铸件形成理论基础共53页文档
- 格式:ppt
- 大小:3.67 MB
- 文档页数:53
《铸件形成理论基础》实验教学大纲课程编号:铸件形成理论基础课程学时/学分:60/3.0 实验总学时:6.0课程英文名称:Basis of Cast Forming Theory课程类别:专业课开出学期:第六学期开出单位(实验室):材料成型及控制工程实验室制定人:刘向东一、制定依据指根据教育部高等学校机械学科教学指导委员会材料成型及控制工程专业(课程)教学指导分委员会《材料成型原理》课程教学的基本要求, 结合内蒙古工业大学03版培养方案、铸件形成理论基础课程教学大纲等制订本课程实验教学大纲。
三、实验目的、内容与要求实验一、铸造合金流动性的测定实验1、实验目的(1)了解和掌握铸造合金流动性对铸件质量的影响;(2)通过实验,了解并掌握铸造合金流动性的测试方法,了解并掌握影响铸造合金流动性的因素。
2、实验内容(1)采用40/100目石英砂+12%粘土+5.5%水制备型砂,造螺旋试样用铸型;。
(2)灰铸铁流动性的测试。
①.HT250;②.QT600-2;(3)铝合金ZL102流动性的测试。
3、基本要求(1)做好实验预习(明确实验目的、任务、基本原理与测试方法、熟悉操作的主要步骤、注意事项。
并于实验前写好实验预习报告等)(2)实验中要认真细心实验现象和准确记录实验数据,严格遵守操作规程及注意事项,自觉遵守实验室各项规章制度;(3)实验的原始记录经指导教师签阅后妥善保管备查。
认真撰写实验报告。
实验二、铸造合金残余应力的测定1、实验目的本实验目的在于使学生初步了解和掌握使用应力框测定铸造合金残余应力的基本原理与方法;了解残余应力是导致铸件变形和开裂的主要原因之一。
了解并掌握产生残余应力的原因及防止措施,以便为今后从事铸造生产和工艺控制打下良好的基础。
2、实验内容(1)熔炼铁水撇渣后浇注入应力框砂型;待应力框凝固并冷却后,打箱、清理,用游标卡尺测量出凸台两端距离;(2)手工将应力框从凸台的中央锯断;再次用游标卡尺测量出凸台两端距离;根据给定公式计算出粗杆的残余拉应力;(3)根据崩断面积估算出铸铁的抗拉强度,仔细观察应力框自行崩断处的端面情况。
一、名词解释:1、流动性:液态金属本身的流动能力,是金属的铸造性能之一,与金属的成分温度杂质含量及其物理性质有关。
2、液态金属的充型能力:液态金属充满铸型型腔,获得形状完整轮廓清晰的铸件的能力成为液态金属充填铸型的能力,简称为~。
3、粗糙界面:界面固相一侧的点阵位置只有50%左右为固相原子所占据,这些原子散乱的随机分布在界面上形成一个坑坑洼洼呕吐不平的界面层。
4、平整界面:固相表面的点阵位置几乎全部为固相原子所占据,只留下少数空位或在充满固相原子的界面上存在有少数不稳定的孤立固相原子从而形成了一个总的来说平整光滑的界面。
5、成分过冷:由溶质再分配导致界面前方熔体成份及其凝固温度发生变化而引起的过冷称为~。
6、热过冷:仅由熔体实际温度分布所决定的过冷状态称为~。
7、枝晶偏析:由于固溶体合金多按枝晶方式生长,分支本身分支与分支间的成分是不均匀的,故称为~。
8、宏观偏析:又称长程偏析或区域偏析,指较大范围内的化学成分不均匀现象,表现为铸件各部位之间化学成分的差异。
9、反应性气孔:金属液与铸型之间,金属与熔渣之间或金属液内部某些元素化合物之间发生化学反应所产生的气孔。
10、铸造应力:铸件在凝固和以后的冷却过程中发生线收缩有些合金还发生固态相变,这种变化往往受到外界的约束或铸件各部分之间的相互制约而不能自由的进行于是产生变形的同时还产生应力,这种应力叫做~。
