铸件形成理论5(第九章)
- 格式:ppt
- 大小:1.63 MB
- 文档页数:74
铸件形成理论告急知识点第一章液态金属得结构与性子1.金属得加热膨胀:原子间隔断将随温度得升髙而增长,即产生热膨胀:由于能量升沉,一些原子就大概越过势垒跑到原子之间得间隙中或金属外表,原子脱离点阵后,留下了自由点阵一空穴原子间距增大,空穴得产生为物体膨胀得缘故起因之一;2.金属得熔化:把金属加热;到熔点四周时,离位原子数大为增长;在外力得作用下,这些原子作定向运动,造成晶粒间得相对运动,称为品界粘滞运动:晶粒内部,也有相当数量得原子重复跳跃、离位,空穴数大为增长:靠近熔点时,晶界上得原子就大概脱离原晶粒外表,向相近晶粒跳跃,晶粒徐徐失去牢固形状:3. 理想金属得液态结构特点金属熔化后,以及在熔点以上不髙得温度领域内,液体状态得结构有以下特点:1、原子分列在较小隔断内仍具有肯定规律性,且其匀称原子间距增长不大:2、金属液体由许多原子团体所组成,在原子团体内保持固体得分列特性,而在原子团体之间得团结处就受到很大破坏(近程有序分列) :3、原子团体存在能量升沉与结构升沉:4、原子团体间距较大,比较疏松,犹如存在空穴:5、原子团体得匀称尺寸、游动速率都与温度有关,温度越髙,就原子团体得匀称尺寸越小,游动速率越快:归纳综合起去:靠近熔点得液态金属由许多游动得原子团体与空穴组成,原子团体中原子呈规就分列,结构与原固体相似,但存在能量升沉与结构升沉:4、实际金属得液态结构实际液态金属在微观上为由存在能星升沉、结构升沉与因素升沉得游动原子团体、空穴与许多固态、气态或液态得化合物组成得污浊液体:从化学键上看,除了基体金属与其合金元素组成得金属键之外,仍存在其他多种典范得化学键:(1)温度:温度不太髙时,T升髙,n值降落:温度很髙时,T升髙,n值升髙:(2)化学因素:外表活性元素使液体粘度低沉,非外表活性杂质得存在使粘度提髙:(3)非金属殽杂物:非金属殽杂物使粘度增长:6.粘度对铸坯质星得影响(1>对液态金属运动状态得影响:粘度对铸件外表得淸晰水平有影响,为降低液体得粘度应恰当进步过热度大概到场外表活性物质等:(2)对液态金属对流得影响:运动粘度越大,对流强度越小:铸坯得宏观偏析紧张受对流得影响:(3)对液态金属净化得影响:粘度越大,般杂物上浮速率越小,越容易滞留在铸坯中形成殽杂、气孔:7.影响外表张力得闲素1 )熔点:髙熔点得物质,其原子间结协力大,其外表张力也大:2)温度:大多数金属与合金,温度升髙,外表张力低沉:3)溶质:体系中到场削弱原子间结协力得组元,会使外表内能与外表张力低沉:8.外表张力对铸坯质量得影响1)界曲张力与润湿角:液态金属凝固时析出得固相与液相得界面能越小,形核率越卨;液态杂质与金属晶体之间得润湿性将影响杂质形态:2)外表张力引起得附加压力:附加压力进步金属液中气体析出得阻力,易产生气孔:影响金属液与铸型得相互作用:附加压力为正值时(不润湿),铸坯外表平滑,但充型本事较差,必须附加一个静压头:附加压力为负值时(润湿),金属液能很好地充满铸型型腔,但为容易与铸型粘结(粘砂),拦阻收缩,以致产生裂纹:9.看法能量升沉:金属晶体结构中每个原子得振动能量不为均等得,一些原子得能鼠髙出原子得匀称能量,有些原子得能量就远小于匀称能量,这种能量得不匀称性称为能量升沉”结构升沉:液态金属中得原子团体处于瞬息万变得状态,时而长大时而变小,时而产生时而消散,此起彼落,犹如在不绝顿地游动:这种结构得瞬息厘革称为结构升沉:近程有序分列:金属液体就由许多原子团体所组成,在原子团体内保持牢固得分列特性,而在原子团体之间得团结处就受到很大破坏:浓度升沉:差异原子间结协力存在差异,在金属液原子团簇之间存在着因素差异:这种因素得不匀称性称为浓度升沉:粘滞性:在流体力学中有两个看法,一个为动力粘度,另一个为运动粘度:外表张力:液态金属外表层得质点受到一个指向液体内部得力,物体倾向于减小其外表积,这相当于在液态金属外表有一个平行于外表且各向巨细相当得张力,这个张力就为外表张力:10.