和建造过程中不可忽视的重要因素。
本文将对高层建筑结构设计与抗震性能进行分析,并探讨相关的优化技术。
一、高层建筑结构设计要点高层建筑的结构设计要点包括以下几个方面:1. 基础设计:高层建筑的基础设计应考虑地质条件、土壤承载力以及建筑的荷载等因素。
采用适当的基础形式和深度可以提高建筑的稳定性和抗震性能。
2. 结构体系:高层建筑的结构体系应选用抗震性能良好的方案,如剪力墙结构、框架-剪力墙结构、框架-筒状墙结构等。
这些结构体系具备较好的抗震性能,能够有效吸收和分散地震作用。
3. 材料选择:高层建筑结构的材料选择对于提高抗震性能至关重要。
采用高强度、高韧性的钢材或混凝土材料,可以提高结构的整体强度和延性,从而提高抗震性能。
二、高层建筑抗震性能分析方法高层建筑的抗震性能可以通过以下几种方法进行分析:1. 静力分析:静力分析是一种简化的抗震性能分析方法,通过计算建筑在地震作用下的静力响应来评估其抗震性能。
该方法适用于低层建筑或对于结构刚度较为均匀的高层建筑。
2. 动力分析:动力分析是一种较为准确的抗震性能分析方法,通过计算建筑在地震作用下的动力响应来评估其抗震性能。
该方法适用于高层建筑或对于结构刚度较为不均匀的情况。
3. 数值模拟:数值模拟是一种基于有限元原理的抗震性能分析方法,通过建立结构的数值模型来模拟地震作用下的动力响应。
该方法能够更加准确地评估结构的抗震性能,并可用于优化结构设计。
三、高层建筑抗震性能的优化技术为了进一步提高高层建筑的抗震性能,可以采用以下优化技术:1. 设计合理的剪力墙布置:剪力墙是高层建筑中一种常用的抗震结构形式,其布置合理与否直接关系到结构的抗震性能。
通过优化剪力墙的位置和布置方式,可以提高结构的整体刚度和延性,增强其抗震性能。
2. 采用抗震支撑系统:抗震支撑系统能够在地震发生时提供额外的支撑和稳定性,对高层建筑的抗震性能具有重要影响。
建筑结构设计原理解析从基础到高层建筑结构设计是指在建筑物的整体设计中,针对建筑物的承载力、稳定性和耐久性等方面进行合理的设计和构造。
它是建筑设计中非常重要的一部分,直接关系到建筑物的安全性和使用寿命。
本文将从基础到高层,对建筑结构设计的原理进行解析。
一、基础设计原理建筑的基础是整个建筑的重要支撑部分,承载着整体重量,并将荷载传递到地基上。
基础的设计原理主要包括以下几个方面:1. 基础承载力计算:根据建筑物的类型、结构形式、地质条件等因素,计算基础承载力,以保证建筑物的安全性。
2. 基础形式选择:根据不同的建筑物类型和地质条件,选择合适的基础形式,如浅基础、深基础等。
3. 基础防水设计:在基础设计中考虑防水措施,避免地下水对基础的侵蚀,保证基础的安全性和稳定性。
二、框架结构设计原理框架结构是一种常用的建筑结构形式,主要由柱、梁和面板构成,具有刚性好、稳定性强的特点。
框架结构设计的原理主要包括以下方面:1. 框架构件的选择:根据建筑物的功能和荷载要求,选择合适的框架构件,如钢结构、混凝土结构等。
2. 承载体系的设计:确定框架结构的梁、柱、面板等构件的位置和布置,保证整体结构的稳定性。
3. 钢筋混凝土结构设计:对于混凝土结构,需要考虑钢筋的布置和混凝土的强度设计,以提高结构的承载能力。
三、楼板结构设计原理楼板是建筑物的平面承重构件,负责承载人员活动和荷载的传递。
楼板结构设计的原理主要包括以下几方面:1. 楼板材料的选择:根据建筑物的用途和荷载要求,选择适合的楼板材料,如钢筋混凝土楼板、轻质楼板等。
2. 楼板厚度设计:根据荷载要求和材料性能,确定楼板的厚度,并进行布置和加劲措施,以保证楼板的稳定性。
3. 楼板防火设计:考虑到建筑物的消防安全要求,进行楼板的防火设计,选择合适的防火材料和防火措施。