三、简答题1、铸造的优缺点?答:优:○1适应性强○2可以利用某些合金的特性○3尺寸精度高○4成本低。
缺:○1铸件尺寸均一性差○2与压力加工和粉末冶金相比金属利用率低○3内在质量比锻件差○4工作环境粉尘多温度高劳动强度大生产效率低。
2、试述均质生核与非均质生核的区别及联系?答:均质生核:在没有任何外界面的均匀熔体中的生核过程,均质生核在熔体各处几率相同,晶核的全部固液界面皆由生核过程所提供,因此热力学能障较大,所需驱动力较大,理想液态金属的生核过程就是均质生核;非均质生核:在不均匀的熔体中依靠外来杂质或型壁界面提供的衬底进行生核的过程,非均质生核优先发生在外来外界面处,因此热力学能障较小,所需要驱动力较小,实际液态金属的生核过程一般都是非均质生核。
1.液体的“近程有序”与“长程无序”:液体的颗粒分布相对于周期有序的晶态固体是不规则的,液态结构在宏观上不具备平移及对称性,表现为长程无序特征;而相对于完全无序的气体,液体中存在着许多不停游荡着的局域有序的原子集团,其结构又表现为近程有序。
2.实际液态金属的结构是:实际金属的液态结构是非常复杂的,由大量时聚时散、此起彼伏游动的原子团簇及空穴所组成,同时可能包含各种固态、液态或气态杂质或化合物而且还表现出能量、结构和浓度三种起伏特征。
3.理想纯金属液态结构是:由原子集团、游离原子、空穴组成的。
原子集团内原子近程有序排列,原子集团间的空穴或裂纹内分布着无规则排列的游离原子。
原子集团、空穴或裂纹的大小、形态和分布及热运动的状态都处于每时每刻都在变化的状态,存在能量起伏和结构起伏。
4.窄结晶温度范围合金停止流动机理:1区:过热量未散失完;2区:冷前端在型壁上凝固,已凝固的壳重新熔化;3区:未被熔化保留下固相,该区金属液耗尽过热热量;4区:固、液相具有相同的温度,在该区发生堵塞。
5.宽结晶温度范围合金停止流动机理:a.过热量未散失尽,以纯液态流动;b.温度下降到液相线以下,析出固相,顺流前进,黏度增加;c.晶粒数量达到临界值,固相形成连续网络,压力无法克服该网络阻力而发生堵塞,停止流动。
6.三个起伏结构起伏:液态金属中原子团簇尺寸及其内部原子数量都随着时间和空间发生着改变能量起伏:液态金属中不同原子能量有高有低,同一原子的能量也随着时间空间的变化时高时低浓度(成分)起伏:在液态金属中,游动原子团簇之间存在着成分差异,这种局域成分的不均匀性随原子热运动在随时变化7.充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,称为液态金属充填铸型的能力,简称液态金属的充型能力8.凝固动态曲线的绘制:以温度﹣时间曲线为依据,先将合金的液相线和固相线温度给定到温度场曲线上,以铸件表面至中心的距离x 与半铸件厚度R 之比为纵坐标(x / R =1表示铸件中心位置),以时间t 为横坐标,将温度场曲线与液相和固相温度线的交点分别标注在坐标系中,然后分别将温度场曲线与液相和固相温度线的交点各自连接成曲线,即为凝固动态曲线绘制方法:以时间为横坐标,相对位置x/R为纵坐标; 把温度场曲线与液相线和固相线的交点分别标注在图上;分别把液相线和固相线连成曲线。
第一章铸造成型技术铸造:将液态金属浇注到与零件尺寸、形状相适应的铸型型腔中,待其冷却凝固后,获得一定形状的毛坯或零件的方法。
铸件:采用铸造方法铸出的金属制品。
