第3章积分的数值方法
- 格式:ppt
- 大小:391.50 KB
- 文档页数:49
数值分析复习资料一、重点公式第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x llx x x lαα+-≤---≤-- 定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠ (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。
6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。
第三章 物理学中定积分的数值计算方法一、填空题1、库仑常数k 等于 9×109mV/C ,真空中的介电常数ε0等于8.85×10-12F/m 。
2、对于电量为Q 的点电荷,在距离r 处产生的电场强度为21ˆˆ()4QrE r rrrπε==。
3、已知定积分()ba f x dx ⎰,被积分函数为()f x ,积分区间为[],ab 。
将该区间N 等分,步长()/x b a N ∆=-,用曲线下的虚矩形面积和近似替代积分值,该方法称为矩形法。
积分近似计算公式为1()()N bi ai I f x dx f x x -==≈∆∑⎰。
4、毕奥—萨伐尔定律所描述的公式为034Idl rdB r μπ⨯=。
5、玻尔兹曼常数是 k=1.38×1023 J/K 。
6、麦克斯韦速率分布律公式23/22/2()4()2v kTdN f v dv v e dv N kTμμππ-==。
7、在计算物理中求解定积分的方法有 辛普森法 、 龙贝格法 、 高斯求积法等。
二、简答1、写出库仑常数、真空中的介电常数和玻尔兹曼常数的值。
答:库仑常数k= 9×109mV/C ,真空中的介电常数ε0= 8.85×10-12F/m ,玻尔兹曼常数是 k=1.38×1023 J/K 。
2、什么是矩形法?答:已知定积分()ba f x dx ⎰,被积分函数为()f x ,积分区间为[],ab 。
将该区间N 等分,步长()/x b a N ∆=-,用曲线下的虚矩形面积和近似替代积分值,该方法称为矩形法。
积分近似计算公式为1()()N bi ai I f x dx f x x -==≈∆∑⎰。
3、毕奥—萨伐尔定律和麦克斯韦速率分布律公式。
答:毕奥—萨伐尔定律所描述的公式为034Idl rdB rμπ⨯=。
麦克斯韦速率分布律公式23/22/2()4()2v kTdN f v dv v e dv N kTμμππ-==。
毕业论文文献综述信息与计算科学定积分的数值计算方法一、 前言部分在科学与工程计算中,经常要计算定积分()()().baI f f x dx a b =-∞≤≤≤∞⎰ (1.1)这个积分的计算似乎很简单,只要求出f 的原函数F 就可以得出积分(1.1)的值,即()()().I f F b F a =- (1.2)如果原函数F 非常简单又便于使用,那么式(1.2)就提供了计算起来最快的积分法.但是,积分过程往往将导出新的超越函数,例如,简单积分1dx x ⎰可引出对数函数,它已不是代数函数了;而积分2x edx -⎰,将引出一个无法用有限个代数运算、对数运算或指数运算组合表示的函数.有些积分虽然容易求解,并且原函数仍然是一个初等函数,但可能过于复杂,以致于人们采用(1.2)来计算之前还得三思而行[1].例如411dx C x =++⎰, (1.3) 采用式(1.3)这种“精确”表达式时,所需运算次数是个根本问题.由式(1.3)看出,需计算对数和反正切,因此只能计算到一定的近似程度.因此可以看出,这类表面上是“精确”的方法,实际上也是近似的.因此,我们常常需要探讨一些近似计算定积分的数值方法[2].通过人们的研究和发现,得出了很多数值计算的方法,比如利用牛顿-科茨求积公式,复合求积公式,龙贝格积分法,高斯求积公式,切比雪夫求积法等来解决定积分的数值计算问题.构造数值积分公式最通常的方法是用积分区间上的n 次插值多项式代替被积函数,由此导出的求积公式称为插值型求积公式.特别在节点分布等距的情形称为牛顿-柯茨公式,例如梯形公式与抛物线公式就是最基本的近似公式.但它们的精度较差.龙贝格算法是在区间逐次分半过程中,对梯形公式的近似值进行加权平均获得准确程度较高的积分近似值的一种方法,它具有公式简练、计算结果准确、使用方便、稳定性好等优点,因此在等距情形宜采用龙贝格求积公式.