五参数估计和假设检验
- 格式:doc
- 大小:109.50 KB
- 文档页数:2
参数估计与假设检验的区别和联系统计学方法包括统计描述和统计推断两种方法,其中,推断统计又包括参数估计和假设检验。
(一)参数估计就是用样本统计量去估计总体的参数,它的方法有点估计和区间估计两种。
点估计是用估计量的某个取值直接作为总体参数的估计值。
点估计的缺陷是没法给出估计的可靠性,也没法说出点估计值与总体参数真实值接近的程度。
区间估计是在点估计的基础上给出总体参数估计的一个估计区间,该区间通常是由样本统计量加减估计误差得到的。
在区间估计中,由样本估计量构造出的总体参数在一定置信水平下的估计区间称为置信区间。
统计学家在某种程度上确信这个区间会包含真正的总体参数。
在区间估计中置信度越高,置信区间越大。
置信水平为1-a, a为小概率事件或者不可能事件,常用的置信水平值为99%,95%,90%,对应的a为0.01, 0.05, 0.1。
置信区间是一个随机区间,它会因样本的不同而变化,而且不是所有的区间都包含总体参数。
一个总体参数的区间估计需要考虑总体分布是否正态分布,总体方差是否已知,用于估计的样本是大样本还是小样本等。
(1)来自正态总体的样本均值,不论抽取的是大样本还是小样本,均服从正态分布。
(2)总体不是正态分布,大样本的样本均值服从正态分布,小样本的服从t 分布。
(3)不论已判断是正态分布还是t 分布,如果总体方差未知,都按t 分布来处理。
(4)t 分布要比标准正态分布平坦,那么要比标准正态分布离散,随着自由度的增大越接近。
(5)样本均数服从的正态分布为N(u , a^2/n)远远小于原变量离散程度N (u, a^2) 。
(二)假设检验是推断统计的另一项重要内容,它与参数估计类似,但角度不同,参数估计是利用样本信息推断未知的总体参数,而假设检验则是先对总体参数提出一个假设,然后利用样本信息判断这一假设是否成立。
假设检验的基本思想:先提出假设,然后根据资料的特点,计算相应的统计量,来判断假设是否成立,如果成立的可能性是一个小概率的话,就拒绝该假设,因此称小概率的反证法。
常用统计术语一、总体与样本在统计学中,总体是指研究对象的全体,样本是指从总体中选取的一部分个体。
总体的特征称为参数,样本的特征称为统计量。
总体参数常用符号表示,如总体均值用μ表示,总体方差用σ²表示。
二、抽样与抽样误差抽样是指从总体中选取样本的过程,目的是通过样本推断总体的特征。
抽样误差是指由于样本的随机性导致的样本统计量与总体参数之间的差异。
三、描述统计与推断统计描述统计是对收集到的数据进行整理、总结和描绘的过程,常用的描述统计指标有平均数、中位数、标准差等。
推断统计是根据样本数据对总体进行推断的过程,通过样本推断总体的特征。
四、频数与频率频数是某个数值在数据中出现的次数,频率是某个数值在数据中出现的相对比例。
频率可以通过频数除以总样本量得到,通常以百分数或小数形式表示。
五、参数估计与假设检验参数估计是通过样本数据对总体参数进行估计的过程,常用的参数估计方法有点估计和区间估计。
假设检验是根据样本数据对总体参数进行推断的过程,常用的假设检验方法有单样本检验、双样本检验等。
六、相关与回归相关分析是研究两个或多个变量之间关系的统计方法,常用的相关系数有皮尔逊相关系数、斯皮尔曼相关系数等。
回归分析是研究自变量与因变量之间关系的统计方法,常用的回归模型有线性回归、多项式回归等。
七、方差分析与卡方检验方差分析是用于比较两个或多个样本均值之间差异的统计方法,常用的方差分析方法有单因素方差分析、多因素方差分析等。
卡方检验是用于比较观察频数与期望频数之间差异的统计方法,常用的卡方检验有卡方拟合优度检验、卡方独立性检验等。
八、正态分布与偏态分布正态分布是一种对称的连续概率分布,符合正态分布的数据呈钟形分布,均值、中位数和众数相等。
偏态分布是一种不对称的概率分布,偏态分布的数据在均值两侧的分布不对称。