铸造生产的特点1.适应范围广,工艺灵活性大(材料、大小、形状几乎不受限制)2. 可制造各种合金铸件,各种箱体、机架、阀体等3.成本较低(铸件与最终的零件形状相似,尺寸相近)铸造的局限性1材料力学性能比锻件低2容易产生铸造缺陷3劳动条件差第一节铸造成型理论基础一、液态金属冲型充型能力:液态金属充满铸型型腔,获得形状完整,轮廓清晰的铸件的能力。
液态金属重要的铸造性能指标。
冲型能力差:形状不完整、轮廓不清晰产生缺陷。
(浇不足,冷隔)问:影响液态金属充型能力的因素有哪些?★合金本身的流动性★浇注条件★铸型填充条件★铸件结构1.合金流动性1)合金流动性的概念:合金本身的流动能力流动性好●容易浇注出轮廓清晰、薄而复杂的铸件●气体、夹杂上浮与排除●补缩好流动性差●薄壁铸件浇不足●复杂铸件产生冷隔2)合金流动性的测量螺旋形试样测量法:用浇注后试样的长度表示(实际浇注的螺旋线的长度,长度越长,流动性越好)3)影响合金流动性的因素合金的化学成分:固液两相的间距越大,流动性越差。
A.具有共晶成分的合金,纯金属流动性好B.合金成分越远离共晶点结晶温度范围越宽,流动性越差亚共晶铁随含碳量增加,结晶温度范围减小,流动性提高2 浇注条件1)浇注温度:浇注温度越高充型能力越好2)充型压头:压头越大,金属流动速度越大,充型能力越好,压力铸造、离心铸造的充型能力就比砂型铸造好。
缺点:压力过大:引起喷射和飞溅,增加金属氧化,气体来不及排除,易造成浇不足和冷隔。
3)浇注系统结构:复杂,流动阻力大,充型能力差浇注系统如阻流式、缓流式易增大铸件的流动阻力,使充型能力降低。
浇口杯和内浇口等也有同样的影响。
3. 铸型填充条件1)铸型材料:导热系数越大,合金的充型能力越差金属型铸造较砂型铸造易产生浇不足和冷隔等缺陷2)铸型温度:铸型温度越高,合金的充型能力越强3)铸型中的气体:铸型排气能力差,阻碍液态合金的充型4. 铸件结构1)铸件的折算厚度(体积与表面积之比):折算厚度越大,充型能力越强2)铸件的复杂程度越大,充型能力差5. 提高充型能力的措施1)铸型性质方面金属铸型、熔模铸型:提高铸型温度,填涂料增加铸型热阻,提高铸型排气量,减少铸型在金属充填期间的发气速度等。
铸件形成理论(一)铸造是将熔化成液态的金属浇入铸型后一次制成需要形状和性能的铸件,亦即铸造是使金属的状态按着“固态--液态--固态”变化而成形的。
金属由液态--固态的凝固过程中的一些现象,如液态金属、结晶、溶质的传输、晶体长大、气体溶解和析出、非金属夹杂物的形成、金属体积变化等都是我们在后面将要探讨的内容。
一、有关液态金属方面的介绍(一)液态金属的粘滞性液态金属的粘滞性对铸型的充填、液态金属中的气体、非金属夹杂物的排除、金属的补缩、一次结晶的形态、偏析的形成等,多有直接或间接的作用。
因此液态金属的粘滞性对铸件的质量有重要的影响。
1、粘滞性的本质当外力作用于液体表面时,由于质点间作用力引起内摩擦力,使的最表面的一层移动速度大于第二层,而第二层的速度大于第三层,……。
因此粘滞性的本质是质点间(原子间)结合力的大小。
2、影响粘度的因素①温度温度对粘度的影响要根据不同原子之间的相互关系来解释,因此在这里不讨论。
细化铝硅合金加入的变质剂钠,在结晶期间吸附在晶核表面,阻止硅原子的集聚,使粘度降低。
所以变质处理后的铝硅合金的流动性较未变质前有所提高。
②化学成分难熔化合物的粘度较高,而熔点低的共晶成分合金其粘度低。
这是由于难熔化合物的结合力强,在冷至熔点之前就及早地开始了原子的集聚。
对于共晶成分合金,异类原子间不发生结合,而同类原子聚合时,由于异类原子存在所造成的阻碍,使它们聚合缓慢,晶胚的形成拖后,故粘度较非共晶成分的低。
