第八讲 斜拉桥总体布置与结构体系
- 格式:pdf
- 大小:1.69 MB
- 文档页数:33
斜拉桥设计要素与结构特性斜拉桥是一种现代化的桥梁结构,具有独特的设计要素和结构特性。
在桥梁工程中,斜拉桥被广泛应用于跨越河流、峡谷等地形复杂的区域,其设计要素和结构特性对桥梁的安全性、稳定性和美观性起着至关重要的作用。
本文将从斜拉桥的设计要素和结构特性两个方面进行探讨。
设计要素1. 主塔斜拉桥的主塔是支撑桥梁主梁和索塔的重要构件,承担着桥梁荷载的传递和分配功能。
主塔的高度、形状和布置位置直接影响着桥梁的整体结构和外观。
设计主塔时需要考虑地质条件、风载、桥梁跨度等因素,确保主塔具有足够的承载能力和稳定性。
2. 主梁主梁是斜拉桥的承载结构,连接主塔和桥面,承担车辆荷载的传递和分布。
主梁的截面形状、材料和截面尺寸是设计中的关键要素,需要根据桥梁跨度、荷载情况和美学要求进行合理选择,确保主梁具有足够的刚度和强度。
3. 斜拉索斜拉桥的斜拉索是连接主塔和主梁的重要构件,承担着桥梁荷载的传递和支撑功能。
斜拉索的数量、布置方式和张拉力大小直接影响着桥梁的受力性能和稳定性。
设计时需要考虑索塔的位置、索带的倾角和索带的材料等因素,确保斜拉索具有良好的受力性能和耐久性。
4. 桥面桥面是斜拉桥上行车的部分,承载着车辆荷载和行人荷载。
桥面的结构形式、材料和铺装方式需要根据交通流量、使用功能和美学要求进行设计,确保桥面具有良好的耐久性和舒适性。
结构特性1. 刚度斜拉桥具有较高的整体刚度,能够有效抵抗外部荷载引起的变形和振动。
斜拉桥的主塔、主梁和斜拉索等构件之间通过刚性连接,形成一个整体稳定的结构系统,具有良好的抗风、抗震性能。
2. 强度斜拉桥具有较高的承载能力和抗弯强度,能够承受车辆荷载和自重荷载引起的各种受力情况。
主塔和主梁采用钢结构或混凝土结构,具有良好的抗压和抗拉性能,能够确保桥梁的安全运行。
3. 稳定性斜拉桥具有良好的整体稳定性,能够有效抵抗外部环境引起的各种不利影响。
通过合理设计主塔和斜拉索的布置方式,可以有效减小桥梁的振动和变形,确保桥梁在各种工况下都能保持稳定。
斜拉桥的总体布置与结构体系总体布置主要有跨径布置、拉索及主梁的布置、索塔高度与布置。
一、跨径布置主要有下面三种类型(1)双塔三跨式。
为目前应用最广泛的跨径布置方式。
下面是立面图与其荷载作用不同位置时发生的索塔与主梁的形变。
(2)独塔双跨式。
这也是应用较为广泛的一种跨径布置,但由于它的主孔跨径一般比双塔三跨式的小,故特别适用于跨越中小河流、谷地及作为跨线桥,或用于跨越较大河流的主航道部分,也可用主跨跨越河流,索塔及边跨布置在河流一岸的方式。
独塔双跨式斜拉桥立面图(3)多塔多跨式。
多塔多跨式斜拉桥适用于需要多个大通航孔的大江大河、宽阔湖泊或海峡上,但这种结构一般采用较少,主要原因是中间塔顶没有端锚索来有效地限制它的变位,使结构柔性及变形增大,整体刚度差。
多塔多跨式斜拉桥示意图二、拉索的布置,拉索的布置分为空间上的布置与索面内的布置。
(1)拉索索面在空间可布置成单索面和双索面,而双索面又可分为竖直双索面和倾斜双索面.单索面斜拉桥(临海大桥)竖直双索面斜拉桥倾斜双索面斜拉桥(2)拉索在索面内的布置形式主要有以下三种:辐射形、竖琴形及扇形.辐射形:拉索与水平面的平均交角较大,拉索的垂直分力较大,故拉索的用量最省。
由于在拉索的水平分力在塔顶基本平衡,故索塔的弯矩较小,索塔高度也较小,但由于拉索都固定在塔顶,所以塔顶的结构复杂,集中应力现象突出,给施工和养护带来困难。
竖琴形:所有拉索的倾角完全相同,且拉索与索塔的锚固点分散布置,使拉索与索塔、拉索与主梁的连接构造简单,易于处理.竖琴形布置拉索加强了索塔的顺桥向刚度,对减少索塔的弯矩和提高索塔的稳定性都有利。
但是其拉索的倾角与水平方向的交角较小故所需的拉索数量大,布置密集,一般都用于中小跨径的斜拉桥中。
扇形:扇形兼有辐射形和竖琴形索的特点,又可灵活布置,与索塔的各种构造形式相配合.扇形是采用最多的一种索型.三、索塔与主梁的布置(1)索塔的布置主要在于高度的确定,矮塔斜拉桥为桥塔高度与主跨长度的比值在1/8~1/13之间的斜拉桥。
