2016年历年甘肃省白银市数学中考真题及答案
- 格式:docx
- 大小:2.51 MB
- 文档页数:16
武威市2016年初中毕业、高中招生考试数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.二、填空题:本大题共8小题,每小题3分,共24分. 11. 2(2)(2)x x +- 12. 5240a b 13.9214.1315. 1216.6 17. 6 18. 2(1)n +或n 2+2n +1三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤. 19.(4分)解:原式=22-(3-1)+2×32+1 2分 =4-3+1+3+1 3分 =6 4分 20.(4分)解:(1)△A 1B 1C 1为所作; 2分 (2)A 2(-3,-1),B 2(0,-2),C 2(-2,-4). 4分21.(6分)(1)解:把x =1代入方程 220x mx m ++-=得 120m m ++-=,解得 m =12. 2分 题号 1 2 3 4 5 6 7 8 9 10 答案ACCBADDABByxO ABCB 1C 1A 1(2)证明:△=24(2)m m -- 3分2(2)4m =-+ 4分∵ 2(2)m -≥0,∴ 2(2)4m -+>0, 即 △>0, 5分 ∴ 此方程有两个不相等的实数根. 6分 22.(6分)解:(1) 过点B 作BF ⊥AC 于点F . 1分 ∴ AF =AC -BD =0.4(米), 2分 ∴ AB =A F ÷sin20°≈1.17(米); 3分 (2)∵ ∠MON =90°+20°=110°, 4分∴ 1100.82218045MN⨯π==π(米). 6分 23.(6分)解:(1)画树状图:方法一: 方法二:2分所以点M (x, y )共有9种可能:(0,-1),(0,-2),(0,0),(1,-1),(1,-2),(1,0),(2,-1),(2,-2),(2,0); 4分 (2)∵ 只有点(1,-2),(2,-1)在函数2y x=-的图象上, 5分 ∴ 点M (x ,y )在函数2y x=-的图象上的概率为29. 6分四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.(注:解法合理,答案正确均可得分)(0, 0) (0, -1) (0, -2) (1, -1) (1, -2) (1, 0) (2, -2)(2, -1)1 0 2-1-2 0 乙袋 甲袋 结果(2, 0)24.(7分)解:(1)105÷35%=300(人).答:共调查了300名学生; 1分 (2)n =300×30%=90(人),m =300-105-90-45=60(人).故答案为:60, 90;(每空2分) 5分 (3)60300×360°=72°. 答:B 所在扇形的圆心角是72°. 7分 25.(7分)解:(1)把点A (m ,1)代入 14y x =-+,得m =3, 2分 则 A (3,1), ∴ k =3×1=3; 3分把点B (1,n )代入2ky x=,得出n =3; 4分 (2)如图,由图象可知:① 当1<x <3时,1y >2y ; 5分 ② 当x =1或x =3时,1y =2y ; 6分 (注:x 的两个值各占0.5分)③ 当x >3时,1y <2y . 7分26.(8分)(1)证明:∵ EC ∥AB ,∴ ∠C =∠ABF . 1分 又 ∵ ∠EDA =∠ABF ,∴ ∠C =∠EDA . 2分 ∴ AD ∥BC , 3分 ∴ 四边形ABCD 是平行四边形. 4分 (2)证明:∵ EC ∥AB , ∴OA OB OEOD=. 5分又 ∵ AD ∥BC ,∴OF OBOA OD=, 6分∴OA OFOE OA=, 7分∴2OA OE OF=⋅.8分27.(8分)(1)证明:如图①,连接AD,∵在△ABC中,AB=AC,BD=DC,∴AD⊥BC1分∴∠ADB=90°,∴AB是⊙O的直径;2分(2)DE与⊙O的相切.3分证明:如图②,连接OD,∵AO=BO,BD=DC,∴OD是△BAC的中位线,∴OD∥AC,4分又∵DE⊥AC∴DE⊥OD,∴DE为⊙O的切线;5分(3)解:如图③,∵AO=3,∴AB=6,又∵AB=AC,∠BAC =60°,∴△ABC是等边三角形,∴AD=33,6分∵AC∙DE=CD∙AD,∴6∙DE=3×33,7分解得DE =332.8分28.(10分)解:(1)设直线AB的解析式为y kx m=+,1分把A(3,0),B(0,3)代入,得330mk m=⎧⎨+=⎩, 解得13km=-⎧⎨=⎩图②ABCDEOABCDEO图③图①ABCDEO∴ 直线AB 的解析式为 3y x =-+ 2分 把A (3,0),B (0,3) 代入 2y x bx c =-++中,得 9303b c c -++=⎧⎨=⎩ , 解得23b c =⎧⎨=⎩ ∴ 抛物线的解析式为 223y x x =-++. 3分 (2)∵ OA =OB =3,∠BOA =90°,∴ ∠EAF =45°. 设运动时间为t 秒,则AF =2t ,AE =3-t . 4分 (i )当∠EF A =90°时,如图①所示: 在Rt △EAF 中,cos 45°22AF AE ==,即2232t t =-. 解得 t =1. 5分(ii) 当∠FEA =90°时,如图②所示:在Rt △AEF 中,cos 45°22AE AF ==, 即3222t t -=. 解得 t =32. 综上所述,当t =1或t =32时,△AEF 是直角三角形. 6分 (3)存在. 如图③,过点P 作PN ∥y 轴,交直线AB 于点N ,交x 轴于点D. 过点B 作BC ⊥PN 交PN 于点C .设点P (x ,223x x -++),则点N (x ,3x -+)∴ PN =2223(3)3x x x x x -++--+=-+. 7分 ∴ ABP BPN APN S S S ∆∆∆=+=1122PN BC PN AD ⋅+⋅ 8分=2211(3)(3)(3)22x x x x x x -+⋅+-+- =23327228x ⎛⎫--+ ⎪⎝⎭ 9分图①OyAxBEF图②yOA xBE FyOAxBPN C D当32x 时,△ABP的面积最大,最大面积为278.此时点P(32,154).10分。
2015-2016学年甘肃省白银市白银区稀土中学九年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)关于x的方程ax2﹣3x+2=0是一元二次方程,则()A.a>0 B.a≥0 C.a≠0 D.a=12.(3分)把一个三角形改成和它相似的三角形,如果面积扩大到原来的100倍,那么边长扩大到原来的()A.10000倍B.10倍C.100倍D.1000倍3.(3分)下列四条线段中,不能成比例的是()A.a=3,b=6,c=2,d=4 B.a=1,b=,c=,d=C.a=4,b=6,c=5,d=10 D.a=2,b=,c=,d=24.(3分)用配方法解下列方程,配方正确的是()A.2y2﹣4y﹣4=0可化为(y﹣1)2=4 B.x2﹣2x﹣9=0可化为(x﹣1)2=8 C.x2+8x﹣9=0可化为(x+4)2=16 D.x2﹣4x=0可化为(x﹣2)2=45.(3分)一元二次方程x2﹣3x+3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个相等的实数根D.没有实数根6.(3分)有一个面积为16cm2的梯形,它的一条底边长为3cm,另一条底边比它的高线长1cm.若设这条底边长为xcm,依据题意,列出方程整理后得()A.x2+2x﹣35=0 B.x2+2x﹣70=0 C.x2﹣2x﹣35=0 D.x2﹣2x+70=07.(3分)下列说法中正确的是()A.两条对角线垂直的四边形的菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形8.(3分)菱形的两条对角线的长分别是6和8,则这个菱形的周长是()A.24 B.20 C.10 D.59.(3分)平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD10.(3分)如图,小明周末到公园走到十字路口处,记不清前面哪条路通往公园,那么他能一次选对路的概率是()A.B.C.D.0二、填空题(每小题4分,共32分)11.(4分)某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.12.(4分)已知M是线段AB延长线上一点,且AM:BM=5:2,则AB:BM为.13.(4分)两个相似多边形最长边分别为10cm和25cm,它们的周长之差为60cm,则这两个多边形的周长分别是.14.(4分)关于x的方程kx2﹣4x+3=0有实数根,k的取值范围.15.(4分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为.16.(4分)如图,铁路口栏杆短臂长1米,长臂长16米,当短臂端点下降0.5米时,长臂端点升高米.17.(4分)如图所示,菱形ABCD中,对角线AC,BD相交于点O,若再补充一个条件能使菱形ABCD成为正方形,则这个条件是.(只填一个条件即可,答案不唯一)18.(4分)如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为菱形,应添加的条件是.三、解答题(一):本大题共4小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(20分)解方程(1)2(x﹣3)2=8(直接开平方法)(2)4x2﹣6x﹣3=0(运用公式法)(3)(2x﹣3)2=5(2x﹣3)(运用分解因式法)(4)(x+8)(x+1)=﹣12(运用适当的方法)20.(6分)在Rt△ABC中,斜边AB=205,=,试求AC,BC的值.21.(6分)如图,在△ABC中,DE∥BC,且S△ADE:S四边形BCED=1:2,BC=2.求DE的长.22.(6分)如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤23.(8分)长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)写出所有的选购方案(用列表法或树状图);(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?24.(10分)某企业2008年盈利1500万元,2010年克服全球金融危机的不利影响,仍实现盈利2160万元.从2008年到2010年,如果该企业每年盈利的年增长率相同.(1)求该企业每年盈利的年增长率?(2)若该企业盈利的年增长率继续保持不变,预计2011年盈利多少万元?25.(10分)我侦察员在距敌方200米的地方发现敌人的一座建筑物,但不知其高度又不能靠近建筑物测量,机灵的侦察员食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住.若此时眼睛到食指的距离约为40cm,食指的长约为8cm,你能根据上述条件计算出敌方建筑物的高度吗?请说出你的思路.26.(10分)如图所示,已知在△ABC中,∠B=90°,AB=6cm,BC=12cm,点Q 从点A开始沿AB边向点B以1cm/s的速度移动,点P从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果Q、P分别从A、B两点出发,那么几秒后,△PBQ的面积等于8cm2?(2)在(1)中,△PBQ的面积能否等于10cm2?试说明理由.27.(12分)如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN ∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.2015-2016学年甘肃省白银市白银区稀土中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)关于x的方程ax2﹣3x+2=0是一元二次方程,则()A.a>0 B.a≥0 C.a≠0 D.a=1【解答】解:由x的方程ax2﹣3x+2=0是一元二次方程,得a≠0.故选:C.2.(3分)把一个三角形改成和它相似的三角形,如果面积扩大到原来的100倍,那么边长扩大到原来的()A.10000倍B.10倍C.100倍D.1000倍【解答】解:因为面积扩大到原来的100倍,即面积的比等于100:1,面积的比等于相似比的平方,因而相似比是10:1,即边长扩大到原来的10倍.故选:B.3.(3分)下列四条线段中,不能成比例的是()A.a=3,b=6,c=2,d=4 B.a=1,b=,c=,d=C.a=4,b=6,c=5,d=10 D.a=2,b=,c=,d=2【解答】解:A、3:6=2:4,则a:b=c:d,即a,b,c,d成比例;B、1:=:,则a:b=d:c.故a,b,d,c成比例;C、四条线段中,任意两条的比都不相等,因而不成比例;D、:2=:2 ,即b:a=c:d,故b,a,c,d成比例.