充型本事与运动性得接洽与区別:充型本事:液态金属充满铸型型腔,得到形状完备、外表淸晰得铸件得本事:即液态金属充填铸型得本事:运动性:液态金属本身运动得本事:运动性与金属得因素、温度、杂质含量及其物理性子有关:充型本事与运动性得干系:充型本事为外因(铸型性子、浇注条件、铸件结构)与内因(运动性)得共同效果:外因肯定时,运动性就为充型本事:充型本事弱,就大概产生浇缺乏、冷隔、砂眼、铁豆、抬箱,以及卷入性气孔、夹砂等缺陷:11.液态金属得克制运动机理纯金属、共晶合金、窄结品温度领域合金:型壁处凝固结壳,柱状品相打仗,通道中心归并,运动克制:合金得结晶温度领域越宽,枝晶就越旺盛,液流前端出现较少得固相量,通道壅闭,亦即在相对较短得时间内,液态金属便克制运动:纯金属、共晶合金或窄结品温度领域合金有良好得运动性,低沉了凝固成形中冷隔、热裂、缩松等缺陷得产生:反之,宽结晶温度领域合金由于运动性差,通常会有较多得缺陷产生:12.影响液态金属充型本事因素与进步步调:影响充型本事得因素为通过两个途径产生作用得:影响金属与铸型之间热交换条件,而改变金属液得运动时间:影响金属液在铸型中得水力学条件,而改变金属液得流速:〔一)金属性子方而得因素这类因素为内因,决定了金属本身得运动本事一一运动性:铸型阻力影响金属液得充填速率:铸型与金属得热交换条件影响金属液保持运动得时间:1、合金因素合金得运动性与化学因素之间存在着肯定得规律性:在运动性曲线上,对应着纯金属、共晶因素与金属间化合物得地方出现最大值,而有结晶温度领域得地方运动性降落,且在最大结晶温度领域四周出现最小值:合金因素对运动性得影响,紧张为因素差异时,合金得结晶特点差异造成得:低沉合金熔点得元素容易进步金属过热度,从而进步合金运动时间,进步运动性:合金净化后运动性进步,合金因素中凡能形成髙熔点般杂物得元素均会低沉合金得运动性:2、结晶潜热结晶潜热越髙,凝固举行得越痴钝,运动性越好:3、金属得比热容、密度与导热系数金属得比热容、密度较大得合金,运动性好:导热系数小得合金,热量散失慢,保持运动时间长;金属中到场合金元素后,一样寻常会低沉导热系数:4、液态金属得粘度合金液得粘度,在充型进程前期(属紊流)对运动性得影响较小,而在充型进程后期凝固中(属层流)对运动性影响较大:5、外表张力外表张力影响金属液与铸型得相互作用:外表张力对薄壁铸件、铸件得细薄局部与棱角得成形有影响,型腔越细薄、棱角得曲率半径越小,外表张力得影响越大:为降服由外表张力引起得附加压力,必须附加一个静压头:综上所述,为了进步液态金属得充型本事,在金属方面可采取以下步调:1、准确选择合金得因素选用结晶温度领域小得舍牵: ,也有利于进步充型本事:2、公正得熔炼工艺选择洁净得原质料:镌汰与有害气体得打仗:充实脱氧粘炼去气,镌汰气体、殽杂:髙温出炉,低温浇注:【二)铸型性子方面1、铸型得蓄热系数:铸型得蓄热系数越大,充型本事降落:2、铸型温度:预热铸型3、铸型中得气体:减小铸型中气体反压力【三)浇注条件方面1、浇注温度浇注温度越髙,充型本事强:但髙出某一温度界限,氧化吸气严肃,充型本事进步不显着:2、充型压头液态金属在运动方向上所受得压力称为充型压力:充型压力越大,充型能力越强:3、浇注体系得结构浇注体系得结构越巨大,就运动阻力越大,充型本事越差:〔四)铸件结构方面衡量铸件结构特点得因素为铸件得折算厚度与巨大水平:1、折算厚度:折算厚度也叫当星厚度或模数,为铸件体积与铸件外表积之比:折算厚度越大,热星散失越慢,充型本事就越好:铸件壁厚类似时,垂直壁比水平壁更容易充填:大平而铸件不易成形:对薄壁铸件应准确选择浇注位罝:2、巨大水平:铸件结构越巨大,厚薄局部过渡曲多.就型腔结构巨大,运动阻力就越大.铸型得充填就越阐难:1、逐层凝固(纯金属或共晶因素合金得凝固要领)恒温下结晶得金属,在凝固进程中其铸件断而上得凝固地域宽度即为零,断而上得固体与液体由一条界限淸晰地脱离,随着温度得降落,固体层不绝加厚,徐徐到达铸件中心,此为"逐层凝固要领” :逐层凝固要领特点:无凝固区或凝固区很窄 a )恒温下结晶得纯金属或共晶因素合金b)结晶温度领域很窄或断面温度梯度很大2、体积凝固(铸件断|M温度场较平展或结晶领域较宽得合金)假设合金得结晶温度领域很宽,或闲铸件断面温度场较平展,铸件凝固得某一段时间内,其凝固地域很宽,以致贯穿整个铸件断而,而外表温度髙于固相温度,这种情况为"体积凝固要领",或称为”糊状凝固要领":体积凝固要领(糊状凝固要领)特点:凝固动态曲线上得两相界限得纵向间距很小或为无条件重合:a、铸件断而温度平展b、结晶温度领域很宽一凝固动态曲线上得两相界限纵向间距很大3、中心凝固(结晶领域较窄或铸件断而温度梯度较大得合金)假设合金得结晶领域较窄,或因铸件断而得温度梯度较大,铸件断面上得凝固地域介于前两者之间时,属于"中心凝固要领" :中心凝固要领特点:a、结晶温度领域较窄b、铸件断面得温度梯度较大特点:凝固初期似逐层凝固——凝固动态曲线上得两相界限纵向距较小凝固后期似糊状凝固第二章凝固温度场〔重点)1.研究铸件温度场得要领:数学分析法、数值模拟法与实测法等:2.凝固:合金从液态转变成固态得进程,称为一次结晶或凝固:3.研究温度场自得义:埤轳铸件温度场随时间得厘革,可以大概预计铸件凝固中其断面上各个时间得凝固地域巨细及厘學:,凝固前沿向中心得推进速率.缩孔与缩松得位罝,凝固时间等告急标题,为准确方案浇注体系、设罝冒口、冷铁,以及采取其他工艺步调提供可靠依据,敷衍消除铸造缺陷,得到健全铸件,改良铸件结构与性能有告急意义:4.凝固要领及其影响因素一样寻常将金属得凝固要领分为三种典范:逐层凝固要领、体积凝固要领(或称糊状凝固要领)与中心凝固要领:在凝固进程中铸件断曲_上得凝固地域宽度为零,固体与液体由一条界限(凝固前沿)淸晰地脱离:随着温度得降落,固体层不绝加厚,徐徐到达铸件中心:这种情况为逐层凝固要领:铸件凝固得某一段时间内,其凝固地域险些贯穿整个铸件断面时,就在凝岡地域里既有己结晶得晶体,也有未凝固得液体,这种情况为体积凝固要领或称糊状凝固要领:铸件断而上得凝固地域宽度介于前两者之间时,称中心凝固要领:领域与冷却强度(温度梯度):结晶温度领域越宽,温度梯度越小,越倾向于体积凝固要领:5.