③非金属夹杂物液态合金中呈固态的非金属夹杂物使液态合金的粘度增加,如氧化铝、氧化硅等。
这是因为夹杂物的存在使液态合金成为不均匀的多相系统,液体流动时内摩擦力增加。
夹杂物愈多,对粘度影响愈大。
同时夹杂物的形态也有影响。
(二)液态金属的表面张力物体的表面是两种相的分界面,该表面总是具有某些不同于内部的特有性质,有此产生出一些表面特有的现象-----表面现象。
在铸件形成过程中存在着许多相相的界面,如金属与大气、熔剂、型壁,以及与其内部的气体、夹杂物、晶体等界面。
第一章能量起伏:金属晶体结构中每个原子的振动能量不是均等的,一些原子的能量超过原子的平均能量,有些原子的能量则远小于平均能量,这种能量的不均匀性称为“能量起伏”近程有序排列:金属液体则由许多原子集团所组成,在原子集团内保持固体的排列特征,而在原子集团之间的结合处则受到很大破坏。
这种仅在原子集团内的有序排列称为近程有序排列。
浓度起伏:不同原子间结合力存在差别,在金属液原子团簇之间存在着成分差异。
这种成分的不均匀性称为浓度起伏。
实际金属的液态结构实际金属中总存在大量杂质和溶质原子,所以其液态除了存在能量起伏和结构起伏以外,还存在浓度起伏。
实际液态金属在微观上是由存在能量起伏、结构起伏和成分起伏的游动原子集团、空穴和许多固态、气态或液态的化合物组成的混浊液体;从化学键上看,除了基体金属与其合金元素组成的金属键之外,还存在其他多种类型的化学键。
影响表面张力的因素1)熔点:高熔点的物质,其原子间结合力大,其表面张力也大。
2)温度:大多数金属和合金,温度升高,表面张力降低。
3)溶质:向系统中加入削弱原子间结合力的组元,会使表面内能和表面张力降低。
第二章液态金属的充型能力一、水力学特点1、液态金属在砂型流动时具有的特性:①粘性液体流动②多相流动③不稳定流动④紊流流动⑤在‘多孔管’中流动2、什么是液态金属充填铸型能力答:液态金属充满铸型型腔,获得形状完整、轮廓清晰的能力。
3、影响液态金属充型能力的因素:①取决于金属本身的流动性②受外界影响(铸型性质、杂质含量、)4、充型能力不好的缺陷:浇不足、冷隔5、用浇注“流动性试样”方法衡量流动性、试样类型有:螺旋形、球形、真空试样。
四、液态金属充型能力的计算l=v τ gH v 2μ=五、影响充型能力的因素和措施因素:金属性质方面:(①密度②比热③导热系数④结晶潜热⑤动力粘度)铸型性质方面:(①铸型蓄热系数②铸型密度③铸型比热④铸型温度⑤铸型发气性和透气性)浇注条件方面:(①浇注温度②液态金属静压头③外力场)铸件结构方面:(①铸件的折算率 ②压头损失)凝固过程中释放的潜热越多,则凝固进行的越缓慢,流动性就越好措施:金属性质:(①正确选择合金成分②合理的熔炼工艺)铸型性质:(①选择蓄热系数低的铸型材料②预热铸型③适当降低型砂中的含水量和发气 ④量提高砂型的透气性)浇注方面:(①合理提高提高浇注温度②增加金属液静压头③选择恰当的浇注系统结构)铸件结构:(选择适当的浇注位置)第三章 铸件的凝固一:凝固动态曲线(书本76页)二:铸件的凝固方式(书本77-78页):1、逐层凝固方式2、体积凝固方式3、中间凝固方式铸件的凝固方式取决于凝固区域的宽度。
铸件形成理论复习提纲铸件形成理论复习提纲一、名词解释(考5个)1.能量起伏:一些原子的的能量超过原子的平均能量,有些原子的能量远小于平均能量,这种能量的不均匀性2.浓度起伏:表示各各个原子集团之间成分的不均匀性。
3.熔化潜热:将金属加热到至熔点时,金属体积突然膨胀,等于固态金属从热力学温度零度加热到熔点的总膨胀量,金属的其他性质如电阻,粘性等发生突变,吸收的热能。