10.2 斜拉桥总体布置与构造10.2.1 孔跨布置斜拉桥孔跨布置主要可分为双塔三跨式、独塔双跨式和多塔多跨式等三种形式。
在特殊情况下,斜拉桥也可以布置成独塔单跨式或者混合式。
双塔三跨式(图10.1)是一种最常见的斜拉桥孔跨布置方式。
双塔三跨式斜拉桥通常布置成两个边跨跨度相等的对称形式,也可以布置成两个边跨跨度不等的非对称形式。
边跨跨度与主跨跨度的比例关系通常取0.4左右。
根据已建斜拉桥统计,一般跨度比/=0.35~0.5。
另外,还可根据需要在边跨内设置辅助墩,以提高结构体系的刚度。
辅助墩数量不宜过多,一般1~2个,过多,效果不显著。
由于双塔三跨式斜拉桥的主孔跨度较大,一般可适用于跨越较大的河流、河口和海峡。
1L 2L 1L 2L图10.1 双塔三跨式斜拉桥图10.2 重庆石门嘉陵江大桥独塔双跨式斜拉桥也是一种常见的孔跨布置方式,如图10.2所示重庆石门嘉陵江大桥即为独塔双跨式斜拉桥。
独塔双跨式斜拉桥可以布置成两跨不对称的形式,即分为主跨与边跨;也可以布置成两跨对称,即等跨形式。
其中以两跨不对称的形式较多,也较合理。
独塔双跨式斜拉桥的边跨跨度与主跨跨度的比例通常介于0.6~0.7之间。
由于它的主孔跨径一般比双塔三跨式的主孔跨径小,故特别适用于跨越中小河流、谷地及交通道路;当然也可用于跨越较大河流的主航道部分。
1L 2L 在跨越宽阔水面时,由于通航孔要求,必要时也可采用三塔斜拉桥,如湖北宜昌夷陵长江大桥(主跨2×348m,主梁为混凝土箱型梁,悬臂拼装施工)。
多塔多跨式的斜拉桥应用较少,这是由于多塔多跨式斜拉桥的中间塔顶没有端锚索来有效地限制它的变位,结构的刚度较低。
增加主梁的刚度可以在一定程度上提高多塔斜拉桥的整体刚度,但这样做必然会增加桥梁的自重。
在必须采用多塔多跨式斜拉桥时,可将中间塔做成刚性索塔,此时索塔和基础的工程程量将会增加很多,或用斜拉索对中间塔顶加劲,但这种长索柔度较大,且影响桥梁的美观。
斜拉桥的结构形式、原理及发展斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。
其可看作是拉索代替支墩的多跨弹性支承连续梁。
其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。
斜拉桥由索塔、主梁、斜拉索组成。
一、结构斜拉桥(cable stayed bridge)作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。
斜拉桥是由许多直接连接到塔上的钢缆吊起桥面,斜拉桥由索塔、主梁、斜拉索组成。
索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。
斜拉索布置有单索面、平行双索面、斜索面等。
第一座现代斜拉桥是1955年德国DEMAG公司在瑞典修建的主跨为182.6米的斯特伦松德(Stromsund)桥。
目前世界上建成的最大跨径的斜拉桥为俄罗斯的俄罗斯岛大桥,主跨径为1104米,于2012年7月完工。
斜拉桥是将梁用若干根斜拉索拉在塔柱上的桥。
它由梁、斜拉索和塔柱三部分组成。
斜拉桥是一种自锚式体系,斜拉索的水平力由梁承受。
梁除支承在墩台上外,还支承在由塔柱引出的斜拉索上。
按梁所用的材料不同可分为钢斜拉桥、结合梁斜拉桥和混凝土梁斜拉桥。
2013年已建成的斜拉桥有独塔、双塔和三塔式。
以钢筋混凝土塔为主。
塔型有H形、倒Y形、A形、钻石形等。
斜拉索仍以传统的平行镀锌钢丝、冷铸锚头为主。
钢绞线斜拉索在汕头石大桥采用。
钢绞线用于斜拉索,无疑使施工操作简单化,但外包PE的工艺还有待研究。
斜拉桥的钢索一般采用自锚体系。
开始出现自锚和部分地锚相结合的斜拉桥,如西班牙的鲁纳(Luna)桥,主桥440m;我国湖北郧县桥,主跨414m。
地锚体系把悬索桥的地锚特点融于斜拉桥中,可以使斜拉桥的跨径布置更能结合地形条件,灵活多样,节省费用。
斜拉桥的施工方法:混凝土斜拉桥主要采用悬臂浇筑和预制拼装;钢箱和混合梁斜位桥的钢箱采用正交异性板,工厂焊接成段,现场吊装架设。