当用不等距节点进行计算时,常用高斯型求积公式计算,它在节点数目相同情况下,准确程度较高,稳定性好,而且还可以计算无穷积分[3].二、 主题部分2.1 牛顿-科茨求积公式[4]2.1.1 公式的一般形式[4]将积分(1.1)中的积分区间[],a b 分成n 等分,其节点k x 为1,()k x a kh h b a n=+=- (0,1,,)k n =L . 对于给定的函数f ,在节点k x (0,1,,)k n =L 上的值()k f x 为已知.那么f 在n+1个节点01,,,n x x x L 上的n 次代数插值多项式为00()().n nj n kk j k j j k x x p x f x x x ==≠⎡⎤-⎢⎥=⎢⎥-⎢⎥⎣⎦∑∏ 如果记x a th =+,则上式可以写为00()().n nn kk j j k t j p x f x k j ==≠⎡⎤-⎢⎥=⎢⎥-⎢⎥⎣⎦∑∏ (2.1) 在积分(1.1)中的被积函数f 用其n+1个节点的代数插值多项式()n p x 来代替,可 得 ()()()()bbn n aaI f f x dx I f p x dx =≈=⎰⎰.多项式的积分是容易求出的,因此把上式写为()()()nn n k k I f I f A f x =≈=∑, (2.2)其中 ()00(),n n n k k j j kb a t j A dt b ac n k j=≠--==--∏⎰ (2.3) ()00(1)().!()!n kn n n kj j kct j dt k n k n -=≠-=--∏⎰ (2.4) 公式(2.2)称为牛顿-科茨求积公式或称为等距节点求积公式,k A 称为求积公式系数,()n k c 称为科茨求积系数.牛顿-科茨求积公式的误差估计()n E f ()()n I f I f =-,由下面定理给出 定理2.1 (1) 如果n 为偶数,(2)n f +在[],a b 上连续,则有[]3(2)()(),,n n n n E f c hf a b ηη++=∈, (2.5)其中 201(1)(2)()(2)!n n c t t t t n dt n =---+⎰L . (2) 如果n 为奇数,(1)n f+在[],a b 上连续,则有[]2(1)()(),,n n n n E f c h f a b ηη++=∈, (2.6)其中 01(1)(2)()(1)!n n c t t t t n dt n =---+⎰L . 定义2.1 如果求积公式()()nbk k ak f x dx A f x =≈∑⎰对所有次数不高于n 的代数多项式等式精确成立,但存在n+1次的代数多项式使等式不成立,则称上式求积公式具有n 次代数精度.由定理2.1可知,牛顿-科茨求积公式(2.2)的代数精度至少是n 次,而当n 是偶数时,(2.2)的代数精度可达n+1次.2.1.2 梯形公式[5]在牛顿-科茨公式(2.2)中,取n=1时(1)(1)011,2c c ==所以有 []1()()()().2b aI f I f f a f b -≈=+ (2.7) 公式(2.7)称为梯形公式,如果用连接(),()a f a 和(),()b f b 的直线来逼近f ,并对这线性函数进行积分可得到1()I f .再用1()I f 来逼近()I f . 定理 2.2 若[]2,f Ca b ∈,则梯形公式(2.7)的误差为[]3111()()()()''(),,.12E f I f I f b a f a b ηη=-=--∈ 2.1.3 辛普森公式[6]在牛顿-科茨公式(2.2)中,取n=2,则有220011(1)(2),46c t t dt =--=⎰221014(2),26c t t dt =--=⎰ 222011(1),46c t t dt =-=⎰有此得到2()()()4()().32h a b I f I f f a f f b +⎡⎤≈=++⎢⎥⎣⎦(2.8) 其中1()2h b a =-.式(2.8)称为辛普森公式. 定理2.3 若[]4,f Ca b ∈,则辛普森公式(2.8)的误差为[]5(4)221()()()(),,.90E f I f I f h f a b ηη=-=-∈2.2 复化求积公式[7]上面已经给出了计算积分()()baI f f x dx =⎰的3个基本的求积公式:梯形公式,辛普森公式,牛顿-科茨公式,并给出了它们误差的表达式.由这些表达式可知其截断误差依赖于求积区间的长度.若积分区间的长度是小量的话,则这些求积公式的截断误差是该长度的高阶小量.