故选:C.4.(3分)用配方法解下列方程,配方正确的是()A.2y2﹣4y﹣4=0可化为(y﹣1)2=4 B.x2﹣2x﹣9=0可化为(x﹣1)2=8C.x2+8x﹣9=0可化为(x+4)2=16 D.x2﹣4x=0可化为(x﹣2)2=4【解答】解:A、2y2﹣4y﹣4=0可化为(y﹣1)2=3,故选项错误;B、x2﹣2x﹣9=0可化为(x﹣1)2=10,故选项错误;C、x2+8x﹣9=0可化为(x+4)2=25,故选项错误;D、x2﹣4x=0可化为(x﹣2)2=4,故选项正确.故选:D.5.(3分)一元二次方程x2﹣3x+3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个相等的实数根D.没有实数根【解答】解:∵△=b2﹣4ac=(﹣3)2﹣4×1×3=﹣3<0,∴方程没有实数根,故选:D.6.(3分)有一个面积为16cm2的梯形,它的一条底边长为3cm,另一条底边比它的高线长1cm.若设这条底边长为xcm,依据题意,列出方程整理后得()A.x2+2x﹣35=0 B.x2+2x﹣70=0 C.x2﹣2x﹣35=0 D.x2﹣2x+70=0【解答】解:设这条底边长为xcm,那么高线就应该为(x﹣1)cm,根据梯形的面积公式得(x+3)(x﹣1)÷2=16,化简后得x2+2x﹣35=0.故选:A.7.(3分)下列说法中正确的是()A.两条对角线垂直的四边形的菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形【解答】解:A.两条对角线垂直的平行四边形是菱形,故错误;B.对角线垂直且相等的四边形不一定是正方形,故错误;C.两条对角线相等的平行四边形是矩形,故错误;D.两条对角线相等的平行四边形是矩形,正确;故选:D.8.(3分)菱形的两条对角线的长分别是6和8,则这个菱形的周长是()A.24 B.20 C.10 D.5【解答】解:如图所示,根据题意得AO=×6=3,BO=×8=4,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB==5,∴此菱形的周长为:5×4=20.故选:B.9.(3分)平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD【解答】解:在▱ABCD中,如果添加一个条件,就可推出▱ABCD是矩形,那么添加的条件可以AC=BD,故选:B.10.(3分)如图,小明周末到公园走到十字路口处,记不清前面哪条路通往公园,那么他能一次选对路的概率是()A.B.C.D.0【解答】解:他能一次选对路的概率=.故选:B.二、填空题(每小题4分,共32分)11.(4分)某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有18个.【解答】解:∵摸到红球、黄球、蓝球的频率为35%、25%和40%,∴摸到黄球的概率为0.25,故口袋中黄色玻璃球有0.25×72=18(个).故答案为:18.12.(4分)已知M是线段AB延长线上一点,且AM:BM=5:2,则AB:BM为3:2.【解答】解:∵M是线段AB延长线上一点,且AM:BM=5:2,设AM=5x,BM=2x,∴AB=AM﹣BM=3x,∴AB:BM=3:2;故答案为:3:2.13.(4分)两个相似多边形最长边分别为10cm和25cm,它们的周长之差为60cm,则这两个多边形的周长分别是40cm、100cm.【解答】解:设最长边为10cm的多边形周长为x,则最长边为24cm的多边形的周长为(x+60)cm.∵周长之比等于相似比.∴=.解得x=40cm,x+60=100cm.14.(4分)关于x的方程kx2﹣4x+3=0有实数根,k的取值范围k≤.【解答】解:当k=0,方程变形为﹣4x+3=0,此一元一次方程的解为x=;当k≠0,△=16﹣4k×3≥0,解得k≤,且k≠0时,方程有两个实数根,综上所述实数k的取值范围为k≤.故答案为:k≤.15.(4分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为12.【解答】解:解方程x2﹣12x+35=0,得x1=5,x2=7,∵1<第三边<7,∴第三边长为5,∴周长为3+4+5=12.16.(4分)如图,铁路口栏杆短臂长1米,长臂长16米,当短臂端点下降0.5米时,长臂端点升高8米.【解答】解:连接AB、CD,由题意可知,OA=OB=1米,OC=OD=16米,AB=0.5米,在△AOB与△COD中,∵=,∠AOB=∠COD,∴△AOB∽△COD,∴=,即=,解得CD=8米.故答案为:8.17.(4分)如图所示,菱形ABCD中,对角线AC,BD相交于点O,若再补充一个条件能使菱形ABCD成为正方形,则这个条件是∠BAD=90°或AC=BD.(只填一个条件即可,答案不唯一)【解答】解:要使菱形成为正方形,只要菱形满足以下条件之一即可,(1)有一个内角是直角(2)对角线相等.即∠BAD=90°或AC=BD.故答案为:∠BAD=90°或AC=BD.18.(4分)如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为菱形,应添加的条件是AC=BD或EG⊥HF或EF=FG.【解答】解:添加AC=BD.如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,则EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线∴EH=FG=BD,EF=HG=AC,∴当AC=BD时,EH=FG=FG=EF成立,则四边形EFGH是菱形.∴添加AC=BD.三、解答题(一):本大题共4小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(20分)解方程(1)2(x﹣3)2=8(直接开平方法)(2)4x2﹣6x﹣3=0(运用公式法)(3)(2x﹣3)2=5(2x﹣3)(运用分解因式法)(4)(x+8)(x+1)=﹣12(运用适当的方法)【解答】解:(1)(x﹣3)2=4x﹣3=2或x﹣3=﹣2,解得,x1=1或x2=5;(2)a=4,b=﹣6,c=﹣3,b2﹣4ac=(﹣6)2﹣4×4×(﹣3)=84,x==,,;(3)移项得,(2x﹣3)2﹣5(2x﹣3)=0,因式分解得,(2x﹣3)(2x﹣3﹣5)=0,,x2=4;(4)化简得,x2+9x+20=0,(x+4)(x+5)=0,解得,x1=﹣4,x2=﹣5.20.(6分)在Rt△ABC中,斜边AB=205,=,试求AC,BC的值.【解答】解:设AC=9x,则BC=40x,在Rt△ABC中,有(9x)2+(40x)2=2052,解得x=±5(负值舍去),AC=9x=9×5=45,BC=40x=40×5=200.21.(6分)如图,在△ABC中,DE∥BC,且S△ADE:S四边形BCED=1:2,BC=2.求DE的长.【解答】解:∵S△ADE :S四边形BCED=1:2,S△ABC=S△ADE+S四边形DBCE,∴S△ADE :S△ABC=1:3,又∵DE∥BC,∴△ADE∽△ABC,∴S△ADE :S△ABC=()2,又∵BC=2,∴DE=2.22.(6分)如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?【解答】解:设修建的路宽为x米.则列方程为20×30﹣(30x+20x﹣x2)=551,解得x1=49(舍去),x2=1.答:修建的道路宽为1米.四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤23.(8分)长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)写出所有的选购方案(用列表法或树状图);(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?【解答】解:(1)如图所示:(2)所有的情况有6种,A型器材被选中情况有2中,概率是=.24.(10分)某企业2008年盈利1500万元,2010年克服全球金融危机的不利影响,仍实现盈利2160万元.从2008年到2010年,如果该企业每年盈利的年增长率相同.(1)求该企业每年盈利的年增长率?(2)若该企业盈利的年增长率继续保持不变,预计2011年盈利多少万元?【解答】解:(1)设该企业每年盈利的年增长率是x,依题意,得1500(1+x)2=2160,解得x1=0.2=20%,x2=﹣2.2(舍去),答:该企业每年盈利的年增长率是20%;(2)2011年总盈利是2160×(1+20%)=2592,所以,预计2011年盈利2592万元.25.(10分)我侦察员在距敌方200米的地方发现敌人的一座建筑物,但不知其高度又不能靠近建筑物测量,机灵的侦察员食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住.若此时眼睛到食指的距离约为40cm,食指的长约为8cm,你能根据上述条件计算出敌方建筑物的高度吗?请说出你的思路.【解答】解:∵40cm=0.4m,8cm=0.08m∵BC∥DE,AG⊥BC,AF⊥DE.∴△ABC∽△ADE,∴BC:DE=AG:AF,∴0.08:DE=0.4:200,∴DE=40m.答:敌方建筑物高40m.26.(10分)如图所示,已知在△ABC中,∠B=90°,AB=6cm,BC=12cm,点Q 从点A开始沿AB边向点B以1cm/s的速度移动,点P从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果Q、P分别从A、B两点出发,那么几秒后,△PBQ的面积等于8cm2?(2)在(1)中,△PBQ的面积能否等于10cm2?试说明理由.【解答】解:(1)设t秒后,△PBQ的面积等于8cm2,根据题意得:×2t(6﹣t)=8,解得:t=2或4.答:2秒或4秒后,△PBQ的面积等于8cm2.(2)由题意得,×2t(6﹣t)=10,整理得:t2﹣6t+10=0,b2﹣4ac=36﹣40=﹣4<0,此方程无解,所以△PBQ的面积不能等于10cm2.27.(12分)如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN ∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.【解答】解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理OC=OF,∴OE=OF.(2)当点O运动到AC中点处时,四边形AECF是矩形.如图AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE=∠ACB,同理,∠ACF=∠ACG,∴∠ECF=∠ACE+∠ACF=(∠ACB+∠ACG)=×180°=90°,∴四边形AECF是矩形.(3)△ABC是直角三角形∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.赠送初中数学几何模型【模型三】双垂型:图形特征:运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,是中心对称图形的是()A.B.C.D .【答案】A.考点:中心对称图形.2.在1,﹣2,0,53这四个数中,最大的数是()A.﹣2 B.0 C.53D.1【答案】C.【解析】试题分析:由正数大于零,零大于负数,得:﹣2<0<1<53.最大的数是53,故选C.考点:有理数大小比较.3.在数轴上表示不等式x﹣1<0的解集,正确的是()A .B .C .D .【答案】C.【解析】试题分析:x﹣1<0,解得:x<1,故选C.考点:在数轴上表示不等式的解集.4.下列根式中是最简二次根式的是()ABCD【答案】B.考点:最简二次根式.5.已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A.【解析】试题分析:由点P(0,m)在y轴的负半轴上,得:m<0.由不等式的性质,得:﹣m>0,﹣m+1>1,则点M(﹣m,﹣m+1)在第一象限,故选A.考点:点的坐标.6.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.54°C.66°D.56°【答案】D.【解析】试题分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选D.考点:平行线的性质.7.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1: 16 B.1:4 C.1:6 D.1:2【答案】D.【解析】试题分析:∵两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2,故选D.考点:相似三角形的性质.8.