四、高层建筑结构设计原理高层建筑结构设计是建筑结构设计中的一项重要内容,由于高层建筑的地下室深度、高度等特殊性,需要考虑更多的因素。
高层建筑的结构设计特点及基础结构设计摘要:高层建筑的上部结构,基础及地基组成了一个共同作用的体系,在高层建筑基础设计中,要有效利用上部结构刚度,充分考虑地基条件对基础受力的影响,合理选择基础形式,运用共同作用的理论设计地基和基础,达到减少基础内力与沉降、降低基础造价的目的。
本文就高层结构设计的特点、设计原则以及基础的结构设计中存在的几个问题进行了探讨。
关键词:高层建筑;结构特点;基础结构设计0.引言高层建筑结构设计越来越成为高层建筑设计工作的难点与重点,给工程设计人员提出了更高的要求。
在高层建筑结构设计中,基础设计极其重要,扎实、适用的基础,是确保高层建筑质量的关键所在。
在进行高层建筑结构设计时,要结合当地情况,考虑好可能存在的一系列影响因素,把基础设计做好。
本文就高层结构设计的特点、设计原则以及基础的结构设计中存在的几个问题进行探讨。
1.高层建筑结构设计特点1.1水平荷载成为决定因素首先,数据显示楼房自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值仅与楼房高度的一次方成正比,而水平荷载对结构产生的倾覆力矩,以及由此在竖向构件中引起的轴力与楼房高度的两次方成正比。
因此,水平荷载对高层建筑稳定性的影响作用是很大的。
1.2轴向变形不可忽视高层建筑中,竖向载荷很大,能在柱中引起较大的轴向变形,对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩减小,跨中正弯矩和端支座负弯矩值增大;此外还会对预测构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。
1.3侧移成为控制指标与低层或多层建筑不同,结构侧移已成为高层结构设计中的关键因素。
随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,与建筑高度H的4次方成正比(△=qH4/8EI)。
另外,高层建筑随着高度的增加、轻质高强材料的应用、新的建筑形式和结构体系的出现、侧向位移的迅速增大,在设计中不仅要求结构具有足够的强度,还要求具有足够的抗推刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,否则会产生以下情况:(1)因侧移产生较大的附加内力,尤其是竖向构件,当侧向位移增大时,偏心加剧,当产生的附加内力值超过一定数值时,将会导致房屋侧塌。
高层建筑结构设计探析摘要:随着我国经济的发展,越来越多的高层建筑出现在了我国各地。
并且随着建筑功能和类型的多样化、建筑高度的增加以及建筑结构的复杂化,如何解决好城市高层建筑的结构设计就变成了一个摆在全国建筑设计师眼前的重要问题。
本文旨在对我国高层建筑结构设计中所面临的主要问题进行全面探讨,并提出作者自己的想法和建议。
关键词:高层建筑;结构设计;特点;问题中图分类号:[tu208.3] 文献标识码:a 文章编号:1 前言在我国城市化进程不断加快的背景下,城市居住用地在不断缩减,而高层建筑因具有占地小、居住人口多、房价相对较低等特点,而在现代城市建设中占据越来越大的比例。
随着我国高层建筑建设中工艺和技术研究的不断深入,越来越多的新理念、新方法被应用于高层建筑的结构设计中,促进了我国高层建筑工程整体技术力量、质量、安全性的提高。
但是从整体状况而言,国内在高层建筑的结构设计中仍然存在一定的问题,这是必须及时得到处理和解决的。
随着高层建筑结构体系的复杂化,需要设计人员在进行高层建筑结构设计时依靠自己掌握的知识、根据具体情况来分析和解决可能遇到的各种问题。