斜拉桥的结构形式、原理及发展斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。
其可看作是拉索代替支墩的多跨弹性支承连续梁。
其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。
斜拉桥由索塔、主梁、斜拉索组成。
一、结构斜拉桥(cable stayed bridge)作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。
斜拉桥是由许多直接连接到塔上的钢缆吊起桥面,斜拉桥由索塔、主梁、斜拉索组成。
索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。
斜拉索布置有单索面、平行双索面、斜索面等。
第一座现代斜拉桥是1955年德国DEMAG公司在瑞典修建的主跨为182.6米的斯特伦松德(Stromsund)桥。
目前世界上建成的最大跨径的斜拉桥为俄罗斯的俄罗斯岛大桥,主跨径为1104米,于2012年7月完工。
斜拉桥是将梁用若干根斜拉索拉在塔柱上的桥。
它由梁、斜拉索和塔柱三部分组成。
斜拉桥是一种自锚式体系,斜拉索的水平力由梁承受。
梁除支承在墩台上外,还支承在由塔柱引出的斜拉索上。
按梁所用的材料不同可分为钢斜拉桥、结合梁斜拉桥和混凝土梁斜拉桥。
2013年已建成的斜拉桥有独塔、双塔和三塔式。
以钢筋混凝土塔为主。
塔型有H形、倒Y形、A形、钻石形等。
斜拉索仍以传统的平行镀锌钢丝、冷铸锚头为主。
钢绞线斜拉索在汕头石大桥采用。
钢绞线用于斜拉索,无疑使施工操作简单化,但外包PE的工艺还有待研究。
斜拉桥的钢索一般采用自锚体系。
开始出现自锚和部分地锚相结合的斜拉桥,如西班牙的鲁纳(Luna)桥,主桥440m;我国湖北郧县桥,主跨414m。
地锚体系把悬索桥的地锚特点融于斜拉桥中,可以使斜拉桥的跨径布置更能结合地形条件,灵活多样,节省费用。
斜拉桥的施工方法:混凝土斜拉桥主要采用悬臂浇筑和预制拼装;钢箱和混合梁斜位桥的钢箱采用正交异性板,工厂焊接成段,现场吊装架设。
斜拉桥结构体系及特点斜拉桥亦称矮塔斜拉桥, 其构造特点是在连续梁中支点处设置矮索塔, 其塔高只有斜拉桥索塔高度的一半左右, 斜拉索通过矮索塔上设置的鞍座对主梁产生竖向支反力和水平压力。
部分斜拉桥主梁自身刚度较大, 能够承担大部分荷载效应, 斜拉索对主梁只起到一定程度的帮扶作用。
斜拉桥是介于斜拉桥和连续梁桥之间的一种新桥型, 兼具斜拉桥和连续梁桥的双重结构特征。
斜拉桥是由上部结构索、塔、梁三种基本构件和下部结构墩台、基础组成的结构体系, 影响部分斜拉桥结构各部分荷载效应最根本的因素是梁、塔、墩之间的结合方式, 不同的结合方式产生不同的结构体系。
根据部分斜拉桥结构自身的特点和梁、塔、索、墩的结合方式, 可将部分斜拉桥结构体系划分为三种型式: (1) 塔梁固结体系; (2) 支承体系; (3) 刚构体系, 见图1 所示。
(4)半漂浮体系,见图2所示。
(1)塔梁固结体系及特点塔梁固结、塔墩分离、梁底设支座支承在桥墩上, 斜拉索为弹性支承, 这是一种完全的主梁具有弹性支承的连续梁结构。
这种体系必须有一个固定支座, 一般是一个塔柱处梁底支座固定, 而其他支座可纵向活动。
这种体系的主要优点是取消了承受很大弯矩的梁下塔柱部分, 代之以一般桥墩, 中央段的轴向拉力较小, 梁身受力也很均匀, 整体温度变化对这种体系影响较小, 几乎可以略去。
这种体系结构整体刚度小, 当中跨满载时, 由于主梁在墩顶处的转角位移导致塔柱倾斜, 使塔顶产生较大的水平位移, 因而显著增大了主梁的跨中挠度。
上部结构重力和活载反力需经支座传递到桥墩, 因此需设置大吨位支座。
我国的漳州战备桥、小西湖黄河大桥、离石高架桥; 日本的蟹泽桥、士狩大桥、木曾川桥、揖斐川桥、新唐柜大桥均采用这种体系。
已建部分斜拉桥采用这种结构体系较多, 与连梁体系相同, 符合部分斜拉桥的概念含义。
塔梁固结体系的特点:塔、墩内力最小,温变内力也小,主梁边跨负弯矩较大。
( 2)支承体系及特点塔墩固结、塔梁分离, 主梁在塔墩上设置竖向支承, 支座均为活动支座, 这种体系接近主梁具有弹性支承的连续梁结构。