某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.80060050x x=+B.80060050x x=-C.80060050x x=+D.80060050x x=-【答案】A.考点:由实际问题抽象出分式方程.9.若2440x x +-=,则23(2)6(1)(1)x x x --+-的值为( ) A .﹣6 B .6 C .18 D .30【答案】B . 【解析】 试题分析:∵2440x x +-=,即244x x +=,∴原式=223(44)6(1)x x x -+--=223121266x x x -+-+ =231218x x --+=23(4)18x x -++=﹣12+18=6.故选B . 考点:整式的混合运算—化简求值;整体思想;条件求值. 10.如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B→A→C 的路径移动,过点P 作PD⊥BC 于点D ,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .【答案】A .考点:动点问题的函数图象;分类讨论.二、填空题(共8小题,每小题4分,满分32分) 11.因式分解:228a -= . 【答案】2(a+2)(a ﹣2). 【解析】试题分析:228a -=22(4)a -=2(a+2)(a ﹣2).故答案为:2(a+2)(a ﹣2).考点:提公因式法与公式法的综合运用.12.计算:42(5)(8)a ab -⋅-= . 【答案】5240a b . 【解析】试题分析:42(5)(8)a ab -⋅-=5240a b .故答案为:5240a b . 考点:单项式乘单项式.13.如图,点A (3,t )在第一象限,OA 与x 轴所夹的锐角为α,tanα=32,则t 的值是 .【答案】92.考点:解直角三角形;坐标与图形性质.14.如果单项式2222m n n m x y +-+与57x y 是同类项,那么m n 的值是 .【答案】13.【解析】试题分析:根据题意得:25227m n n m +=⎧⎨-+=⎩,解得:13m n =-⎧⎨=⎩,则m n =13-=13.故答案为:13.考点:同类项.15.三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为 . 【答案】12. 【解析】试题分析:213400x x -+=,(x ﹣5)(x ﹣8)=0,所以15x =,28x =,而三角形的两边长分别是3和4,所以三角形第三边的长为5,所以三角形的周长为3+4+5=12.故答案为:12.考点:一元二次方程的解;三角形三边关系.16.如图,在⊙O 中,弦AC=点B 是圆上一点,且∠ABC=45°,则⊙O 的半径R= .. 【解析】试题分析:∵∠ABC=45°,∴∠AOC=90°,∵OA=OC=R,∴222R R +=,解得.故.考点:圆周角定理;勾股定理;与圆有关的计算.17.将一张矩形纸片折叠成如图所示的图形,若AB=6cm ,则AC= cm .【答案】6.考点:翻折变换(折叠问题).18.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2,…第n个三角形数记为xn,则xn+xn+1= .【答案】2 (1)n+.【解析】试题分析:∵x1=1,x2═3=1+2,x3=6=1+2+3,x4═10=1+2+3+4,x5═15=1+2+3+4+5,…∴xn=1+2+3+…+n=1(1)2n n+,xn+1=1(1)(2)2n n++,则xn+xn+1=1(1)2n n++1(1)(2)2n n++=2(1)n+,故答案为:2(1)n+.考点:规律型:数字的变化类.三、解答题(共5小题,满分38分)19.计算:201()12sin60(12---++-.【答案】6.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.20.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【答案】(1)答案见解析;(2)A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4). 【解析】 试题分析:(1)直接利用关于x 轴对称点的性质得出各对应点位置进而得出答案; (2)直接利用平移的性质得出各对应点位置进而得出答案. 试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,点A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).考点:作图-轴对称变换;作图-平移变换.21.已知关于x 的方程220x mx m ++-=. (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.【答案】(1)12m =;(2)答案见解析.考点:根的判别式;一元二次方程的解.22.图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON 位置运动到与地面垂直的OM 位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)(1)求AB的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N点运动到M点的路径MN的长度.(结果保留π)【答案】(1)1.17;(2)2245π.考点:解直角三角形的应用;弧长的计算.23.在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;(2)求点M(x,y)在函数2yx=-的图象上的概率.【答案】(1)(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)2 9.【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由点M(x,y)在函数2yx=-的图象上的有:(1,﹣2),(2,﹣1),直接利用概率公式求解即可求考点:列表法与树状图法;反比例函数图象上点的坐标特征.四、解答题(共5小题,满分50分)24.2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m= ,n= ;(3)扇形统计图中,热词B所在扇形的圆心角是多少度?【答案】(1)300;(2)60,90;(3)72°.故答案为:60,90;(3)60360×360°=72°.答:扇形统计图中,热词B 所在扇形的圆心角是72度. 考点:条形统计图;扇形统计图. 25.如图,函数14y x =-+的图象与函数2ky x =(x >0)的图象交于A (m ,1),B (1,n )两点.(1)求k ,m ,n 的值;(2)利用图象写出当x≥1时,1y 和2y 的大小关系.【答案】(1)k=3,m=3,n=3;(2)当1<x <3时,12y y >;当x >3时,12y y <;当x=1或x=3时,12y y=. 【解析】 试题分析:(1)把A 与B 坐标代入一次函数解析式求出m 与a 的值,确定出A 与B 坐标,将A 坐标代入反比例解析式求出k 的值即可;(2)根据B 的坐标,分x=1或x=3,1<x <3与x >3三种情况判断出1y 和2y的大小关系即可. 试题解析:(1)把A (m ,1)代入一次函数解析式得:1=﹣m+4,即m=3,∴A(3,1),把A (3,1)代入反比例解析式得:k=3,把B (1,n )代入一次函数解析式得:n=﹣1+4=3; (2)∵A(3,1),B (1,3),∴由图象得:当1<x <3时,12y y >;当x >3时,12y y <;当x=1或x=3时,12y y=. 考点:反比例函数与一次函数的交点问题. 26.如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:2OA=OE•OF.【答案】(1)证明见解析;(2)证明见解析.考点:相似三角形的判定与性质;平行四边形的判定与性质.27.如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O 经过A,B,D三点.(1)求证:AB是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.【答案】(1)证明见解析;(2)DE与圆O相切;(3).【解析】试题分析:(1)连接AD,由AB=AC,BD=CD,利用等腰三角形三线合一性质得到AD⊥BC,利用90°的圆周角所对的弦为直径即可得证;中位线,在Rt△ABF中,AB=6,AF=3,根据勾股定理得:=则DE=12BF=2.考点:圆的综合题;综合题;圆的有关概念及性质.28.如图,已知抛物线2y x bx c=-++经过A(3,0),B(0,3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P 在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.【答案】(1)223y x x =-++,y=﹣x+3;(2)3)41;(3)存在面积最大,最大是278,此时点P (32,154).(2)由运动得,OE=t ,AF=t ,∴AE=OA ﹣OE=3﹣t ,∵△AEF 为直角三角形,∴①△AOB∽△AEF,∴AF AE AB OA =,∴353t -=,∴t=15(57-,②△AOB∽△AFE,∴OA AB AF AE =53t =-,∴t=3)41; (3)如图,存在,过点P 作PC∥AB 交y 轴于C ,∵直线AB 解析式为y=﹣x+3,∴设直线PC 解析式为y=﹣x+b ,联立223y x b y x x =-+⎧⎨=-++⎩,∴223x b x x -+=-++,∴2330x x b -+-=,∴△=9﹣4(b ﹣3)=0,∴b=214,∴BC=214﹣3=94,x=32,∴ P (32,154).考点:二次函数综合题.。
甘肃省兰州市2016 年中考试题数学(A)注意事项:1.本试卷满分150 分,考试用时120 分钟。
2.考生必须将姓名、准考证号、考场、座位号等个人信息填(涂)在答题卡上。
3.考生务必将答案直接填(涂)写在答题卡的相应位置上。
一、选择题:本大题共15 小题,每小题4 分,共60 分,在每小题给出的四个选项中仅有一项是符合题意的。
1.如图是由5 个大小相同的正方体组成的几何体,则该几何体的主视图是()。
(A)(B)(C)(D)【答案】A【解析】主视图是从正面看到的图形。
从正面看有两行,上面一行最左边有一个正方形,下面一行有三个正方形,所以答案选A。
【考点】简单组合体的三视图2.反比例函数的图像在()。
(A)第一、二象限(B)第一、三象限(C)第二、三象限(D)第二、四象限【答案】B【解析】反比例函数的图象受到的影响,当k 大于0 时,图象位于第一、三象限,当k小于0 时,图象位于第二、四象限,本题中k =2 大于0,图象位于第一、三象限,所以答案选B。
【考点】反比例函数的系数k 与图象的关系3.已知△ABC ∽△DEF,若△ABC与△DEF的相似比为3/4,则△ABC与△DEF对应中线的比为()。
(A)3/4(B)4/3(C)9/16(D)16/9【答案】A【解析】根据相似三角形的性质,相似三角形的对应高线的比、对应中线的比和对应角平分线的比都等于相似比,本题中相似三角形的相似比为3/4,即对应中线的比为3/4,所以答案选A。
【考点】相似三角形的性质4.在Rt △ABC中,∠C=90°,sinA=3/5,BC=6,则AB=()。
(A)4 (B)6 (C)8 (D)10【答案】D【解析】在Rt △ABC中,sinA=BC/AB=6/AB=3/5,解得AB=10,所以答案选D。
【考点】三角函数的运用5.一元二次方程的根的情况()。
(A)有一个实数根(B)有两个相等的实数根(C)有两个不相等的实数根(D)没有实数根【答案】B【解析】根据题目,∆==0, 判断得方程有两个相等的实数根,所以答案选B。
1.【2016年福建省泉州市】(6分)工厂烟气脱硫工艺,不仅能消除二氧化硫,还能将其转化为硫酸钙(CaSO4)等产品,实现“变废为宝”。
反应的化学方程式为:2CaCO3+O2+2SO2======2CaSO4+2CO2,现用1.25 t 含碳酸钙80%的石灰石吸收烟气中的二氧化硫。
求:(1)石灰石中碳酸钙的质量。
(2)可吸收二氧化硫的质量。
【答案】(1)1 t (2)0.64 t2.【2016年甘肃省白银市】(7分)某化学兴趣小组欲测定谋铁粉混合物中铁的质量分数,他们进行了如右图所示的实验。
请计算:(1)混合物中铁的质量;(2)反应后烧杯中稀硫酸无剩余,请计算所用稀硫酸中溶质的质量分数;(3)欲用98%的浓硫酸配制该浓度的稀硫酸200g需要水多少克?【答案】(1)5.6g (2)19.6%; (3)160g【解析】试题分析:(1)由图可知,滤渣4.4g为碳,故铁的质量为10g-4.4g=5.6g3.【2016年广东省】(9分)过氧化钙(CaO2)是一种环境友好的化工原料,工农业生产中用作漂白剂、种子消毒剂以及鱼类运输时的制氧剂等。