2 对我国高层建筑结构设计特点的分析通过对我国高层建筑结构设计、多层建筑设计和低层建筑加以比较可以发现,在各专业的重要性当中,结构专业所占比重最大,建筑结构体系的选择,对建筑的施工技术要求、立面体形、平面布置、楼层高度、投资造价、施工周期以及机电管道设置等有着直接的影响。
2.1 对抗震设计方面的要求较高高层建筑的抗震设计是非常重要的,因此,往往在高层建筑设计时,抗震方面的设计有着较高的指标。
除了应当对高层建筑正常使用时的风荷载与竖向荷载进行充分考虑之外,还应当加强建筑结构的抗震性能,切实的做到大震不倒、小震不坏。
2.2 水平荷载成为决定因素一方面,因为高层建筑楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩以及由此在竖构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度变化。
高层建筑筏板基础结构设计要点分析与探讨发表时间:2018-07-09T14:40:49.737Z 来源:《基层建设》2018年第13期作者:陆咏彬[导读] 摘要:本文通过工程实例对高层建筑筏板基础结构设计要点分析与探析,以供同仁参考。
广东建筑艺术设计院有限公司佛山分公司摘要:本文通过工程实例对高层建筑筏板基础结构设计要点分析与探析,以供同仁参考。
关键词:高层结构;结构选型;筏板基础;设计要点一、前言近年来,随着我国城镇化建设的快速发展,越来越多的高层建筑拔地而起,高层建筑区别于以往传统的建筑形式,具体表现在建筑材料的选择、建筑的结构设计、建筑施工的方案等,所以,在高层建筑前期工作中,加强基础设计环节,明确基础结构设计的要点,对高层建筑结构的各种体系安全才有保障。
某工程为高层商住楼建筑,设二层地下室作为车库(其中地下二层兼为核六级人防地下室),地上三十二层,总建筑面积约57000m²,建筑总高度99.95米。
本工程建筑结构的安全等级为一级,抗震设防烈度为6度,设计地震分组属第一组。
下面就对该高层建筑筏板基础结构设计要点分析与探析,以供同仁参考。
二、建筑基础结构选型本工程地基基础设计等级为甲级。
本工程地下二层,塔楼部分基础底面埋深约10.5米,满足规范对采用天然地基房屋1/15高度的埋深要求。
塔楼基底在绝对标高68.1米左右,持力层为强风化泥岩、粉砂岩⑦层,该持力层土质工程性质较良好,地基承载力较高,地基承载力特征值为300kPa。
经宽、深修正后的地基承载力特征值fa=530kPa,塔楼地上高32层,2层地下室,三层裙楼,标准层荷载按14.5kPa 考虑,其他按18kPa考虑,则塔楼基底平均压力约为14.5×30+18×5+1.8×25=570kPa,塔楼筏板每边悬挑2米可满足承载力要求。
裙楼基底在绝对标高69.6米左右,持力层为圆砾⑥,该持力层土质工程性质较良好,地基承载力较高,地基承载力特征值为350kPa,经宽、深修正后的地基承载力特征值fa=580kPa。
Building Technology88《华东科技》高层建筑的结构设计特点及基础结构设计孙夏兰(同圆设计集团有限公司安徽分公司,安徽 合肥 230000)摘要:我国建筑行业随着经济的不断发展快速成长,在高层建筑方面取得优异成绩,建筑规模正在逐渐扩大,高层建筑的结构设计受到设计人员的广泛关注。
高质量的结构设计,才能保障建筑的安全性及稳定性,本文从工程举例分析高层建筑结构设计特点及基础设计方面展开分析,以期帮助设计人员能够做出质量高的设计和规划,提出参考意见。
关键词:高层建筑;设计特点;基础结构设计近年来,高层建筑不断快速发展,越来越引起相关设计人员的高度重视。