金属凝固要领与铸件质量得干系逐层要领凝固,凝固前沿直接与液态金属打仗:当液态凝固成为固体而产生体积紧缩时,可以不绝地得到液体得增补,以为产陌生散性缩松得倾向性很小,而为在铸件末了凝固得部位留下会集缩孔:由于会集缩孔容易消除,一样寻常以为这类合金得补缩性良好:在板状或棒状铸件会出现中心线缩孔:这类铸件在凝固进程中,当紧缩受阻而产生晶间裂纹时,也容易得到金属液得添补,使裂纹愈合:当粗大得等轴枝晶相互毗连以后(固相约为70%),将使凝固得液态金属支解为一个个互不类似得溶池,末了在铸件中形身疏散性得缩孔,即缩松:敷衍这类铸件采取平常冒口消除其缩松为很难过,而通常须要采取别得资助步调,以增加铸件得致密性:由于粗大得等轴晶比较¥得连成骨架,在铸件中产生热裂得倾向性很大:这为由于,等轴晶越粗大,髙温强度就越低:别恰当晶间出现裂纹时,也得不到液态金属得充填使之愈合:假设这类合金在充填进程中产生凝固时,其充型性能也很差:6.铸件得凝固时间得盘算要领:分析法:分析要领为直策应用现有得数学理论与定律去推导与演绎数学方程(或模子),得到用函数情势表达得解,也就为分析解:数值要领:数值要领又叫数值阐发法,为用盘算机步调去求解数学模子得近似解,又称为数值模拟或盘算机模拟:紧张有差分法、有限元法:履历盘算法:平方根定律盘算法与折算厚度法(或模数法):第三章晶体形核与生长〔重点)1.液态金属结晶(液•固相变)驱动力:两相自由能得差值AG为结晶得驱动力:T I ATAG V =L(1-~)=—,敷衍给定金属,L与To均为定值,ZkGv仅与AT有关: 因此,液态金属结晶得驱动力为由过冷度提供得:过冷度越大,结品得驱动力也就越大,过冷度为零时,驱动力就不复存在:以为液态金属在没有过冷度得情况下不会结晶:2.液态金属结晶进程:起首,体系通过升沉作用在某些微观小地域内降服能量停滞而形成稳固得新相品核:新相一旦形成,体系内将出现自由能较髙得新旧两相之间得过渡区:力使体系ft由能尽大概地低沉,过渡区必须减薄到最小原子尺度,如许就形成了新旧两相得界而:然后,依靠界Iftl徐徐向液相内推移而使晶核长大:直到全部得液态金属都全部转变成金属晶体,整个结晶进程也就在出现最少量得中心过渡结构中完成:由此可见,为了降服能量停滞以防范系统自由能太过増大,液态金属得结晶进程为通过形核与生长得要领举行得:3.形核:亚稳固得液态金属通过升沉作用在某些微观小地域内形成稳固存在得晶态小质点得进程称为形核:形核条件:起首,体系必须处于亚稳态以提供相变驱动力:其次,须要通过起伏作用降服能障才华形成稳固存在得晶核并确保其进一步生长:由于新相与界而相伴而生,因此界面向由能这一热力学能障就成为形核进程中得紧张阻力:根据组成能障得界面情况得差异,大概出现两种差异得形核要领:均质生核与非均质生核:均质生核:在没有任何外去界而得匀称熔体中得生核进程:非均质生核:在不匀称熔体中依靠外去杂质或型壁界而提供得衬底举行生核得进程:4.均质生核机制必须具备以下条件:1)过冷液体中存在相升沉,以提供固相晶核得晶胚:2)生核导致体积自由能低沉,界側自由能进步:为此,晶胚须要体积达到肯定尺寸才华稳固存在:3)过冷液体中存在能量升沉与温度升沉,以提供临界生核功:4)为维持生核功,须要肯定得过冷度:5.临界晶核半径而言,非均质形核临界半径r/与均质形核临界半径r ‘得表达式完全类似:非均质生核得临界形核功AGh与均质生核得临界形核功△供之间也仪相差一个因子f( 0):0°< 0< 180° X) < f( 0) < 1,故V s <V 球,△‘< AG 均*.因而衬底都具有促进形核得作用,非均质生核比均质生核更容易举行;6.生核剂:一种好得生核剂起首应能包管结晶相在衬底物质上形成尽大概小得润湿角0,其次生核剂仍应该在液态金属中尽大概地保持稳固,并且具有最大得外表积与准确得外表特性:7.晶体得生长紧张受以下几个相相互关得进程所制约:①界面生长动力学进程:② 传热进程:③传质进程:8.