过氧化钙与水反应方程式为:2CaO2+2H2O=2Ca(OH)2+O2。
(1)若用150g某过氧化钙工业样品可制得氧气32g,请计算该过氧化钙样品的纯度(样品中CaO2的质量分数)是多少?(2)往150g上述过氧化钙工业样品中逐渐加入水至过量,在右图中画出产生氧气的曲线图。
(3)下表为市面上某种过氧化钙和过氧化钠(化学式为Na2O2,化学性质与CaO2类似)样品的一些数据:物质相对分子质量纯度价格(元/kg)Na2O278 98% 25CaO272 94% 24用3000元购买样品制氧气,请通过计算说明购买哪种产品可制得更多的O2(已知用3000元购买过氧化钙样品可制得26.1kg O2)?【答案】(1)96% (3)过氧化钙可制得更多的氧气4.【2016年湖南省郴州市】(7分)往100克含有盐酸和氯化钙的混合溶液中,加入21.2%的碳酸钠溶液,所得溶液的pH变化与加入碳酸钠溶液的质量关系如图,试分析计算:(1)a→b段表示碳酸钠与混合溶液中的反应;(2)反应到c点时,所得溶液的溶质质量分数是多少?(写出计算过程,精确到0.1%)【答案】(1)稀盐酸(2)15.6%【解析】试题分析:(1)盐酸和氯化钙的混合溶液中,滴加稀盐酸,盐酸会先于碳酸钠,溶液的pH值升高,然后碳酸钠再与氯化钙反应,溶液的pH值不变,反应结束,溶液的pH值会继续的增大,所以a→b段表示碳酸钠与混合溶液中的稀盐酸反应;(2)设盐酸和碳酸钠反应时,生成氯化钠质量为x,生成二氧化碳质量为y5.【2016年湖南省邵阳市】(8分)某化学兴趣小组参观了一个石灰厂时,带回了一些石灰石样品,同学们利用这些石灰石样品做了如下实验:取样品10g放入烧杯中,将50g稀盐酸分5次加入,实验过程所得的数据如表所示(已知石灰石样品中的杂质不参与反应,也不溶于水)。
2016年甘肃省白银市中考数学二模试卷一、选择题(每题3分,共30分)1.(3分)﹣2的相反数是()A.2B.﹣2C.D.﹣2.(3分)在函数y=中,自变量x的取值范围是()A.x>2B.x≥2C.x≠0D.x≠23.(3分)一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A.0.1008×106B.1.008×106C.1.008×105D.10.08×104 4.(3分)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.5.(3分)如果一个多边形的内角和等于360度,那么这个多边形的边数为()A.4B.5C.6D.76.(3分)若反比例函数的图象位于第二、四象限,则k的取值可以是()A.0B.1C.2D.以上都不是7.(3分)一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2﹣4ac满足的条件是()A.b2﹣4ac=0B.b2﹣4ac>0C.b2﹣4ac<0D.b2﹣4ac≥0 8.(3分)抛物线y=(x﹣1)2﹣3的对称轴是()A.y轴B.直线x=﹣1C.直线x=1D.直线x=﹣3 9.(3分)在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为()A.9.5B.10.5C.11D.15.510.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0②当﹣1≤x≤3时,y<0③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()A.①②④B.①④C.①②③D.③④二、填空题(每题4分,共32分,把答案写在答题卡中的横线上)11.(4分)分解因式:a2﹣1=.12.(4分)已知一组数据:3,3,4,5,5,6,6,6.这组数据的众数是.13.(4分)如果菱形的两条对角线的长为a和b,且a,b满足(a﹣1)2+=0,那么菱形的面积等于.14.(4分)把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为.15.(4分)如图,△ABC绕点A顺时针旋转80°得到△AEF,若∠B=100°,∠F=50°,则∠α的度数是.16.(4分)如图,在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是.17.(4分)如图,D是反比例函数的图象上一点,过D作DE⊥x轴于E,DC ⊥y轴于C,一次函数y=﹣x+m与的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为.18.(4分)如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC 于E3,…,如此继续,可以依次得到点E4、E5、…、E n,分别记△BCE1、△BCE2、△BCE3…△BCE n的面积为S1、S2、S3、…S n.则S n=S△ABC(用含n的代数式表示).三、解答题(一)本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(10分)(1)计算+;(2)先化简后求值:当时,求代数式的值.20.(6分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到元购物券,至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.21.(8分)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.22.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)23.(6分)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).(1)画出△ABC绕点C顺时针旋转90°后的△A1B1C;(2)求边AC旋转时所扫过区域的面积.四、解答题(二)本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.(8分)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.25.(10分)如图,一艘核潜艇在海面下500米A点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C点处距离海面的深度?(保留根号)26.(10分)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(m,3),B(﹣3,n)两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x的不等式>kx+b的解集.27.(10分)如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC,交AC于点E,交PC于点F,连接AF.(1)求证:AF是⊙O的切线;(2)已知⊙O的半径为4,AF=3,求线段AC的长.28.(12分)已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x﹣2经过A、C两点,且AB=2.(1)求抛物线的解析式;(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=,当t为何值时,s有最小值,并求出最小值.(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由.2016年甘肃省白银市中考数学二模试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)﹣2的相反数是()A.2B.﹣2C.D.﹣【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.(3分)在函数y=中,自变量x的取值范围是()A.x>2B.x≥2C.x≠0D.x≠2【解答】解:根据题意得:x﹣2≠0;解得x≠2,故选:D.3.(3分)一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A.0.1008×106B.1.008×106C.1.008×105D.10.08×104【解答】解:100800=1.008×105.故选:C.4.(3分)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.【解答】解:A、不是轴对称图形,B、不是轴对称图形,C、不是轴对称图形,D、是轴对称图形,故选:D.5.(3分)如果一个多边形的内角和等于360度,那么这个多边形的边数为()A.4B.5C.6D.7【解答】解:∵(n﹣2)•180°=360°,解得n=4,∴这个多边形为四边形.故选:A.6.(3分)若反比例函数的图象位于第二、四象限,则k的取值可以是()A.0B.1C.2D.以上都不是【解答】解:∵反比例函数的图象位于第二、四象限,∴k﹣1<0,即k<1.故选:A.7.(3分)一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2﹣4ac满足的条件是()A.b2﹣4ac=0B.b2﹣4ac>0C.b2﹣4ac<0D.b2﹣4ac≥0【解答】解:∵一元二次方程有两个不相等的实数根,∴△=b2﹣4ac>0.故选:B.8.(3分)抛物线y=(x﹣1)2﹣3的对称轴是()A.y轴B.直线x=﹣1C.直线x=1D.直线x=﹣3【解答】解:抛物线y=(x﹣1)2﹣3的对称轴是直线x=1.故选:C.9.(3分)在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为()A.9.5B.10.5C.11D.15.5【解答】解:∵△EDF是△EAF折叠以后形成的图形,∴△EDF≌△EAF,∴∠AEF=∠DEF,∵AD是BC边上的高,∴EF∥CB,又∵∠AEF=∠B,∴∠BDE=∠DEF,∴∠B=∠BDE,∴BE=DE,同理,DF=CF,∴EF为△ABC的中位线,∴△DEF的周长为△EAF的周长,即AE+EF+AF=(AB+BC+AC)=(12+10+9)=15.5.故选:D.10.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0②当﹣1≤x≤3时,y<0③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()A.①②④B.①④C.①②③D.③④【解答】解:①∵函数图象的对称轴为:x=﹣==1,∴b=﹣2a,即2a+b=0,故①正确;②∵抛物线开口方向朝上,∴a>0,又∵二次函数y=ax2+bx+c的图象与x轴交点为(﹣1,0)、(3,0),∴当﹣1≤x≤3时,y≤0,故②错误;③∵抛物线的对称轴为x=1,开口方向向上,∴若(x1,y1)、(x2,y2)在函数图象上,当1<x1<x2时,y1<y2;当x1<x2<1时,y1>y2;故③错误;④∵二次函数y=ax2+bx+c的图象过点(3,0),∴x=3时,y=0,即9a+3b+c=0,故④正确.故选:B.二、填空题(每题4分,共32分,把答案写在答题卡中的横线上)11.(4分)分解因式:a2﹣1=(a+1)(a﹣1).【解答】解:a2﹣1=(a+1)(a﹣1).故答案为:(a+1)(a﹣1).12.(4分)已知一组数据:3,3,4,5,5,6,6,6.这组数据的众数是6.【解答】解:6出现的次数最多,所以众数是6.故填6.13.(4分)如果菱形的两条对角线的长为a和b,且a,b满足(a﹣1)2+=0,那么菱形的面积等于2.【解答】解:由题意得,a﹣1=0,b﹣4=0,解得a=1,b=4,∵菱形的两条对角线的长为a和b,∴菱形的面积=×1×4=2.故答案为:2.14.(4分)把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为y=﹣2(x﹣1)2+2.【解答】解:抛物线y=﹣2x2向右平移1个单位长度所得解析式为:y=﹣2(x﹣1)2,再向上平移2个单位长度后,所得函数的表达式为:y=﹣2(x﹣1)2+2.故答案为:y=﹣2(x﹣1)2+2.15.(4分)如图,△ABC绕点A顺时针旋转80°得到△AEF,若∠B=100°,∠F=50°,则∠α的度数是50°.【解答】解:∵△ABC绕点A顺时针旋转80°得到△AEF,∴∠C=∠F=50°,∠BAE=80°,而∠B=100°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣100°﹣50°=30°,∴∠α=80°﹣30°=50°.故答案为:50°.16.(4分)如图,在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是(7,3).【解答】解:因CD∥AB,所以C点纵坐标与D点相同.为3.又因AB=CD=5,故可得C点横坐标为7.故答案为(7,3).17.