高层建筑的结构设计是一项比较复杂的工程,且综合性较强。
而在高层建筑结构设计中,基础设计是核心部分,是保障建筑安全性及稳定性的基础,同时也具有一定难度,这对结构设计人员的专业要求也越来越高。
在高层建筑设计中需结合当地实际情况,做出相应设计方案,及时发现问题并解决,根据这些影响因素提出可行的设计方案,因此,了解高层建筑的特点、原则及基础的结构设计对结构设计人员十分重要。
1 工程概况 工程名称:某办公楼大厦。
建筑面积为25000m 2,层数为地上26层,地下2 层,层高为3.3m,结构高度为92.4 m,平面整体为井字型建筑,详见图1。
图1 工程平面图2 结构平面布置2.1 框架-核心筒结构体系根据建筑的平面布置要求,本工程为综合办公大楼,需要有较大的办公空间和会议室,整个工程呈现核心筒结构体系,其主要特点为降低偏心影响,可最大程度承受水平负荷力,对其抗侧刚度具有一定提升,保证高层建筑物的稳定性。
在计算各振型地震对其结构影响程度,应考虑非承重墙体的刚度影响予以折减,根据规范要求框架-核心筒结构可取0.8-0.9。
设计时核心筒宜贯通建筑物全高。
抗震设计时核心筒为框架-核心筒结构的主要抗侧力构件,因此比一般的剪力墙结构要求更高。
在这类结构中要特别注意其质心和刚心的偏心距,尽量使二者重合,才能控制结构的扭转效应。
高层建筑结构设计特点探析一.高层建筑结构设计特点(一)水平荷载的作用首先说明,因为楼面荷载以及建筑自身的重量在构件上的弯矩、轴力,与建筑物的高的一次方是成正比的,同时,因为水平荷载对竖构建的轴力以及水平荷载自身产生的力矩,与建筑物高的二次方是成正比;其次要说明的是,当建筑物高度达到一定程度,竖方向的荷载就会维持基本不变,对于水平荷载,地震作用和风荷载的值不是恒定不变的,会因为不同的结构而产生很大程度的变化。
(二)重视轴向变形高层建筑物的竖向的荷载会给支撑柱产生一定的压力,会引起轴向变形,而且也会改变连续梁的弯矩,从而制作的负弯矩也就会降低,也会对准备安置构建的长度产生影响;另外也会影响构建侧移和构建剪力,如果这种和竖方向的变形相比,结果显然是偏于不安全的。
(三)侧移和结构延性跟多层建筑相比,高层建筑对于设计结构中的结构侧移非常重视,楼的层数越多,高度越高,相应的水平荷载产生的构建侧移也就越大,所以,我们控制数值在一定的合格的范围。
如果产生地震,高层建筑的变形也就更大,所以,我们要做到保证建筑物在经过了塑性变形之后没有完全丧失变形能力,从而来防止发生倒塌,所以就应该尽量对结构的延性进行提升。
二.高层建筑的结构分析(一)弹性假定高层建筑物经常用到的方法其中就有弹性计算法。
因为建筑物本身收到了风力和垂直荷载的作用,就会使得结构处于一种弹性工作状态,实际情况基本与这种情况类似。
一旦出现大风或者出现大震就会导致高层建筑物位移量增大,有可能导致建筑物本身出现裂缝,处于一种弹塑性工作状态,这种情况计算位移就不能运用弹性计算法,不然误差很大,这种情况,计算就需要运用弹塑性动力法,这样的计算结果才更接近结构的真实状态。
(二)小变形假定一般的计算方法经常采用这种假定,不过在计算的时候要考虑一下几何非线性问题的研究。
很多人认为,当顶点水平为何与楼房本身的高度比例一旦大于1/500,就要重视两者之间产生的影响。
(三)刚性楼板假定在进行高层建筑物的分析计算中,一般不考虑平面外的刚度,一般情况都是对平面内的楼板刚度假设很大。
论高层建筑结构中的基础设计摘要:基础在高层建筑结构中是重要的组成部分,不仅建筑物的安全性方面起到至关重要的作用,在造价和施工工期上也起到非常大的影响。
所以设计者在设计过程中,要根据地地质资料、荷载、结构类型、施工条件、施工材料等等因素做到全方位的考虑,使设计的基础即安全实用,又经济合理,同时也能方便施工。