固一液界而得微观结构从微观尺度思量,固一液界面可分别为粗糙界而与平整界面,或非小平面界面及小平面界面:粗糙界而(非小平而界面):界面固相一侧得几个原子层点阵位罝只有50%左右为固相原子所占据:这几个原子层得粗糙区实际上就为液固之间得过渡区:平整界而(小平而界衡):界而固相一侧得点阵险些全部被固相原子占据,只留下少数空位:或在充满固相原子得界而上存在少数不稳固得、孤独得固相原子,从而从团体上看为平整平滑得:敷衍差异得a值,对应差异得界面微观结构,称为Jackson判据:当a沒时,界而得平衡结构应有50%左右得点阵位罝为固相原子所占据. 因此粗糙界而为稳固得:当a >2时,界而得平衡结构或为只有少数点阵位罝被占据,或为绝大局部位罝被占据后而仪留下少量空位:因此,这时平整界而为稳固得:a越大,界曲_ 越平整:绝大多数金属得熔化熵均小于2,在其结晶进程中,固一液界曲为粗糙界而:多数非金属与化合物得a值大于2.这类物质结晶时,其固一液界面为由基本完备得晶断所组第8页,共18页成得平整界而:铋、铟、锗、硅等亚金属得情况就介于两者之间,这类物质结晶时,其固一液界而通常具有殽杂结构:9.界面得生长机理与生长速率1、连续生长机制一粗糙界面得生长:较髙得生长速率:2、二维生核生长机制一完备平整界而得生长:生长速率也比连续生长低:3、从缺陷处生长机制一非完备界面得生长:(1)螺旋位错生长:(2)旋转孪晶生长:反射孪晶生长:生长速率比二维形核生长快,仍比连续生长慢:第四章单相合金凝固1.溶质再分配与平衡分配系数单相合金得结晶进程一样寻常为在一个固液两相共存得温度区间内完成得 ;在区间内得任一点,共存两相都具有差异得因素:因此结品进程肯定要导致界而• • • • * • ■■■■ • ••會■ • • • ■ • ■■■—• • ■ ■■ 一•M •_•_■ • •屬故晶体生长与传质进程肯定相伴而生:如许,从生核开始直到凝固竣事,在整个结晶进程中,固、液两相内部将不绝举行着溶质元素重新漫衍得进程:称此为合金结晶进程中溶质再分配:衡固相中溶质浓度与平衡液相溶质浓度得比值称为平衡分配系数:2.平衡结品中得溶质再分配规律:Cfjk。
铸件形成理论基础习题答案铸件形成理论基础习题答案铸造是一种重要的金属加工方法,广泛应用于各个行业。
在学习铸造过程中,理解铸件形成的基本原理是非常重要的。
下面,我们将针对一些常见的铸件形成理论基础习题,提供详细的解答。
1. 什么是铸件形成的基本原理?铸件形成的基本原理是将熔化的金属或合金倒入铸型中,通过冷却凝固形成所需的零件。
这个过程主要包括四个步骤:铸型的制备、熔炼金属的准备、铸型填充和凝固收缩。
2. 铸型的制备有哪些常见的方法?常见的铸型制备方法包括砂型铸造、金属型铸造、石膏型铸造和陶瓷型铸造等。
其中,砂型铸造是最常用的方法,通过将铸型材料与模具进行填充、压实和硬化,形成具有所需形状和尺寸的铸型。
3. 熔炼金属的准备过程中需要注意哪些问题?熔炼金属的准备过程中需要注意以下几个问题:首先,要选择适合的熔炼设备和燃料,确保金属能够充分熔化;其次,要控制熔炼温度,以保证金属的质量和流动性;最后,要进行必要的炼化处理,如除气、除杂等,以提高金属的纯度和性能。
4. 铸型填充的基本原理是什么?铸型填充是指将熔化的金属或合金倒入铸型中的过程。
在填充过程中,金属液通过重力、压力或真空力等作用,充满整个铸型腔体,形成所需的零件形状。
填充的关键是要保证金属液的流动性和填充性能。
5. 凝固收缩对铸件形成有何影响?凝固收缩是指铸件在冷却凝固过程中由于体积变化而产生的收缩现象。