(4分)如图,D是反比例函数的图象上一点,过D作DE⊥x轴于E,DC ⊥y轴于C,一次函数y=﹣x+m与的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为﹣2.【解答】解:∵的图象经过点C,∴C(0,2),将点C代入一次函数y=﹣x+m中,得m=2,∴y=﹣x+2,令y=0得x=2,∴A(2,0),∴S△AOC=×OA×OC=2,∵四边形DCAE的面积为4,∴S矩形OCDE=4﹣2=2,∴k=﹣2.故答案为:﹣2.18.(4分)如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC 于E3,…,如此继续,可以依次得到点E4、E5、…、E n,分别记△BCE1、△BCE2、△BCE3…△BCE n的面积为S1、S2、S3、…S n.则S n=S△ABC(用含n的代数式表示).【解答】解:易知D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,以此类推;根据直角三角形的性质以及相似三角形的性质可知:D1E1=BC,CE1=AC,S1=BC•CE1=BC×AC=×AC•BC=S△ABC;∴在△ACB中,D2为其重心,∴D2E1=BE1,∴D2E2=BC,CE2=AC,S2=××AC•BC=S△ABC,∴D3E3=BC,CE2=AC,S3=S△ABC…;∴S n=S△ABC.故答案为:.三、解答题(一)本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(10分)(1)计算+;(2)先化简后求值:当时,求代数式的值.【解答】解:(1)原式===(2)原式=当时,原式=1.20.(6分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到10元购物券,至多可得到50元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.【解答】解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=;解法二(列表法):(以下过程同“解法一”)21.(8分)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.【解答】证明:(1)∵CF平分∠BCD,∴∠BCF=∠DCF.在△BFC和△DFC中,∴△BFC≌△DFC(SAS).(2)连接BD.∵△BFC≌△DFC,∴BF=DF,∴∠FBD=∠FDB.∵DF∥AB,∴∠ABD=∠FDB.∴∠ABD=∠FBD.∵AD∥BC,∴∠BDA=∠DBC.∵BC=DC,∴∠DBC=∠BDC.∴∠BDA=∠BDC.又∵BD是公共边,∴△BAD≌△BED(ASA).∴AD=DE.22.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了50天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为72°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)【解答】解:(1)本次调查共抽取了24÷48%=50(天),故答案为:50;(2)5级抽取的天数50﹣3﹣7﹣10﹣24=6天,空气质量等级天数统计图;(3)360°×=72°,故答案为:72;(4)365××100%=219(天),答:2015年该城市有219天不适宜开展户外活动.23.(6分)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).(1)画出△ABC绕点C顺时针旋转90°后的△A1B1C;(2)求边AC旋转时所扫过区域的面积.【解答】解:(1)如右图所示,(2)由题意可得,边AC旋转时所扫过区域的面积是S扇形CAA1==4π.四、解答题(二)本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.(8分)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.25.(10分)如图,一艘核潜艇在海面下500米A点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C点处距离海面的深度?(保留根号)【解答】解:由C点向AB作垂线,交AB的延长线于E点,并交海面于F点.已知AB=3000(米),∠BAC=30°,∠EBC=60°,∵∠BCA=∠EBC﹣∠BAC=30°,∴∠BAC=∠BCA.∴BC=BA=3000(米).在Rt△BEC中,EC=BC•sin60°=3000×=1500(米).∴CF=CE+EF=1500+500(米).答:海底黑匣子C点处距离海面的深度约为(1500+500)米.26.(10分)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(m,3),B(﹣3,n)两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x的不等式>kx+b的解集.【解答】解:(1)∵A(m,3),B(﹣3,n)两点在反比例函数y2=的图象上,∴m=2,n=﹣2.∴A(2,3),B(﹣3,﹣2).根据题意得:,解得:,∴一次函数的解析式是:y1=x+1;(2)根据图象得:0<x<2或x<﹣3.27.(10分)如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC,交AC于点E,交PC于点F,连接AF.(1)求证:AF是⊙O的切线;(2)已知⊙O的半径为4,AF=3,求线段AC的长.【解答】(1)证明:连接OC,如图所示:∵AB是⊙O直径,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切线,∴∠OCF=90°,∴∠OAF=90°,∴F A⊥OA,∴AF是⊙O的切线;(2)∵⊙O的半径为4,AF=3,∠OAF=90°,∴OF===5∵F A⊥OA,OF⊥AC,∴AC=2AE,△OAF的面积=AF•OA=OF•AE,∴3×4=5×AE,解得:AE=,∴AC=2AE=.28.(12分)已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x﹣2经过A、C两点,且AB=2.(1)求抛物线的解析式;(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=,当t为何值时,s有最小值,并求出最小值.(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由.【解答】解:(1)由直线:y=x﹣2知:A(2,0)、C(0,﹣2);∵AB=2,∴OB=OA+AB=4,即B(4,0).设抛物线的解析式为:y=a(x﹣2)(x﹣4),代入C(0,﹣2),得:a(0﹣2)(0﹣4)=﹣2,解得a=﹣∴抛物线的解析式:y=﹣(x﹣2)(x﹣4)=﹣x2+x﹣2.(2)在Rt△OBC中,OB=4,OC=2,则tan∠OCB=2;∵CE=t,∴DE=2t;而OP=OB﹣BP=4﹣2t;∴s===(0<t<2),∴当t=1时,s有最小值,且最小值为1.(3)在Rt△OBC中,OB=4,OC=2,则BC=2;在Rt△CED中,CE=t,ED=2t,则CD=t;∴BD=BC﹣CD=2﹣t;以P、B、D为顶点的三角形与△ABC相似,已知∠OBC=∠PBD,则有两种情况:①=⇒=,解得t=;②=⇒=,解得t=;综上,当t=或时,以P、B、D为顶点的三角形与△ABC相似.。
甘肃省白银市平川四中2016届中考数学模拟试卷(一)(解析版)2016年甘肃省白银市平川四中中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣的相反数是()A.B.﹣C.2 D.﹣2【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数叫相反数即可求解.【解答】解:根据概念得:﹣的相反数是.故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.下列计算正确的是()A.2a2+4a2=6a4B.(a+1)2=a2+1 C.(a2)3=a5 D.x7÷x5=x2【考点】完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】根据合并同类项对A进行判断;根据完全平方公式对B进行判断;根据幂的乘方法则对C进行判断;根据同底数幂的除法法则对D进行判断.【解答】解:A、2a2+4a2=6a2,所以A选项不正确;B、(a+1)2=a2+2a+1,所以B选项不正确;C、(a2)5=a10,所以C选项不正确;D、x7÷x5=x2,所以D选项正确.故选D.【点评】本题考查了完全平方公式:(a±b)2=a2±2a+b2.也考查了合并同类项、幂的乘方以及同底数幂的除法法则.3.下列图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称的定义,结合所给图形即可作出判断.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.4.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看恰为一男一女的情况占总情况的多少即可.【解答】解:男1 男2 男3 女1 女2男1 一一√√男2 一一√√男3 一一√√女1 √√√一女2 √√√一∴共有20种等可能的结果,P(一男一女)=.故选B.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0 5 B.0 1 C.﹣4 5 D.﹣4 1【考点】二次函数的三种形式.【分析】把y=(x﹣2)2+k化为一般式,根据对应相等得出b,k的值.【解答】解:∵y=(x﹣2)2+k=x2﹣4x+4+k,∴x2+bx+5=x2﹣4x+4+k,∴b=﹣4,4+k=5,∴k=1.故选D.【点评】本题考查了二次函数的三种形式,把一般式化为顶点式,或把顶点式化为一般式是解题的关键.6.为了解某班学生每天使用零花钱的情况,小明随机查了15名同学,结果如下表:每天使用零花钱(单0 1 3 4 5位:元)人数 1 3 5 4 2关于这15名同学每天使用的零花钱,下列说法正确的是()A.众数是5元B.极差是4元C.中位数3元D.平均数是2.5元【考点】极差;加权平均数;中位数;众数.【分析】分别计算该组数据的众数、平均数、极差及中位数后找到正确答案即可.【解答】解:∵每天使用3元零花钱的有5人,∴众数为3元;≈2.93,∵最多的为5元,最少的为0元,∴极差为:5﹣0=5;∵一共有15人,∴中位数为第8人所花钱数,∴中位数为3元.故选:C【点评】本题考查了极差、加权平均数、中位数及众数,在解决此类题目的时候一定要细心,特别是求中位数的时候,首先排序,然后确定数据总个数.7.如图,已知⊙O的直径AB为10,弦CD=8,CD⊥AB于点E,则sin∠OCE的值为()A.B.C.D.【考点】垂径定理;解直角三角形.【分析】由AB是⊙O的直径,弦CD⊥AB,根据垂径定理,可求得CE的长,然后由勾股定理即可求得OE,继而求得sin∠OCE的值.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=CD=×8=4,OC=AB=×10=5,∴OE==3,∴sin∠OCE==.故选B.【点评】此题考查了垂径定理、勾股定理以及三角函数.此题比较简单,注意掌握数形结合思想的应用.8.已知一次函数y=kx+b的图象如图,则关于x的不等式k(x﹣4)﹣2b>0的解集为()A.x>﹣2 B.x<﹣2 C.x>2 D.x<3【考点】一次函数与一元一次不等式.【分析】根据函数图象知:一次函数过点(3,0);将此点坐标代入一次函数的解析式中,可求出k、b 的关系式;然后将k、b的关系式代入k(x﹣4)﹣2b>0中进行求解.【解答】解:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,∴b=﹣3k.将b=﹣3k代入k(x﹣4)﹣2b>0,得k(x﹣4)﹣2×(﹣3k)>0,去括号得:kx﹣4k+6k>0,移项、合并同类项得:kx>﹣2k;∵函数值y随x的增大而减小,∴k<0;将不等式两边同时除以k,得x<﹣2.故选B.【点评】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.9.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为()A.1 B.2 C.4 D.8【考点】位似变换.【专题】计算题.【分析】根据位似变换的性质得到=,B1C1∥BC,再利用平行线分线段成比例定理得到=,所以=,然后把OC1=OC,AB=4代入计算即可.