文章主要是从基础设计的合理性,分析方法,适用类型,部分优化来进行论述。
关键词:高层建筑;基础结构;设计与优化中图分类号:[tu208.3] 文献标识码:a 文章编号:一高层建筑基础设计的现实意义1.1安全性地基和基础位于地面以下,系隐蔽工程。
它的勘察、设计和施工质量,直接影响建筑物的安全。
设计时保证与之上部结构相适应的基础选型是影响结构安全的重要因素。
如果建筑在基础选型设计上与上部结构不相适应、与所处的地基条件不协调、与上部结构不能在整体上协同受力等,有可能造成建筑物的不均匀沉降、建筑物开裂或倾斜甚至倒塌等严重后果。
一旦发生质量事故,补救和处理往往很困难,甚至是不可能的。
所以,高层建筑基础设计的现实意义。
1.2经济性基础形式设计合理有利于工程造价的降低。
地基基础工程的造价和施工工期在建筑总造价中所占的比例与多种因素有关,在建筑工程造价中基础工程占有的比重可达到25%左右,有时由于地质、结构的复杂性、施工条件等,则基础造价更高。
保证结构安全性前提下,合理的基础选型,尽量降低工程造价。
1.3时间性基础形式的合理有利于缩短施工工期。
据相关统计,基础工程的施工工期可占到土建工程总工期的约30%左右,因此,在当今经济飞速发展的大时代背景下,基础形式的合理选择对缩短施工工期具有重大意义。
二勘察成果在高层建筑基础设计中的影响及采取的措施上部结构与地基、基础按整体共同作用的分析方法是目前最理想的。
在上部结构与地基、基础之间可对满足接触点的静力平衡和接触点的变形协调同时满足,即将把其看成彼此协调的整体来进行分析。
超高层建筑结构设计难题探析摘要:超高层建筑在结构设计中涉及到较多的难题,结合某工程的结构设计,对基础设计、风洞试验、上部结构设计及结构设计的重点等进行了探析。
关键词:基础设计结构设计风洞试验1 工程概况该工程由一幢50层的超高层塔楼和相邻的五层裙房组成,总建筑面积约12.8万m2, 塔楼大屋面标181.650m,总高度196m ,属b 级高度高层建筑,建筑结构安全等级为二级,设计使用年限为50年。
塔楼部分为钢筋混凝土框架- 核心筒结构体系;裙楼高26m,为钢筋混凝土框架- 剪力墙结构。
2 基础设计根据地质勘察报告,综合考虑场地环境因素,桩基类型选用钻孔灌注桩。
塔楼基础底板厚度根据冲切计算厚度取为3.1m, 轴力最大的两根柱下底板局部加厚至3.6m。
裙楼底板厚度1m ,局部加厚至1.7m。
经分析,塔楼基础底板较大拉应力多分布于柱墙下周边的板底区域内,故板面和板底的跨中区域,在满足内力计算和构造要求的前提下,双向一般均只布设两层钢筋,而在柱墙芯筒下拉应力较大的板底区域及个别板面区域,根据计算另加一至三层钢筋,从而使基础底板的用钢量得到较大幅度的减小。
塔楼基础底板总混凝土方量约13000立方,由于底板平面呈三角形,如设置施工后浇带,1~2条无法均匀分割底板,如设置条数过多,既会给施工带来困难,又会增大底板因混凝土分多次浇捣而产生质量问题的可能性。
故对底板一次性连续浇捣,不设施工后浇带。
为确保基础底板施工质量,采取了以下措施:(1)底板厚度范围内设置两层(沿厚度方向每米一层)<14@300双向抗裂钢筋,板面设置<8@150双向抗裂钢筋;(2)基础底板混凝土强度等级采用60天,后期强度以降低水化热;(3)浇捣采用“分段定点、一个坡度、薄层浇捣、循序推进、一次到顶”的方法;(4)保温养护方面在底板面以“一层薄膜+两层草包+一层薄膜”为一个单元保温层;(5)加强监控,在基础底板每250~300 平方米设置1个测温点,每个点位在底板不同深度埋设3~5个热敏测点,并与电脑连网,一旦底板内外温差超过25℃即报警,同时采取措施加强保温。
高层建筑基础结构设计探析