凝固收缩对铸件形成有重要影响,主要表现在以下几个方面:首先,凝固收缩会导致铸件尺寸缩小,因此在设计铸件时需要考虑收缩量;其次,凝固收缩还会引起铸件内部的应力和缺陷,如热裂纹、气孔等,因此需要采取相应的措施来避免这些问题的发生。
6. 如何控制铸件的凝固收缩?为了控制铸件的凝固收缩,可以采取以下几种措施:首先,选择合适的浇注系统和冷却方式,以控制凝固的速度和方向;其次,通过设计合理的铸件结构和尺寸,减少凝固收缩的影响;最后,可以采用凝固缩放补偿技术,通过在铸型中设置特殊的缩放部位,来补偿凝固收缩带来的尺寸变化。
铸造成形
1.1铸件形成理论基础
1、金属的充型影响充型能力的因素和原因(表2-2)
2、金属的凝固三种凝固方式
3、影响凝固方式的因素:结晶温度范围、温度梯度
4、影响温度梯度的因素:合金性质、铸型蓄热能力、浇注温度
5、合金的收缩:
三种收缩方式,液态收缩、凝固收缩、固态收缩
影响收缩因素,化学成分、浇注温度,铸件结构和铸型条件缩孔及缩松产生缩孔的原因:液态和凝固收缩大、气体多6、应力与变形:热应力和收缩应力、变形趋势
1.2 砂型铸造工艺分析
1、浇注位置与分型面的确定
浇注位置选定原则:5点;分型面选定原则8点P88~89
2、工艺参数不铸孔尺寸、加工余量、铸造收缩率、起模斜度
3、铸造工艺图制定
1.3 砂型铸造方法
1、气动微震压实造型
2、高压造型多触头高压造型,垂直分型无箱造型
3、消失模造型
1.4特种铸造
1、离心铸造铸造回转体铸件,可镶嵌金属
2、压力铸造铸造薄壁大批生产铸件,可镶嵌金属
3、低压铸造铸造致密性好的铸件发动机缸体、活塞等
4、熔模铸造精密铸造刀具、叶片、高熔点金属的零件
5、陶瓷型铸造精密铸造模具为主
6、壳型铸造常用于制芯
1.5铸造方法选择根据材料、形状、批量选择铸造方法。
铸件形成理论1.何谓热力学能障和动力学能障?如何克服?热力学能障是由被迫处于高自由能过渡状态下的界面原子所产生,它能直接影响到系统自由能的大小,界面自由能即属于这种情况,动力学能障是由金属原子穿越界面过程所引起的,它与驱动力的大小无关,而取决于界面内的结构和性质,激活自由能即属于这种情况。
液态金属在成分、温度、能量上是不均匀的,即存在成分、相结构、和能量三个起伏,也正是这三个起伏才能克服凝固过程中的热力学能障和动力学能障,使凝固过程不断的进行下去。
2、从原子尺度看,决定液固界面微观结构的条件是什么?各种界面结构与其生长机理和生长速度之间有何联系?3、纯金属的宏观长大方式有几种?什么因素决定纯金属的宏观长大方式?4、纯金属凝固时固液界面的结构分哪两类?为何又称为小平面界面与非小平面界面?5、傅里叶第二导热定律和菲克第二扩散定律的数理方程,并指出方程中个物理量的含义6、设状态图中液相线和固相线均为直线,证明溶质再分配系数为常数7、用一共晶型合金浇注水平细长圆棒试样,画出再平衡凝固时沿试棒长度方向溶质的在分配曲线图,表明各特征值,并建立溶质再分配过程的溶质分配规律8、Al-Cu相图的主要参数是C E=33%,CSM=5.65%Cu,TM=660℃,TE=548℃,用Al-1%Cu合金浇注一水平细长圆棒试样,使其从左到右单向凝固,并保持固液界面为平界面,当固相无Cu 扩散,液相中Cu充分混合时,求:(1)凝固10%时,固液界面的和。