【解答】解:∵C1为OC的中点,∴OC1=OC,∵△ABC和△A1B1C1是以点O为位似中心的位似三角形,∴=,B1C1∥BC,∴=,∴=,即=∴A1B1=2.故选B.【点评】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.10.如图,边长为1的正方形ABCD中有两个动点P,Q,点P从点B出发沿BD作匀速运动,到达点D 后停止;同时点Q从点B出发,沿折线BC→CD作匀速运动,P,Q两个点的速度都为每秒1个单位,如果其中一点停止运动,则另一点也停止运动.设P,Q两点的运动时间为x秒,两点之间的距离为y,下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】①当x≤1时,作PM⊥BC,构造RT△PMQ,利用勾股定理求出y与x的函数关系.②当1<x≤时,作PM⊥DC,构造RT△PMQ,利用勾股定理求出y与x的函数关系.然后与图象相对照选出A是正确的.【解答】解:①如图1,当x≤1时,作PM⊥BC交BC于点M,∵四边形ABCD是正方形,∴∠DBC=45°,∵BP=BQ=x,∴PM=BM=x,MQ=(1﹣)x,∴PQ===x,∴y=x是正比例函数图象.②如图2,当1<x≤时,作PM⊥DC交DC于点M,∵四边形ABCD是正方形,∴∠BDC=45°,∵BP=x,QC=x﹣1,∴PM=(﹣x)=1﹣x,MQ=1﹣(﹣x)﹣(x﹣1)=(﹣1)x+1∴PQ===,∴y=,是类抛物线的一部分,故选:A.【点评】本题主要考查动点问题的函数图象,解题的关键是求出y与x的函数关系式.二、填空题(本大题共8小题,每小题4分,共32分.请把答案填写在题中横线上.)11.据国家考试中心发布的信息,我国今年参加高考的考生数达11 600 000人,这个数据用科学记数法且保留两个有效数字可表示为 1.2×107人.【考点】科学记数法与有效数字.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于11 600 000有8位,所以可以确定n=8﹣1=7.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:11 600 000≈1.2×107.【点评】较大的数保留有效数字需要用科学记数法来表示.用科学记数法保留有效数字,要在标准形式a×10n中a的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.12.分解因式:a2﹣b2﹣2b﹣1=(a+b+1)(a﹣b ﹣1).【考点】因式分解-分组分解法.【分析】首先将后三项组合利用完全平方公式分解因式,进而利用平方差公式分解即可.【解答】解:a2﹣b2﹣2b﹣1=a2﹣(b2+2b+1)=a2﹣(b+1)2=(a+b+1)(a﹣b﹣1).故答案为:(a+b+1)(a﹣b﹣1).【点评】此题主要考查了分组分解法分解因式,熟练利用公式是解题关键.13.如图,在⊙O中,AB为直径,C、D为⊙O上两点,若∠C=25°,则∠ABD=65°.【考点】圆周角定理.【专题】推理填空题.【分析】由已知可求得∠A的度数,再根据圆周角定理及三角形内角和定理即可求得∠ABD的度数.【解答】解:连接AD.∵∠C=25°(已知),∴∠C=∠A=25°;∵AB是⊙O的直径,∴∠ADB=90°(直径所对的圆周角是直角),∴∠ABD=90°﹣25°=65°.故答案是:65°.【点评】本题考查了圆周角定理.解答该题时,需熟练运用圆周角定理及其推论.14.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为(,).【考点】翻折变换(折叠问题);坐标与图形性质.【分析】如图,作辅助线;根据题意首先求出AB、BC的长度;借助面积公式求出A′D、OD的长度,即可解决问题.【解答】解:如图,过点A′作A′D⊥x轴与点D;设A′D=λ,OD=μ;∵四边形ABCO为矩形,∴∠OAB=∠OCB=90°;四边形ABA′D为梯形;设AB=OC=γ,BC=AO=ρ;∵OB=,tan∠BOC=,∴,解得:γ=2,ρ=1;由题意得:A′O=AO=1;△ABO≌△A′BO;由勾股定理得:λ2+μ2=1①,由面积公式得:②;联立①②并解得:λ=,μ=.故答案为(,).【点评】该题以平面直角坐标系为载体,以翻折变换为方法构造而成;综合考查了矩形的性质、三角函数的定义、勾股定理等几何知识点;对分析问题解决问题的能力提出了较高的要求.15.如图,反比例函数y=在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB的面积是8.【考点】反比例函数系数k的几何意义.【分析】根据题意结合反比例函数图象上点的坐标性质S△ACO=S△OBD=3,得出S四边形AODB的值是解题关键.【解答】解:如图所示:过点A作AC⊥y轴于点C,过点B作BD⊥x轴于点D,∵反比例函数y=在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,∴x=2时,y=3;x=6时,y=1,故S△ACO=S△OBD=3,S四边形AODB=×(3+1)×4+3=11,故△AOB的面积是:11﹣3=8.故答案为:8.【点评】此题主要考查了反比例函数图象上点的坐标性质,得出四边形AODB的面积是解题关键.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.【考点】二次函数的性质.【专题】数形结合.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.也考查了二次函数图象与一次函数图象的交点问题.17.若关于x的方程mx2﹣4x+2=0有实数根,则m 的取值范围是m≤2.【考点】根的判别式;一元一次方程的解.【分析】分两种情况:m=0,方程为已知方程有一元一次方程,方程有实数根;当m≠0,则△≥0,由此建立关于m的不等式,然后解不等式即可求出m的取值范围.【解答】解:当m=0,方程为﹣4x+2=0一元一次方程,方程有实数根;由题意知m≠0,△=16﹣8m≥0,∴m≤2.综上所知:m≤2.故答案为:m≤2.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.18.已知一个平行四边形的一条对角线将其分为全等的两个等腰直角三角形,且这条对角线的长为6,则另一条对角线长为6或6.【考点】平行四边形的性质;等腰直角三角形.【专题】分类讨论.【分析】利用等腰直角三角形的性质以及正方形的判定方法得出此平行四边形是正方形,即可得出答案.【解答】解:∵一个平行四边形的一条对角线将其分为全等的两个等腰直角三角形,∴此图形的邻边相等,且对角都是90°,故此平行四边形是正方形,∵一条对角线的长为6,∴另一条对角线长为:6.同理可得出:另外一种情况:这个平行四边形的四个角分别为45°,135°,45°,135°.此时另外一条对角线的长度为6.故另一条对角线长为6或6.故答案为:6或6.【点评】此题主要考查了平行四边形的性质以及等腰直角三角形的性质,得出此平行四边形是正方形是解题关键.三、解答题(本大题共9小题,共88分.解答应写出必要的文字说明、证明过程或验算过程.)19.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=3﹣1+4﹣=2+3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:÷(m﹣1﹣),其中m=.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把m的值代入计算即可求出值.【解答】解:原式=•=•=,当m=时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.作图题(只保留作图痕迹,不写作法)作已知三角形的外接圆.【考点】作图—复杂作图;三角形的外接圆与外心.【专题】作图题.【分析】分别作AB和BC的垂直平分线,它们相交于点O,然后以O点为圆心,OB为半径作圆即可.【解答】解:如图,⊙O为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.如图,四边形ABCD为平行四边形,AD=a,BE∥AC,DE交AC的延长线于F点,交BE于E 点.(1)求证:DF=FE;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求BE 的长.【考点】平行四边形的性质;勾股定理;三角形中位线定理.【专题】几何综合题.【分析】(1)可过点C延长DC交BE于M,可得C,F分别为DM,DE的中点;(2)在直角三角形ADC中利用勾股定理求解即可;【解答】解:(1)证明:延长DC交BE于点M,∵BE∥AC,AB∥DC,∴四边形ABMC是平行四边形,∴CM=AB=DC,C为DM的中点,BE∥AC,则CF为△DME的中位线,DF=FE;(2)由(1)得CF是△DME的中位线,故ME=2CF,又∵AC=2CF,四边形ABMC是平行四边形,∴AC=ME,∴BE=2BM=2ME=2AC,又∵AC⊥DC,∴在Rt△ADC中利用勾股定理得AC=AD•sin∠ADC=,∴BE=.【点评】本题结合三角形的有关知识综合考查了平行四边形的性质,解题的关键是理解中位线的定义,会用勾股定理求解直角三角形.23.如图,MN表示襄樊至武汉的一段高速公路设计路线图.在点M测得点N在它的南偏东30°的方向,测得另一点A在它的南偏东60°的方向;取MN上另一点B,在点B测得点A在它的南偏东75°的方向,以点A为圆心,500m为半径的圆形区域为某居民区,已知MB=400m,通过计算回答:如果不改变方向,高速公路是否会穿过居民区?【考点】解直角三角形的应用-方向角问题.【专题】应用题.【分析】高速公路是否会穿过居民区即是比较点A 到MN的距离与半径的大小,于是作AC⊥MN于点C,求AC的长.解直角三角形ACM和ACB.【解答】解:作AC⊥MN于点C∵∠AMC=60°﹣30°=30°,∠ABC=75°﹣30°=45°设AC为xm,则AC=BC=x在Rt△ACM中,MC=400+x∴tan∠AMC=,即解之,得x=200+200∵>1.5∴x=200+200>500.∴如果不改变方向,高速公路不会穿过居民区.【点评】怎么理解是否穿过居民区是关键,与最近距离比较便知应作垂线,构造Rt△求解.24.如图,平面直角坐标系中,直线AB与x轴,y 轴分别交于A(3,0),B(0,)两点,点C为线段AB上的一动点,过点C作CD⊥x轴于点D.(1)求直线AB的解析式;(2)若S梯形OBCD=,求点C的坐标.【考点】待定系数法求一次函数解析式;解一元二次方程-因式分解法.【分析】(1)因为直线AB与x轴,y轴分别交于A (3,0),B(0,)两点,所以可设y=kx+b,将A、B的坐标代入,利用方程组即可求出答案;(2)因为点C为线段AB上的一动点,CD⊥x轴于点D,所以可设点C坐标为(x,﹣x+),那么OD=x,CD=﹣x+,利用梯形的面积公式可列出关于x的方程,解之即可.【解答】解:(1)设直线AB解析式为:y=kx+b,把A,B的坐标代入得k=﹣,b=所以直线AB的解析为:y=﹣x+.(2)设点C坐标为(x,﹣x+),那么OD=x,CD=﹣x+.∴S 梯形OBCD==﹣x2+x.由题意:﹣x 2+x=,解得x1=2,x2=4(舍去),∴C(2,).【点评】本题综合考查了用待定系数法求一次函数的解析式和解一元二次方程的有关知识,解决这类问题常用到方程和转化等数学思想方法.25.2011年,陕西西安被教育部列为“减负”工作改革试点地区.学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?【考点】扇形统计图;条形统计图.【分析】(1)根据A级有50人,所占的比例是25%,据此即可求解;(2)求得C级所占的比例,乘以总人数即可求解,进而作出条形图;(3)利用360度,乘以C级所占的比例即可求解;(4)总人数乘以A,B两级所占的比例的和即可求解.【解答】解:(1)50÷25%=200(名);(2)C级的人数是:200×(1﹣25%﹣60%)=30(人).;(3)C级所占的圆心角的度数是:360×(1﹣25%﹣60%)=54°;(4)80000×(25%+60%)=68000(人).【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°比.26.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.【考点】二次函数的应用;一元二次方程的应用.【专题】销售问题.【分析】(1)每件的利润为6+2(x﹣1),生产件数为95﹣5(x﹣1),则y=[6+2(x﹣1)][95﹣5(x ﹣1)];(2)由题意可令y=1120,求出x的实际值即可.【解答】解:(1)∵第一档次的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润加2元,但一天生产量减少5件.∴第x档次,提高的档次是x﹣1档.