【摘要】近年来,我国经济得到飞速发展,各种高层建筑纷纷涌现,拔地而起。
如今高层建筑已经成为建筑工程行业内的主流趋势,基础结构设计是它的关键环节,因为一项工程如果在基础设计上出现了差错,不但会使建筑物的质量和安全受到影响,而且会使它的稳定发展受到严重干扰。
因此本文在阐述高层建筑设计理论与设计方法的基础上,探讨了对高层建筑进行基础结构的设计时应注意的问题,为以后的工程实践提供了一定的参考依据。
【关键词】高层建筑;结构设计;设计理论;方法
目前,高层建筑的结构类型渐渐趋向于复杂化,这使高层建筑的楼层越来越多、高度越来越高且施工作业面越来越小。
因此在工程实施过程中,由于建筑高度不断增加,致使地面的压力负荷也不断提高。
为了使高层建筑的施工得到保障,避免地面发生塌陷、建筑结构出现沉降不均匀等问题,工程师需要严格审查地面的基础设计,严格监督和控制建筑施工。
基础工程设计同地质条件、建筑方案和工期等密切相关,其设计与施工对周围环境和高层建筑自身具有重要影响,工期和造价对高层建筑的总工期及整体造价起着举足轻重的作用。
一、设计理论
高层建筑地基与上部结构及基础结构相互作用构成了一个共同的体系。
然而多年以来,因为计算方法的不足和人们在思想认识上的限制,在进行结构设计时,这三部分之间的关系经常被人为地切
割,将基础结构与上部结构看作是独立的,对其分开考虑,这样会忽略了地基基础和上部结构的共同作用,也会忽视了基础结构和上部结构间的约束作用。
这可能导致的结果是:基础设计过于保守,并且由于低估了上部结构对某些部位的内力,致使对这些部位计算出的结果不太安全。
(一)地基对基础的影响
基础的受力情况还由地基土的刚度和分布均匀性来决定。
如果地基土刚性比较强,不可压缩,那么基础结构既不会出现整体弯曲,也不会产生太大的局部弯曲,而且上部结构还不会发生次应力。
在实际中,出现最多是地基土比较软,可压缩,而且不均匀地分布,那么在这种情况下,基础弯矩的分布便会有很大不同。
地基和基础的交界面处常常会出现摩擦的痕迹。
因为土壤的强度是有限的,所以造成的摩擦力也是有限的,一般不会大于土壤的抗剪力。
如果孔隙水的压力改变,摩擦力的分布和大小可能随之发生变化。
另外,基础的柔度、土壤的蠕变和外荷载的性质与分布等均会对界面条件产生重要影响。
所以必须从完全粘着与完全光滑之间对界面摩擦影响进行估计。
(二)上部结构对基础的影响
如果上部结构是绝对刚性的,若地基变形,所有竖向构件便会均匀地下沉;若忽视了竖向构件抵抗转动的能力,那么可以把竖向构件的支座看作基础梁的不转动铰支座,也就是基础梁好像颠倒放置的连续梁,不发生整体弯曲,而是把基底分布反力作为外荷载,进
行出现局部的弯曲。
反之,如果上部结构是绝对柔性的,不约束基础的变形,那么基础梁发生局部弯曲的时候,还会遭受极大的整体弯曲。
因此对于这两种情况,基础梁在内力分布形式和大小上会有很大的不同。
实际中的结构物往往介于以上两种情况之间,很难考虑其整体刚度,一般只能通过计算机软件进行分析。
当基础、荷载及地基不变时,使上部结构刚度增大,就能使基础的内力与相对挠曲减少,不过这样也会增加上部结构内力,亦即当上部结构对基础内力的减少做出贡献时,其自身同时会产生很大的次应力。
最后必须指出上部结构刚度的贡献也是有限的。
(三)三者的共同作用
基础、上部结构及地基一个不可分割的整体,各部分的工作状况均是其它部分同自身一起作用的结果。
将地基、基础及上部视为一个彼此紧密联系,协调工作的统一体,在接触点与连接点上满足在变形协调的情况下求解系统的内力和变形,这便是共同作用分析。
进行共同作用分析时,基础及上部结构一般是由板和梁构成的,于是利用解析方法、有限条法或是有限单元法可以构建出基础与上部结构的刚度矩阵,并通过变形协调条件和地基刚度矩阵进行耦合。