九、标准化与归一化标准化是将数据按照一定的比例进行缩放,使得数据具有相同的尺度,常用的标准化方法有Z-score标准化、Min-Max标准化等。
5种常用的统计学方法1. 描述统计方法描述统计方法是统计学中常用的一种方法,用于对数据进行整理、总结和描述。
它通过计算和分析数据的中心趋势、离散程度和分布特征,提供对数据的直观认识。
描述统计方法不依赖于任何假设,适用于各种类型的数据。
其中,常用的描述统计方法包括均值、中位数、众数和标准差等。
均值是一组数据的平均值,反映了数据的中心趋势;中位数是一组数据中居于中间位置的值,对于数据的离群点不敏感;众数是一组数据中出现最频繁的值,用于描述数据的分布特征;标准差是一组数据的离散程度的度量,反映了数据的变异程度。
通过描述统计方法,我们可以对数据进行整体把握,了解数据的基本情况,为后续的分析和决策提供依据。
2. 探索性数据分析方法探索性数据分析方法是一种通过可视化和统计分析来理解数据的方法。
它旨在发现数据中的模式、趋势和异常值,并提供对数据的深入理解。
在探索性数据分析中,常用的方法包括直方图、散点图和箱线图等。
直方图可以展示数据的分布情况,散点图可以显示两个变量之间的关系,箱线图可以展示数据的分散程度和异常值。
通过探索性数据分析方法,我们可以挖掘数据中的潜在信息,发现数据的规律和特点,为进一步的分析和建模提供指导。
3. 参数估计方法参数估计方法是一种通过样本数据来估计总体参数的方法。
它基于统计模型和假设,利用样本数据推断总体的特征。
常用的参数估计方法包括点估计和区间估计。
点估计是通过样本数据得到总体参数的一个具体值,如样本均值作为总体均值的估计;区间估计是通过样本数据得到总体参数的一个范围,如置信区间可以给出总体均值的估计范围。
参数估计方法可以帮助我们根据有限的样本数据,对总体参数进行推断和估计,提供对总体特征的认识和预测。
4. 假设检验方法假设检验方法是一种通过样本数据来检验关于总体参数的假设的方法。
它基于统计模型和假设,利用样本数据来判断总体参数是否符合某种假设。
常用的假设检验方法包括单样本检验、两样本检验和方差分析等。
参数估计和假设检验1.参数估计参数估计是指通过样本数据来推断总体参数的过程。
总体参数是指总体的其中一种性质,比如总体均值、总体方差等。
样本数据是从总体中随机抽取的一部分数据,用来代表总体。
参数估计的目标是使用样本数据来估计总体参数的值。
常见的参数估计方法有点估计和区间估计。
(1)点估计点估计是通过一个统计量来估计总体参数的值。
常见的点估计方法有样本均值、样本方差等。
点估计的特点是简单、直观,但是估计值通常是不准确的。
这是因为样本的随机性导致样本统计量有一定的误差。
因此,点估计通常会伴随着误差界限,即估计值的置信区间。
(2)区间估计区间估计是通过一个统计量构建总体参数的估计区间。
常见的区间估计方法有置信区间和可信区间。
置信区间是指当重复抽样时,包含真实总体参数的概率。
置信区间的计算方法是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。
可信区间是指在一次抽样中,包含真实总体参数的概率。
可信区间的计算方法同样是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。
参数估计的应用非常广泛,可以用于各个领域的数据分析和决策。
例如,经济学家可以通过样本数据估计失业率,政治学家可以通过样本数据估计选举结果,医学研究者可以通过样本数据估计药物的疗效等。
2.假设检验假设检验是指通过样本数据来判断总体参数的其中一种假设是否成立。
在假设检验中,我们先提出一个原假设(H0),然后使用样本数据来检验该假设的合理性。
在假设检验中,我们需要确定一个统计量,该统计量在原假设成立时,其分布是已知的。
然后,我们计算该统计量在样本数据下的取值,并通过比较该取值与已知分布的临界值,来判断原假设是否成立。