∴y=[6+2(x﹣1)][95﹣5(x﹣1)],即y=﹣10x2+180x+400(其中x是正整数,且1≤x≤10);(2)由题意可得:﹣10x2+180x+400=1120整理得:x2﹣18x+72=0解得:x1=6,x2=12(舍去).答:该产品的质量档次为第6档.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.27.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.【考点】二次函数综合题.【专题】压轴题;分类讨论.【分析】方法一:(1)首先根据OA的旋转条件确定B点位置,然后过B做x轴的垂线,通过构建直角三角形和OB的长(即OA长)确定B点的坐标.(2)已知O、A、B三点坐标,利用待定系数法求出抛物线的解析式.(3)根据(2)的抛物线解析式,可得到抛物线的对称轴,然后先设出P点的坐标,而O、B坐标已知,可先表示出△OPB三边的边长表达式,然后分①OP=OB、②OP=BP、③OB=BP三种情况分类讨论,然后分辨是否存在符合条件的P点.方法二:(3)用参数表示点M坐标,分类讨论三种情况,利用两点间距离公式便可求解.(4)列出点M的参数坐标,利用MO=MB求解.此问也可通过求出OB的垂直平分线与y轴的交点得出M点.【解答】解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(﹣2.﹣2)代入,得:,解得,∴此抛物线的解析式为y=﹣x2+x;(3)存在;如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△P′OD中,∠P′DO=90°,sin∠P′OD==,∴∠P′OD=60°,∴∠P′OB=∠P′OD+∠AOB=60°+120°=180°,即P′、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,故点P的坐标为(2,﹣2),③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,故点P的坐标为(2,﹣2),综上所述,符合条件的点P只有一个,其坐标为(2,﹣2).方法二:(3)设P(2,t),O(0,0),B(﹣2,﹣2),∵△POB为等腰三角形,∴PO=PB,PO=OB,PB=OB,(2﹣0)2+(t﹣0)2=(2+2)2+(t+2)2,∴t=﹣2,(2﹣0)2+(t﹣0)2=(0+2)2+(0+2)2,∴t=2或﹣2,当t=2时,P(2,2),O(0,0)B(﹣2,﹣2)三点共线故舍去,(2+2)2+(t+2)2=(0+2)2+(0+2)2,∴t=﹣2,∴符合条件的点P只有一个,∴P(2,﹣2).(4)∵点B,点P关于y轴对称,∴点M在y轴上,设M(0,m),∵⊙M为△OBF的外接圆,∴MO=MB,∴(0﹣0)2+(m﹣0)2=(0+2)2+(m+2)2,∴m=﹣,M(0,﹣).【点评】此题融合了函数解析式的确定、等腰三角形的判定等知识,综合程度较高,但属于二次函数综合题型中的常见考查形式,没有经过分类讨论而造成漏解是此类题目中易错的地方.。
机密★启用前[考试时间:6 月13 日上午9:00~11:00]2016 年高中阶段教育学校招生统一考试数学本试题卷分第一部分(选择题)和第二部分(非选择题).第一部分1 至2 页,第二部分3 至6 页,共6 页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分120 分.考试时间120 分钟.考试结束后,将本试题卷和答题卡一并交回.第一部分(选择题共 30 分)注意事项:1.选择题必须使用 2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上.2.本部分共10 小题,每小题3 分,共30 分.一、选择题:本大题共10 个小题,每小题3 分,共30 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,不是负数的是()A. -2B. 3C. -58D.-0.102.计算(ab2)3的结果,正确的是()A.a3b6B. a3b5C. ab6D. ab53.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件B.“x2< 0 (x 是实数)”是随机事件C.掷一枚质地均匀的硬币10 次,可能有 5 次正面向上D.为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查5.化简m2+n2的结果是()m -n n -mA.m +n B.n -m C.m -n D.-m -n6.下列关于矩形的说法中正确的是(A.对角线相等的四边形是矩形)B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分形 7. 若 x = -2 是关于 x 的一元二次方程 x 2 +3ax - a 2 = 0 的一个根,则 a 的值为( )2A . -1或 4B . -1 或-4C .1或-4D . 1或48. 如图 1,点 D (0, 3) , O (0, 0) , C (4, 0) 在 A 上, BD 是 A 的一条弦,则sin ∠OBD = ( )13A.B . 24 43C .D .5 59. 如图2 ,二次函数 y = ax 2 + bx + c (a > 0) 图象的顶点为 D ,其图象与 x 轴的交点 A 、B 的横坐标分别为-1和3 ,则下列结论正确的是( ) A. 2a - b = 0 B. a + b + c > 01C. 3a - c = 0D. 当 a = 时, ∆ABD 是等腰直角三角210. 如图 3,正方形纸片 ABCD 中,对角线 AC 、 BD 交于点O ,折叠正方形纸片 ABCD ,使 AD 落在 BD 上,点 A 恰好与 BD 上的点 F 重合,展开后折痕 DE 分别交 AB 、 AC 于 点 E 、G ,连结GF .给出下列结论:① ∠ADG = 22.5 ;② tan ∠AED = 2 ;③S ∆AGD = S ∆OGD ;④四边形 AEFG 是菱形;⑤ BE = 2OG ;⑥若 S ∆OGF = 1 ,则正方形ABCD 的面积是6 + 4 2 .其中正确的结论个数为()A .2B .3C .4D .5注意事项:第二部分(非选择题 共 90 分)1. 必须使用 0.5 毫米的黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作 图题可先用铅笔绘出,确认后再用 0.5 毫米的黑色墨迹签字笔描清楚.答在试题卷上无效.2. 本部分共 14 小题,共 90 分.二、填空题:本大题共 6 小题,每小题 4 分,共 24 分.y DA xOCB图2图1图33 4 x O图511. 月球的半径约为 1 738 000 米,1 738 000 这个数用科学记数法表示为 .12. 对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如表:年龄 13 14 15 16 17 18人数4 56 6 72则这些学生年龄的众数是.13. 如果一个正多边形的每个外角都是30 ,那么这个多边形的内角和为 . 14. 设 x 、x 是方程5x 2 - 3x - 2 = 0 的两个实数根,则1+1的值为.121 215. 已知关于 x 的分式方程.kx +1 + x + k= 1 的解为负数,则 k 的取值范围是x -1A16. 如图 4, ∆ABC 中, ∠C = 90 , AC = 3 , AB = 5 ,D 为 BC 边的中点,以 AD 上一点O 为圆心的 OBD C和 AB 、 BC 均相切,则 O 的半径为.三、解答题:本大题共 8 小题,共 66 分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分 6 分)计算: + 20160- - 2 +118.(本小题满分 6 分)如图 5,在平面直角坐标系中,直角∆ABC 的三个顶点分别是A (-3,1) ,B (0, 3) ,C (0,1) .(1) 将∆ABC 以点C 为旋转中心旋转180 ,画出旋转后对应的∆A 1B 1C 1; y(2) 分别连结 AB 1 、 BA 1后,求四边形 AB 1A 1B 的面积.xCAB图4x喜爱月饼情况 扇形统计图很喜欢” 月饼的同学最爱 吃的月饼品种条形统计图比较喜欢 25%不喜欢很喜欢40%19.(本小题满分 6 分)中秋佳节我国有赏月和吃月饼的传统,某校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了 60 名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(图 6).(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1) 在扇形统计图中,“很喜欢”的部分所对应的扇形圆心角为 度;在条形统计图中,喜欢“豆沙”月饼的学生有 人;(2) 若该校共有学生 900 人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”月饼的共有人;(3) 甲同学最爱吃云腿月饼,乙同学最爱吃豆沙月饼.现有重量、包装完全一样的云腿、豆沙、莲蓉、蛋黄四种月饼各一个,让甲、乙每人各选一个,请用画树状图法或列表法求出甲、乙两人中有且只有一人选中自己最爱吃的月饼的概率.20.(本小题满分 8 分)如图 7,在平面直角坐标系中, O 为坐标原点, ∆ABO 的边 AB 垂直于x k轴,垂足为点 B ,反比例函数 y =OB = 4 , AD = 3 .(x > 0) 的图象经过 AO 的中点C ,且与 AB 相交于点 D ,x(1) 求反比例函数 y =k 的解析式;x(2) 求cos ∠OAB 的值;(3) 求经过C 、 D 两点的一次函数解析式.8品种其他豆沙 莲蓉 云腿 36人数图6yACDxBO图7BCPOQD A图9图821. (本小题满分 8 分)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过 14 吨(含 14 吨),则每吨按政府补贴优惠价 m 元收费;若每月用水量超过 14 吨,则超过部分每吨按市场价 n 元收费.小明家 3 月份用水 20 吨,交水费 49 元;4 月份用水 18 吨,交水费 42 元.(1) 求每吨水的政府补贴优惠价和市场价分别是多少?(2) 设每月用水量为 x 吨,应交水费为 y 元,请写出 y 与 x 之间的函数关系式; (3) 小明家 5 月份用水 26 吨,则他家应交水费多少元?22.(本小题满分 8 分)如图 8,在矩形 ABCD 中,点 F 点 D 作 DE ⊥ AF ,垂足为点 E .(1) 求证: DE = AB ;(2) 以 A 为圆心, AB 长为半径作圆弧交 AF 于点G .若 BF = FC = 1,求扇形 ABG 的面积.(结果保留)23.(本小题满分 12 分)如图 9, 在∆AOB 中, ∠AOB 为直角, OA = 6 , OB = 8 .半径为2 的动圆圆心Q 从点O 出发,沿着OA 方向以 1 个单位长度/秒的速度匀速运动,同时动点 P 从点 A 出发,沿着 AB 方向也以 1 个单位长度/秒的速度匀速运动,设运动时间为t 秒(0 < t ≤ 5) .以 P 为圆心, PA 长为半径的 P 与 AB 、OA 的另一个交点分别为C 、 D ,连结CD 、QC .(1) 当t 为何值时,点Q 与点 D 重合?(2) 当 Q 经过点 A 时,求 P 被OB 截得的弦长;(3) 若 P 与线段QC 只有一个公共点,求t 的取值范围.ADEGBF CymA OQ PCx B 图10l24. (本小题满分 12 分)如图 10,抛物线 y = x 2 + bx + c 与 x 轴交于 A 、 B 两点, B 点坐标为(3, 0) ,与 y 轴交于点C (0, -3) .(1) 求抛物线的解析式;(2) 点 P 在抛物线位于第四象限的部分上运动,当四边形 ABPC 的面积最大时,求点P 的坐标和四边形 ABPC 的最大面积;(3) 直线l 经过 A 、C 两点,点Q 在抛物线位于 y 轴左侧的部分上运动,直线 m 经过点B 和点Q .是否存在直线 m ,使得直线l 、 m 与 x 轴围成的三角形和直线l 、 m 与 y 轴围成的三角形相似?若存在,求出直线 m 的解析式;若不存在,请说明理由.2016 年高中阶段教育学校招生统一考试数学参考答案及评分意见一、选择题(每题 3 分,共 30 分) 1、B 2、A 3、D 4、C 5、A 6、B 7、C 8、D 9、D 10、B二、填空题(每小题 4 分,共 24 分)316、11 、1.738⨯106 ;12 、 17 ; 13、 1800 ; 14 、 - ;1 6215 、 k > - 且k ≠ 0 ; 2 7三、解答题(本大题共 8 个小题,共 66 分)以下各题只提供参考解法,使用其它方法求解,按步骤相应给分.17、(6 分)解:原式= 2 +1- (2 - 3) +1 ................................ 