首先地基应该确定出合适的地基模型,例如弹塑地基模型、线或非线弹性地基模型。
接下来需要构建地基刚度矩阵,可以选用解析法、有限单元法或是有限差分法等方法来构建矩阵。
然而通常会利用结构力学法对各个地基模型柔度矩阵进行构建,再通过求逆获得其刚度矩阵,最后同基础与上部结构刚度矩阵进行耦合,进而求解出地
基的沉降及反力。
二、高层建筑结构的设计方法
(一)制定并筛选基础设计方案
一般情况下,对高层建筑进行基础设计时,需要对上部结构的类型、建筑工程的地质条件、施工条件、相邻建筑物之间的相互影响及荷载分布等各个因素进行分析,制定并筛选出与社会经济原则想适应的基础设计方案。
对建筑物的基础进行设计时,必须形成信息完整的勘察资料,如果某些建筑物没有相应的地质报告,仍要进工程实施现场进行勘察与查看,同时需要参照周围建筑物的有关材料。
(二)确定既合适又合理的结构方案。
高层建筑的设计必须选择最合适,经济最合理的结构设计方案,亦即应该选择最实用的、最可行的结构体系和结构形式。
于是,必须对建筑工程的材料选用与供应、施工状况和设计要求等进行综合分析,并且同水、电、暖等相关部门进行协商,在这些工作的基础上对结构进行选型,从而选出既合适又合理的结构方案。
(三)选用合理的计算简图
结构的计算通常是以计算简图为基础进行的,在实践中常常因为选择的计算简图不太合理而导致结构危险,从而出现结构不安全的问题,因此只有选用合理的简图,才能保证建筑物的结构安全,而计算简图也需要一定的构造对其进行保障。
即使在实际中,结构节点不可能是单纯的刚结,可是在计算简图误差时,要将误差控制在
一定的允许范围之内。
(四)认真分析计算结果
现如今,计算机技术被广泛应用于高层建筑的结构设计当中,然而由于现有软件的种类非常多,不同的软件计算出的结果往往不同,并且每种软件的计算结果均会产生一些不可避免的错误,因此这就要求工程师对获得的最后结果进行精确的分析和认真的校对,从而做出最正确最合理的判断。
(五)采用正确的构造方法
应该考虑各个构件的延续性,加强其中比较薄弱的位置,并且考虑钢筋锚固的长度,注意到温度应力的作用。
另外,还需要考虑按照规范、均匀和对称的要求,分别为立面和平面进行合理布置,且尽力避免薄弱位置的出现,而且如果想采用极限状态来验算,也应该把设计视为指导。
三、注意事项
(一)减少不均匀的沉降
基础结构位于地基及上部结构之间,它的平面分布和刚度大小,对挠曲的减少和不均匀沉降的调整有重要影响。
例如,若当只有基础具备足够的刚度才能满足建筑物的要求,来调节不均匀地沉降时,可以利用筏型基础。
(二)注重考虑共同作用
地基、基础结构及上部结构的共同作用是必然存在,不可忽视的。
在进行工程设计时,一般不可能全部做到,尤其是选取地基模型和
其参数时,会在很大程度上影响共同作用结果;然而在构造和配筋上考虑共同作用,是绝对有必要和可能的。
四、结语
总之,高层建筑的基础设计是一个复杂而耗时的过程,还是建筑师进行设计工作时的难点和重点。
高层建筑的地基、基础与上部结构成了一个整体,三者共同作用。
在进行高层建筑的基础设计时,必须考虑地基对基础受力的重要影响,对基础形式进行合理选择,并有效地利用上部结构的刚度,依据共同作用理论对基础与地基进行合理设计,从而使基础的内力与沉降减少,并使基础造价大大降低。
参考文献:
[1]林衍.浅析高层建筑结构设计中的基础设计[j].中国新技术
新产品,2012(09)
[2]温洪光.高层建筑结构设计分析之我见[j].建材与装饰,2012(04)
[3]黄志军.高层建筑结构设计问题分析[j].江西建材,2012(02)
[4]钟晓波.某复杂高层建筑结构设计分析[j].四川建材,2008(03)。