样本与抽样分布--基本概念.ppt
- 格式:ppt
- 大小:726.50 KB
- 文档页数:13
样本及抽样分布§6.1 基本概念一、总体:在统计学中, 我们把所研究的全部元素组成的集合称作母体或总体, 总体中的每一个元素称为个体。
我们只研究感兴趣的某个或者几个指标(记为X),因此把这些指标的分布称为总体的分布,记为X~F(x)。
二、样本:设总体X具有分布函数F(x),若X1, X2,…,Xn是具有分布函数F(x)的相互独立的随机向量,则称其为总体F(或总体X )的简单随机样本, 简称样本,它们的观察值x1,x2, …, xn称为样本观察值, 又称为X 的n 个独立的观察值。
三、统计量:设X 1, X 2, …, X n 是来自总体X 的一个样本, g (X 1, X 2, …, X n )是一个与总体分布中未知参数无关的样本的连续函数,则称g (X 1,X 2,…,X n )为统计量。
统计量是样本的函数,它是一个随机变量,如果x 1, x 2, …, x n 是样本观察值, 则g (x 1, x 2, …, x n )是统计量g (X 1, X 2, …, X n )的一个观察值.四、 常用的统计量:, ,)(x 11s ,,x 1x 1. n12i2n1i 称为样本方差均值仍称为样本它们的观察值为∑∑==--==i i x n n .B ,,1,2,X A ,1k 2.22221S S nn B k ≈-====当样本容量很大时时当时当3.kkkk若总体X 的k 阶矩E(X )存在,则当n时, A .P注:ni i 111. X X ;n ==∑样本均值2n 2i i 112. S (X );n-1X ==-∑样本方差n kk i 113. k A X , k 1, 2,;n i ===∑样本阶原点矩nk i i 114. k B (X ) , k 2, 3,.n k X ==-=∑样本阶中心矩4.样本的联合分布:2) 若总体X 是离散型随机变量,其分布律为 p x =P (X=x ) , x=x 1,x 2,… 则样本X 1, X 2, …, X n 的联合分布:11112(,,)(),,;(1,2,,)nn n i i i i P X y X y P X y y x x i n =======∏其中12n *12i 13)(), ,X , (, ,)()n n i X f x X X f x x x f x ==∏若具有概率密度则的联合概率密度为12121211)(),,,,, ,,,:()()n n n*n i i X ~F x X X X F X X X F x , x ,x F x ==∏若为的一个样本则的联合分布函数为例1:X~U (0,θ),X 1, X 2, …, X n 是来自X 的样本,求(X 1, X 2, …, X n )的联合密度函数。
抽样分布根本概念引言抽样分布是统计学中一个重要的概念,它描述了在进行统计推断时所使用的样本统计量的分布情况。
在本文中,我们将讨论抽样分布的根本概念,包括样本、样本统计量、抽样分布的性质以及样本均值和样本比例的抽样分布。
样本与样本统计量在统计学中,样本是指从总体中随机选取的一局部观察对象。
样本的大小通常用字母n表示。
通过对样本进行测量和观察得到的某一特定数值称为样本统计量。
样本统计量是对总体参数的估计。
常见的样本统计量有样本均值、样本方差和样本比例。
样本均值是指样本中所有观察值的平均值,用符号X表示。
样本方差是指样本中所有观察值与样本均值之差的平方和的均值。
样本比例是指符合某一特征的观察值占样本总体的比例。
抽样分布的性质抽样分布是指在总体参数未知的情况下,对总体进行抽样并计算样本统计量后得到的分布。
在大样本情况下〔样本容量n足够大〕,根据中心极限定理,样本均值的抽样分布近似呈正态分布。
这意味着无论总体是什么样的分布,当样本容量足够大时,样本均值的抽样分布都可以近似看作是正态分布。
当总体分布为正态分布时,样本均值的抽样分布仍然是正态分布。
但是当总体分布为非正态分布时,样本均值的抽样分布仍然近似为正态分布,但不再是精确的正态分布。
样本均值的抽样分布样本均值的抽样分布被称为抽样分布。
当总体分布为正态分布时,不管样本容量大小,样本均值的抽样分布都是正态分布。
当总体分布为非正态分布时,当样本容量足够大时,样本均值的抽样分布近似为正态分布。
样本均值的抽样分布的均值等于总体均值,标准差等于总体标准差除以样本容量的平方根。
抽样分布的均值等于总体均值是因为样本均值是总体均值的无偏估计,即样本均值的期望值等于总体均值。
抽样分布的标准差等于总体标准差除以样本容量的平方根是因为样本均值的抽样分布的方差等于总体方差除以样本容量。
样本比例的抽样分布样本比例的抽样分布也是一个重要的抽样分布。
样本比例的抽样分布是二项分布的一种特殊情况。
第六章样本及抽样分布【基本要求】1、理解总体、个体和样本的概念;2、理解样本均值、样本方差和样本矩的概念并会计算;3、理解统计量的概念,掌握几种常用统计量的分布及其结论;4、理解分位数的概念,会计算几种重要分布的分位数。
【本章重点】样本均值、样本方差和样本矩的计算;抽样分布——2 分布,t分布,F分布;分位数的理解和计算。
【本章难点】对样本、统计量及分位数概念的理解;样本矩的计算。
【学时分配】4学时【授课内容】§6.0 前言前面五章我们研究了概率论的基本内容,从中得知:概率论是研究随机现象统计规律性的一门数学分支。
它是从一个数学模型出发(比如随机变量的分布)去研究它的性质和统计规律性;而我们下面将要研究的数理统计,也是研究大量随机现象的统计规律性,并且是应用十分广泛的一门数学分支。
所不同的是数理统计是以概率论为理论基础,利用观测随机现象所得到的数据来选择、构造数学模型(即研究随机现象)。
其研究方法是归纳法(部分到整体)。
对研究对象的客观规律性做出种种合理性的估计、判断和预测,为决策者和决策行动提供理论依据和建议。
数理统计的内容很丰富,这里我们主要介绍数理统计的基本概念,重点研究参数估计和假设检验。
§6.1 随机样本一、总体与样本1.总体、个体在数理统计学中,我们把所研究的全部元素组成的集合称为总体;而把组成总体的每个元素称为个体。
例如:在研究某批灯泡的平均寿命时,该批灯泡的全体就组成了总体,而其中每个灯泡就是个体;在研究我校男大学生的身高和体重的分布情况时,该校的全体男大学生组成了总体,而每个男大学生就是个体。
但对于具体问题,由于我们关心的不是每个个体的种种具体特性,而仅仅是它的某一项或几项数量指标X(可以是向量)和该数量指标X在总体的分布情况。
在上述例子中X是表示灯泡的寿命或男大学生的身高和体重。
在试验中,抽取了若干个个体就观察到了X的这样或那样的数值,因而这个数量指标X是一个随机变量(或向量),而X的分布就完全描写了总体中我们所关心的那个数量指标的分布状况。