关闭
由旋转的性质,可得
△BCD≌△BAE,∴∠ห้องสมุดไป่ตู้AE=∠BCD=∠ABC=60°,∴AE∥BC,故选项A正确;
不能说明∠ADE=∠BDC,故选项B不正确;又知∠DBE=60°,BD=BE,可得 关闭 △B BDE是等边三角形,故选项C正确;DE=BD=4,因此△ADE的周长
=AD+AE+DE=BD+AC=9,故选项D正确.
关闭
C
答案
1
2
3
4
5
6
7
3.下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的 是( )
关闭
B
答案
1
2
3
4
5
6
7
4.在等边三角形ABC中,D是AC上一点,连接BD,将△BCD绕点B逆时 针旋转60°,得到△BAE,连接ED,若BC=5,BD=4,则下列结论错误的 是( ) A.AE∥BC B.∠ADE=∠BDC C.△BDE是等边三角形 D.△ADE的周长是9
解析 答案
1
2
3
4
5
6
7
5.如图,将左边的矩形绕点B旋转一定角度后,位置如右边的矩形,则
∠ABC=
.
90°
关闭
答案
7.0°
旋转的性质 【例】 如图,△ABC是等边三角形,D是BC边上一点,△ABD经过 旋转后到达△ACE的位置. (1)旋转中心是哪一点? (2)旋转了多少度? (3)如果M是AB边的中点,那么经过上述旋转后,点M转到了什么 位置? 分析确定这个图形的旋转中心是解决问题的关键. 解:(1)旋转中心是点A. (2)旋转角∠BAC=60°. (3)点M转到了AC的中点处. 点拨在旋转过程中,不动的点与其本身是对应点,且该点即为旋 转中心.一对对应点与旋转中心连线的夹角是旋转角,对应线段的 夹角也是旋转角.