假设检验包含两种错误,即第一类错误和第二类错误。
第一类错误是指在原假设成立的情况下,拒绝原假设的错误概率。
第二类错误是指在原假设不成立的情况下,接受原假设的错误概率。
常见的假设检验方法有单样本假设检验、双样本假设检验、方差分析等。
5种常用的统计学方法常用的统计学方法主要包括描述统计、推断统计、回归分析、方差分析和因子分析。
一、描述统计描述统计是对数据进行总结和展示的一种方法。
它可以通过计算数据的中心趋势和离散程度来揭示数据的特征。
常用的描述统计方法包括均值、中位数、众数、标准差、极差等。
均值是一组数据的平均值,可以用来表示数据的中心位置。
例如,在一组考试成绩中,计算出的均值为80分,说明这组数据整体上呈现出较高的水平。
中位数是将一组数据按照大小顺序排列后,处于中间位置的数值。
对于有偏态的数据,中位数比均值更能反映数据的中心位置。
例如,在一组工资数据中,工资水平差异较大,此时计算中位数更能反映数据的中心趋势。
众数是一组数据中出现次数最多的数值,可以反映数据的分布特征。
例如,在一组人口年龄数据中,出现最多的年龄段是30岁,说明这个年龄段的人口占比较大。
标准差是一组数据与其均值之间的差异程度的度量指标。
标准差越大,说明数据的离散程度越大,反之则说明数据的离散程度较小。
例如,在一组销售额数据中,标准差较大则说明销售额的波动性较大。
极差是一组数据中最大值与最小值之间的差异,可以反映数据的变动范围。
例如,在一组温度数据中,最高温度与最低温度之间的差异较大,则说明温度变动范围较大。
二、推断统计推断统计是通过从样本中获取信息来推断总体特征的一种方法。
它可以通过对样本进行抽样和假设检验来进行推断。
常用的推断统计方法包括置信区间估计和假设检验。
置信区间估计是一种通过样本估计总体参数的方法。
它可以用来估计总体均值、总体比例等参数,并给出一个置信水平的区间估计。
例如,通过对一组产品质量进行抽样,可以计算出产品的平均质量在95%的置信水平下落在某个区间内。
假设检验是一种用来验证关于总体参数的假设的方法。
它可以判断样本观测结果与假设之间是否存在显著差异。
例如,在一组学生考试成绩中,通过假设检验可以判断是否存在某个因素对学生成绩的影响。
三、回归分析回归分析是一种用来研究变量之间关系的方法。
参数估计和假设检验参数估计和假设检验是统计学中常用的两种方法,用于根据样本数据对总体的特征进行推断和判断。
参数估计是通过样本数据估计总体参数值的方法,而假设检验则是基于样本数据对总体参数假设进行判断的方法。
下面将详细介绍这两种方法以及它们的应用。
1.参数估计参数是指总体特征的度量,比如总体均值、总体方差等。
在实际应用中,我们往往无法得到总体数据,只能通过抽样得到样本数据。
参数估计的目标是利用样本数据去估计总体参数的值。
最常用的参数估计方法是点估计和区间估计:-点估计是使用样本统计量来估计总体参数的值,常用的样本统计量有样本均值、样本方差等。
-区间估计是利用样本数据构建一个置信区间,用来估计总体参数的取值范围。
置信区间的计算方法通常是基于样本统计量的分布进行计算。
在进行参数估计时,需要注意以下几个要点:-选择适当的样本容量和抽样方法,确保样本具有代表性,并满足参数估计的要求。
-选择适当的样本统计量进行参数估计,并对其进行合理的解释与限制。
-利用抽样分布特性和统计理论,计算参数估计的标准误差和置信区间,对参数估计结果进行解释和判断。
2.假设检验假设检验是基于样本数据对总体参数假设进行判断的方法。
在实际问题中,我们常常需要根据样本数据来判断一些总体参数是否达到一些要求或存在其中一种关系。
假设检验的基本步骤:-建立原假设(H0)和备择假设(H1)。
原假设通常是对总体参数取值的一种假设,备择假设则是原假设的对立假设。
-选择适当的统计量用来检验假设,并计算样本统计量的检验统计量。