(2)共晶体所占的比列(3)画出沿棒长度方向Cu的分布曲线图,标明各特征值8、将上题改为当固相无Cu的扩散,液相中Cu有扩散而达到稳定态凝固时,求:(1)固液界面的和(2)固液界面的温度(3)固液界面保持平界面的条件(cm2/s)(4)画出沿试棒长度方向Cu的分布曲线图,并标明各特征值9、什么是溶质再分配?溶质再分配对液态金属成型有何重要意义?10、何为成分过冷?形成成分过冷的临界条件是什么?11、为什么过冷度是液态金属凝固的驱动力?为什么动力学过冷度是金属晶体生长的驱动力?何为热过冷和成分过冷?如何来理解成分过冷的本质?12、影响成分过冷范围的因素有哪些?它对材质或成型产品(铸件)的质量有何影响?13、成分过冷的大小受哪些因素的影响?它又是如何影响着晶体的生长方式和结晶状态的?所有的生长方式都仅仅由成分过冷因素决定么?14、根据成分过冷大小,单项合金凝固时界面的基本生长方式分那四种?何为内生生长,何为外生生长?15、试说明共晶合金的分类16、什么是共生共晶和离异共晶17、在普通工业条件下,为什么非共晶成分的合金往往能获得100%的共晶组织?用相图说明之。
镇江丹徒职教中心金属液态形成原理复习题第1章液态金属的结构和性质一、判断题(正确的在括号中画√,错误的画×)1、只要金属流动性好,铸件就不会产生浇不足缺陷。
(×)2、金属一熔化,原子间的结合就全部破坏。
(×)3、温度起伏是指铸件各处温度的差异。
(×)4、钠可以很好地吸附于硅的表面,所以说“钠是表面活性元素”。
(×)二、选择题1、影响液态金属粘度的因素主要有温度、化学成分和杂质。
2、在弯曲液面上作用有附加压力,当液面为球形时,该压力可表示为p=2σ/r。
3、温度接近熔点的金属液,其结构类似于固态的结构。
4、液态金属的平均间距比固态稍大 ,其配位数比固态要小。
5、纯金属的表面张力一般随温度的升高而减小,而灰铸铁的表面张力则相反。
6、使用黑烟涂料是为了调整铸型的热阻,从而改变液态金属流动时间以提高充填能力。
三、问答题1、液态金属的表面张力有哪些影响因素?试总结它们的规律。
2、总结温度、原子间距(或体积)、合金元素或微量元素对液体粘度 高低的影响。
第2章液态金属的流动性与充型能力一、判断题1、金属液本身的流动能力称为充型能力。
(×)2、金属液的充型能力仅与金属液的化学成分、温度、杂质含量及物理性质有关。
(×)二、问答题1、影响液态金属充型能力的因素有哪些?如何提高液态金属的充型能力?2、某飞机制造厂的一牌号Al-Mg合金(成分确定)机翼因铸造常出现“浇不足”缺陷而报废,如果你是该厂工程师,请问可采取哪些工艺措施来提高成品率?3、铸型蓄热系数(b)较小时,在其它条件不便的情况下,定性指出对下列项目的影响:2①充型能力②铸件形成机械粘砂③使铸件的断面温度梯度④使铸件凝固方式⑤铸件形成缩松⑥铸件的热应力第3章铸件的凝固一、判断题1、安放冒口一般应遵循顺序凝固原则。
(√)2、铸件的凝固方式主要取决于合金本身特性,与其它条件则影响不大。
(×)(温度梯度)3、金属凝固温度低,铸型蓄热系数也小时,铸件内温度梯度也小。
1.液体的“近程有序”与“长程无序”:液体的颗粒分布相对于周期有序的晶态固体是不规则的,液态结构在宏观上不具备平移及对称性,表现为长程无序特征;而相对于完全无序的气体,液体中存在着许多不停游荡着的局域有序的原子集团,其结构又表现为近程有序。
2.实际液态金属的结构是:实际金属的液态结构是非常复杂的,由大量时聚时散、此起彼伏游动的原子团簇及空穴所组成,同时可能包含各种固态、液态或气态杂质或化合物而且还表现出能量、结构和浓度三种起伏特征。
3.理想纯金属液态结构是:由原子集团、游离原子、空穴组成的。
原子集团内原子近程有序排列,原子集团间的空穴或裂纹内分布着无规则排列的游离原子。
原子集团、空穴或裂纹的大小、形态和分布及热运动的状态都处于每时每刻都在变化的状态,存在能量起伏和结构起伏。