4.充型能力:液态金属充满铸型型腔,获得形状完整,轮廓清晰的铸件的能力。
5.成分过冷:由溶质再分配导致的界面前方熔体成分及其凝固温度发生变化而引起的过冷。
6.热过冷:由熔体实际温度分布所决定的过冷状态。
7.微观偏析(枝晶偏析)8.正常偏西9.负偏析:降低该区的溶质浓度,使该区C5降低,产生的偏析。
10.重力偏析:由于沿垂直方向逐层凝固而产生的正常偏析和固液相之间或互不相容的液相之间有的密度不同,在凝固过程中发生沉浮现象造成的。
11.热裂:铸件在凝固期间或刚凝固完毕,在高温下收缩受到阻碍产生的现象。
12.铸造应力:铸件在凝固或冷却过程中,发生线收缩,有些合金还发生固态相变,引起体积的膨胀或收缩时产生的应力。
13.冷裂:铸件应力超出合金强度极限而产生的现象。
14.顺序凝固:铸件结构各部分,按照远离冒口的部分最先凝固,然后是靠近冒口部位,最后是冒口本身凝固的次序进行的凝固方式15.同时凝固:铸件各部分之间没有温差或温差尽量小,使各部分同时进行凝固的方式。
16.析出性气孔:金属液在凝固过程中,因气体溶解度下降而析出气体,形成气泡未能排除而产生的气孔。
17.反应性气孔:金属液与铸型之间,金属与熔渣之间或金属液内部某些元素、化合物之间发生化学反应所产生的气孔。
二、填空题(不限于这些)1.减小或消除残余应力的方法有人工、自然、共振时放。
2.润湿角是衡量界面张力的标志,润湿角≥90o,表明液体不能润湿体。
3.晶体结晶时,有时会以枝晶生长方式进行。
此时固液界面前液体中的温度梯度小于0 。
铸件形成理论(三)一、铸件化学成分的不均匀性铸件中化学成分不均匀的现象称为偏析。
偏析分为微观偏析和宏观偏析两大类。
同时偏析也可根据铸件各部位的溶质浓度Cs与合金原始浓度C O的偏离情况分类。
凡Cs>C O者称为正偏析;Cs<C O者称为负偏析。
这种分类不仅适用于微观偏析也适用于宏观偏析。
微观偏析对铸件的影响是明显的,由于成分的不均匀造成组织上的差别,导致冲击韧性和塑性的下降,增加铸件的热裂倾向性,有时还是铸件难于加工。
宏观偏析使铸件各部分的机械性能和物理性能产生很大差异,影响铸件的使用寿命和工作效果。
因此偏析是铸件的主要的缺陷之一。
认识偏析的形成规律,对防止偏析的产生,寻求消除偏析的工艺措施,改善铸件组织,提高铸件性能有着重要意义。
当然偏析也有有益的一面:利用偏析现象可以实现净化或提纯金属的目的。
1、微观偏析微观偏析按其形式分为胞状偏析、枝晶偏析和晶界偏析。
它们的表现形式不同,但形成机理是相似的,都是合金在结晶过程中溶质再分配的必然结果。
⑴枝晶偏析在枝晶偏析区,各组元的分布规律是,使合金熔点升高的组元富集在分枝中心和枝干上;使合金熔点降低的组元富集在分枝的外层或分枝间,甚至在分枝间出现不平衡第二相,其它部位的成分介于两者之间。
消除枝晶偏析是采用均匀化退火;均匀化时间取决于枝晶间距和扩散系数;枝晶间距越小、偏析元素扩散系数愈大,均匀化时间越短。
⑵晶界偏析在不少情况下,晶粒中心只有不甚明显的负偏析(或正偏析),而晶界区域却显示出明显的正偏析(或负偏析),这种偏析称为晶界偏析。
晶界偏析的预防和消除方法同枝晶偏析。
2、宏观偏析铸件产生宏观偏析的途径:⑴在铸件凝固早期,固相或液相的沉浮;⑵在固液两相区内液体沿枝晶间流动。
液态金属沿枝晶间流动对铸件产生宏观偏析起着重要作用。
液态金属沿枝晶间流动的重要原因主要是:熔体本身的流动驱使固液两相区内的液体流动;由于凝固收缩的抽吸作用促使液体流动;由于密度差而发生对流。