-根据样本数据计算得出的检验统计量,利用抽样分布特性和统计理论计算P值。
-根据P值与事先设置的显著性水平进行比较,如果P值小于显著性水平,则拒绝原假设;反之,接受原假设。
在进行假设检验时,需要注意以下几个要点:-显著性水平的选择:显著性水平(α)是进行假设检验过程中设置的一个临界值,它反映了能够容忍的错误发生的概率。
常用的显著性水平有0.05和0.01-选择适当的统计量与检验方法:根据问题的性质和数据类型选择适当的统计量和检验方法。
第五章参数估计和假设检验
一、单项选择题
1. 抽样调查的主要目的在于()。
A. 计算和控制误差
B. 了解总体单位情况
C. 用样本来推断总体
D. 对调查单位作深入的研究
2. 抽样调查所必须遵循的基本原则是()。
A. 随意原则
B. 可比性原则
C. 准确性原则
D. 随机原则
3、对两个工厂工人平均工资进行不重复的随机抽样调查,抽查的工人人数一样,两工厂工人工资方差相同,但第二个厂工人数比第一个厂工人数整整多一倍。
抽样平均误差()。
A. 第一工厂大
B. 第二个工厂大
C. 两工厂一样大
D. 无法做出结论
4、在总体方差一定的情况下,下列条件中抽样平均误差最小的是()。
A. 抽样单位数为20
B. 抽样单位数为40
C. 抽样单位数为90
D. 抽样单位数为100
5、某地订奶居民户均牛奶消费量为120公斤,抽样平均误差为2公斤。
据此可算得户均牛奶消费量在114-126公斤之间的概率为()。
A. 0.9545
B. 0.9973
C. 0.683
D. 0.900
6、按地理区域划片所进行的区域抽样,其抽样方法属于()。
A. 纯随机抽样
B. 等距抽样
C. 类型抽样
D. 整群抽样
7. 在抽样推断中,样本的容量()。
A. 越多越好
B. 越少越好
C. 由统一的抽样比例决定
D. 取决于抽样推断可靠性的要求
8、在用样本指标推断总体指标时,把握程度越高则()。
A.误差范围越小
B.误差范围越大
C.抽样平均误差越小
D.抽样平均误差越大
9、某乐器厂以往生产的乐器采用的是一种镍合金弦线,这种弦线的平均抗拉强度不超过1035Mpa,现产品开发小组研究了一种新型弦线,他们认为其抗拉强度得到了提高并想寻找证据予以支持。
在对研究小组开发的产品进行检验时,应该采取以下哪种形式的假设?
10、在抽样设计中,最好的方案是()。
A. 抽样误差最小的方案
B. 调查单位最少的方案
C. 调查费用最省的方案
D. 在一定误差要求下费用最小的方案
二、计算题
1、从麦当劳餐厅连续三个星期抽查49位顾客,以调查顾客的平均消费额,得样本平均消费额为25.5元。
要求:
(1)假如总体的标准差为10.5元,那么抽样平均误差是多少?
(2)在0.95的概率保证下,抽样极限误差是多少?极限误差说明什么问题?(3)总体平均消费额95%的信赖区间是多少?
2、某食品公司销售一种果酱,按标准规格每罐净重为250克,标准差为3克。
现该公司从生产该果酱的工厂进了一批货,抽取其中的100罐,测得平均净重为251克。
问该批果酱是否符合标准?(α=0.05)
3、从5000名学生中抽查200名测得平均身高为1.65m抽样平均误差为0.05m,试以95%的把握程度推算全部学生平均身高的可能范围。
若200名学生中女生数为50名,试以95%的概率,抽样成数平均误差为0.03,估计全部学生数中女生的比重的区间。
4、从某厂生产的一批灯泡中随机重复抽取100只,检查结果是:100只灯泡的平均使用寿命为100小时,标准差为15小时。
求:以95.45%概率保证程度对灯泡的平均使用寿命进行区间估计:假定其他条件不变,将抽样极限误差减少到原来的1/2,应抽取多少之灯泡进行检查?
5、最新一次人口普查表明某市老年人口比重为15.7%,为了检验该数据是否真实,普查机构有随机抽选了400名居民,发现其中有62人年龄在65岁以上,问随机调查的结果是否支持该市老年人口比重为15.7%?(α=0.05)。