4.窄结晶温度范围合金停止流动机理:1区:过热量未散失完;2区:冷前端在型壁上凝固,已凝固的壳重新熔化;3区:未被熔化保留下固相,该区金属液耗尽过热热量;4区:固、液相具有相同的温度,在该区发生堵塞。
5.宽结晶温度范围合金停止流动机理:a.过热量未散失尽,以纯液态流动;b.温度下降到液相线以下,析出固相,顺流前进,黏度增加;c.晶粒数量达到临界值,固相形成连续网络,压力无法克服该网络阻力而发生堵塞,停止流动。
6.三个起伏结构起伏:液态金属中原子团簇尺寸及其内部原子数量都随着时间和空间发生着改变能量起伏:液态金属中不同原子能量有高有低,同一原子的能量也随着时间空间的变化时高时低浓度(成分)起伏:在液态金属中,游动原子团簇之间存在着成分差异,这种局域成分的不均匀性随原子热运动在随时变化7.充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,称为液态金属充填铸型的能力,简称液态金属的充型能力8.凝固动态曲线的绘制:以温度﹣时间曲线为依据,先将合金的液相线和固相线温度给定到温度场曲线上,以铸件表面至中心的距离x 与半铸件厚度R 之比为纵坐标(x / R =1表示铸件中心位置),以时间t 为横坐标,将温度场曲线与液相和固相温度线的交点分别标注在坐标系中,然后分别将温度场曲线与液相和固相温度线的交点各自连接成曲线,即为凝固动态曲线绘制方法:以时间为横坐标,相对位置x/R为纵坐标; 把温度场曲线与液相线和固相线的交点分别标注在图上;分别把液相线和固相线连成曲线。
铸件形成理论复习提纲铸件形成理论复习提纲一、名词解释(考5个)1.能量起伏:一些原子的的能量超过原子的平均能量,有些原子的能量远小于平均能量,这种能量的不均匀性2.浓度起伏:表示各各个原子集团之间成分的不均匀性。
3.熔化潜热:将金属加热到至熔点时,金属体积突然膨胀,等于固态金属从热力学温度零度加热到熔点的总膨胀量,金属的其他性质如电阻,粘性等发生突变,吸收的热能。
4.充型能力:液态金属充满铸型型腔,获得形状完整,轮廓清晰的铸件的能力。
5.成分过冷:由溶质再分配导致的界面前方熔体成分及其凝固温度发生变化而引起的过冷。
6.热过冷:由熔体实际温度分布所决定的过冷状态。
7.微观偏析(枝晶偏析)8.正常偏西9.负偏析:降低该区的溶质浓度,使该区C5降低,产生的偏析。
10.重力偏析:由于沿垂直方向逐层凝固而产生的正常偏析和固液相之间或互不相容的液相之间有的密度不同,在凝固过程中发生沉浮现象造成的。
11.热裂:铸件在凝固期间或刚凝固完毕,在高温下收缩受到阻碍产生的现象。
12.铸造应力:铸件在凝固或冷却过程中,发生线收缩,有些合金还发生固态相变,引起体积的膨胀或收缩时产生的应力。
13.冷裂:铸件应力超出合金强度极限而产生的现象。
14.顺序凝固:铸件结构各部分,按照远离冒口的部分最先凝固,然后是靠近冒口部位,最后是冒口本身凝固的次序进行的凝固方式15.同时凝固:铸件各部分之间没有温差或温差尽量小,使各部分同时进行凝固的方式。
16.析出性气孔:金属液在凝固过程中,因气体溶解度下降而析出气体,形成气泡未能排除而产生的气孔。
17.反应性气孔:金属液与铸型之间,金属与熔渣之间或金属液内部某些元素、化合物之间发生化学反应所产生的气孔。
二、填空题(不限于这些)1.减小或消除残余应力的方法有人工、自然、共振时放。
2.润湿角是衡量界面张力的标志,润湿角≥90o,表明液体不能润湿体。
3.晶体结晶时,有时会以枝晶生长方式进行。
此时固液界面前液体中的温度梯度小于0 。