3 分(注:分项给分)1 1O图5= 4 - 2 + = 2 +18、( 6 分)解:(1)…………………………5 分 …………………………………6 分yx (3)分1 1(2) S 四AB A B = 2 ⋅AA 1 ⋅ BB 1 = ⨯ 6 ⨯ 4 212 . (6)分19、(6 分)解:(1) 126, 4 .…………………………………………2 分 (2) 675…………………………………………3 分 (3) 甲 云腿 莲蓉豆沙蛋黄乙 莲 蓉 豆 沙 蛋 黄 云 腿 豆 沙 蛋 黄 云 腿 莲 蓉 蛋 黄 云 腿 莲 蓉 豆沙 .......................... 5 分P = 4 = 1 .............................................................................................................. 12 3分yA20、(8 分)解:(1)设 D (4, a ) , AB = 3 + a过点C 作CE ⊥ x 轴,垂足为 E , ∵ C 是 AO 的中点, C∴ CE 是∆AOB 的中位线, ……………1 分D 3 + a ∴点C (2, ) , ......................................................................................... 2 分 23 + a 由点C 和点 D 都在反比例函数图象上得: 2 ⨯ = 4a 2解得: a = 1 ,点 D (4,1) 反比例函数: y = 4 x(2) 由OB = AB = 4 得,……………3 分……………4 分B 1B 3 3 图7 xBE O A 11 ) C (C A6⎩ 1⎩∴ ∠OAB = 45 , cos ∠OAB =2……………5 分(3) 设直线CD 的函数关系式: y = k 1x + b (k 1 ≠ 0)⎧2 = 2k 1 + b∵ C (2, 2) , D (4,1) 在直线上,得⎨1 = 4k + b ..................................................... 6 分 ⎧k = - 1 ⎪ 1解得: ⎨ 2 .............................................................................................. 7 分⎪ b = 3 1 直线CD 的函数关系式: y = - 2x + 3 .............................................................. 8 分⎧14m + (20 -14)n = 49 21、(8 分)解:(1)由题意得: ⎨ ⎩14m + (18 -14)n = 42………………………2 分⎧ m = 2 解得: ⎨n = 3.5(2)当0 < x ≤ 14 时, y = 2x ;………………………4 分当 x > 14 时, y = 28 + (x -14) ⨯ 3.5 = 3.5x - 21⎧ 所以 y = ⎨⎩ 2x , 0 < x ≤ 14……………………7 分3.5x - 21, x > 14(3)当 x = 26 时, y = 3.5⨯ 26 - 21 = 70 (元) ...................................................... 8 分22、(8 分)(1)证明:∵ DE ⊥ AF ,∴ ∠AED = 90 ,又∵四边形 ABCD 是矩形, ∴ ∠ABF = 90 ,∴ ∠ABF = ∠AED = 90 , ......................................................................................... 1 分 又∵ AD // BC ∴ ∠DAE = ∠AFB , ……………………2 分E又∵ AF = AD ,G∴ ∆ADE ≌ ∆FAB ( A AS ) , ……………………3 分 BF ∴ DE = AB(2) ∵ BF = FC = 1, ∴ AD = BC = BF + FC = 2 ,……………………4 分又∵ ∆ADE ≌ ∆FAB ,∴ AF = AD = 2 , ........................................................... 5 分 ∴在 Rt ∆ABF 中, BF = 1AF ,∴ ∠BAF = 30 , ........................................... 6 分22A图8AF 2 - BF 2 22 -12 4 - ( )2 18 2 5 又∵ AB = = =3 , ............................................................... 7 分n r 230⨯3 1 ∴扇形 ABG 的面积= = =360 360 4……………………8 分23、(12 分)解:(1)在直角∆ABO 中, AO = 6 , BO = 8 ,∴ AB = 10cos ∠BAO =AO = 6 = 3 .......................................................................................1 分 AB 10 5∵ AC 是 P 的直径, ∴ ∠CDA = 90AD 3在直角∆ACD 中, cos ∠CAD = =AC 5∵ OQ = AP = t , AC = 2t , ∴ AD = 6 t 5∵点Q 与点 D 重合,∴ OQ + AD = OA = 6 t + 6 t = 6 ,解得: t = 30……………………2 分5当t = 11 30时,点Q 与点 D 重合 ............................................................................................. 3 分 11(2) ∵ Q 经过点 A , Q 的半径是2∴ AQ = 2 , OQ = 6 - 2 = 4 , t = 4 ∴ AP = 4 , BP = 10 - 4 = 6设 P 被OB 截得的弦为线段 EF ,过点 P 作 P M BP PM PM // OA , ∆BPM ∽ ∆BAO , =BA OA……………………4 分⊥ EF 于点M ,∴ 6 = PM , PM = 18 ............................................................................................. 5 分 10 6 5 连结 PE , PE = 4在直角∆PEM 中, EM =∴ EF = 2EM = 45(3) 当QC 与相 切P 时, AC ⊥ Q C3在直角∆ACQ 中, cos ∠CAQ == = .2..1.9 .................................................. 6 分 5……………………7 分5 10 5AC = 2t , AQ = AC = t , ....................................................................................... 8 分3 3∵ AQ = OA - OQ = 6 - tPE 2 - PM 2 19⎩ ⎩ ∴ 10 t = 6 - t ,得: t = 18 ..................................................................................... 9 分 3 13∴当0 < t ≤ 18时, P 与线段QC 只有一个公共点 (10)13分 又∵当t = 30 时,点Q 与点 D 重合, P 与线段QC 有两个公共点11∴当 30 < t ≤ 5 时, P 与线段QC 只有一个公共点 (11)11分综上,当0 < t ≤18 30 或< t ≤ 5 时, P 与线段QC 只有一个公共点1311……………………12 分24、(12 分)解:(1)∵抛物线 y = x 2 + bx + c 与 x 轴交于 B 点(3, 0) ,与 y 轴交于C (0, -3) .⎧9 + 3b + c = 0∴ ⎨c = -3分,∴ b = -2 ............................................................................................ 1 ∴抛物线的解析式: y = x 2 - 2x - 3 ................................................................................. 2 分(2) 抛物线 y = x 2 - 2x - 3 与 x 轴的交点 A (-1, 0) , AB = 41 1连结 BC , S 四ABPC = S ∆ABC + S ∆BCP , S ∆ABC = 2 AB ⋅ OC = 4 ⨯ 3⨯ 2= 6当 S ∆BCP 最大时,四边形 ABPC 的面积最大求出直线 BC 的函数关系式: y = x - 3 .......................................................................... 3 分平移直线 BC ,当平移后直线与抛物线 y = x 2 - 2x - 3 相切时,BC 边上的高最大, S ∆BCP 最大.设平移后直线关系式为: y = x - 3 - m⎧ y = x - 3 - m 2联立⎨ y = x 2- 2x - 3, x - 2x - 3 = x - 3 - m9 当∆ = 0 时, m =4∴平移后直线关系式为: y = x -21 4 ……………………4 分⎧ y = x - 21 ⎨⎪ 4 ⎧ , 解得: ⎨ x = 3 215 ⎩ y = x 2 - 2x - 3 ∴ 点 P ( 3 , - 15 2 4 ⎪ y = - ⎩ 4……………………5 分 过点 P 向 x 轴作垂线,与线段 BC 交于点 D 3 3 3 15 9 点 D ( , - ) , PD = - - (- ) =2 2 2 4 4 ∴ S ∆BCP 最大值= 9 ⨯ 3⨯ 1 = 27 , 4 2 8 ∴四边形 ABPC 的最大面积= 27 + 6 = 758 8 ……………………6 分(3) 存在,设直线 m 与 y 轴交于点 N ,与直线l 交于点 M ,设点 N 的坐标为(0, t )① 当l ⊥ m 时, ∠NOB = ∠NMC = 90∴ ∠MCN + ∠MNC = 90 , 又∵ ∠ONB = ∠MNC∴ ∠MCN = ∠OBN∵ ∠AMB = ∠NMC = 90∴ ∆AMB ∽ ∆NMC∠ONB + ∠OBN = 90求出直线l 的函数关系式: y l = -3x - 3∵ l ⊥ m ,设直线 m 的函数关系式: y m = 1 x + b 3∵直线 m 经过点 B (3, 0) ∴直线 m 的函数关系式: y m ……………………7 分= 1 x -1 ,此时 t = -1 3② 当-3 < t < -1时, ∠AMB < 90 , ∠CMB > 90∆AMB 是一个锐角三角形, ∆CMN 却是一个钝角三角形∴ ∆AMB 与∆CMN 不相似∴符合条件的直线 m 不存在)……………………8 分③ 当-1 < t < 0 时, ∠AMB > 90 , ∠CMB < 90∆AMB 是一个钝角三角形, ∆CMN 却是一个锐角三角形∴ ∆AMB 与∆CMN 不相似∴符合条件的直线 m 不存在……………………9 分④当0 < t < 1 时, ON < 1∴ OA > ON , OC OB∠MCN > ∠MBA 又∵ ∠CMN = ∠BMA (公共角)∴ ∆AMB 与∆CMN 不相似∴符合条件的直线 m 不存在 (10)分⑤当t = 1时, ON = 1∴OA = ON = 1 , ∠MCN = ∠MBA OC OB 3又∵ ∠CMN = ∠BMA (公共角)∴ ∆AMB ∽∆NMC ∵直线 m 经过点 B (3, 0) 和 N (0,1)∴直线 m 分的函数关系式: y = - 1 x +1 m 3……………………11 ⑥当t > 1时, ON > 1∴ OA < ON , OC OB∠MCN < ∠MBA 又∵ ∠CMN = ∠BMA (公共角)∴ ∆AMB 与∆CMN 不相似∴符合条件的直线 m 不存在 (12)分1 1综上,直线 m 的函数关系式为: y m = - 3 x +1或 y m = 3x -1“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。