但若积分区间的长度比较大,直接使用这些公式,则精度难以保证.为了提高计算积分的精度,可把积分区间分为若干个小区间,()I f 等于这些小区间上的积分和,然后对每个小区间上的积分应用上述求积公式,并把每个小区间上的结果累加,所得到的求积公式称为复化求积公式.将积分区间[],a b 作n 等分,并记,,0,1,,k b ah x a kh k n n-==+=L ,于是 11()()k kn x x k I f f x dx +-==∑⎰.2.2.1 复化梯形求积公式[8]如果需要求出一个已知函数()f x 在一个很大区间[],a b 上的积分,那么我们可以把区间分成n 个长度为x h ∆=的小区间,对每一个小区间用梯形法则,然后再把这些小区间上的积分值相加.于是就得到了计算定积分的复化梯形公式:1101210()()(222)22n bi i n n ai h hf x dx f f f f f f f -+-=≈+=+++++∑⎰L (2.9)整体积分误差等于n 个小区间上的积分误差之和:整体误差= []312''()''()''()12n h f f f ξξξ-+++L ,其中i ξ是第i 个小区间上的某一点.如果''()f x 在区间[],a b 上连续,那么由连续函数的性质可知,在区间[],a b 上存在点ξ使得''()i f ξ的平均值等于()f ξ.于是由于nh b a =-,有整体误差= 322''()''()()1212nh b a f h f O h ξξ--=-=, 局部误差是3()O h ,整体误差是2()O h .2.2.2 复化辛普森求积公式[9]对于积分()baf x dx ⎰,将[],a b 等分,每个小区间长度b ah n-=,节点记为 (0,1,2,,)k x a kh k n =+=L ,第k 个小区间记为[]1,(1,2,,)k k x x k n -=L .记[]1,k k x x -的中点为1121()2k k k xx x --=+,则复化辛普森公式为 1112()()()4()()6n bk k ak k h f x dx S h f x f x f x --=⎡⎤≈=++⎢⎥⎣⎦∑⎰.2.3 龙贝格积分[10]现在要介绍用龙贝格(Romberg )命名的一个算法,龙贝格首先给出了这种算法的递推形式,假设需要积分()baI f x dx =⎰ (2.10)的近似值.在讨论过程中函数()f x 和区间[],a b 将保持不变.2.3.1 递推梯形法则[10]设()T n 表示在长度是()/h b a n =-的n 个子区间上积分I 的梯形法则.根据()''()nbai f x dx h f a ih =≈+∑⎰,我们有 00()()''()''()nn n i i b a b a T h f a ih f a i n n ==--=+=+∑∑, (2.11) 这里求和符号中的两撇表示和式中第一项和最后一项减半. 2.3.2 龙贝格算法[10]在龙贝格算法中使用上述公式.设(,0)R n 表示具有2n个子区间的梯形估计,我们有[]1211(0,0)()()()21(,0)(1,0)((21))2n n n i R b a f a f b R n R n hf a i h -=⎧=-+⎪⎪⎨⎪=-++-⎪⎩∑ , (2.12) 对于一个适度的M 值,计算(0,0),(1,0),(2,0),,(,0)R R R R M L ,并且其中没有重复的函数值的计算.在龙贝格算法的其余部分中,还要计算附加值(,)R n m .所有这些都可以被理解为积分I 的估计.计算出(,0)R M 后,不再需要被积函数f 值的计算.根据公式[]1(,)(,1)(,1)(1,1)41m R n m R n m R n m R n m =-+-----, (2.13)对于1n ≥和1m ≥构造R 阵列的各列.定理 2.4(龙贝格算法收敛性定理)[10]若[],f C a b ∈,则龙贝格阵列中每一列都收敛于f 的积分.因此,对每个m ,lim (,)()baR n m f x dx =⎰.2.4高斯求积[11]前面研究的求积公式都是事先确定了n 个节点,然后按使求积公式阶数达到最大的原 则选取最佳权.由于自由参数为n 个,所以阶数一般为n-1,但如果节点的位置也自由选择,则自由参数的个数将变为2n ,因此求积公式的阶数可达到2n-1.高斯求积公式就是通过选择最佳的节点和权,使求积公式的阶数最大化.一般地,对每个n ,n 点高斯公式都是唯一的,而且阶数为2n-1.因而,对一定的节点个数,高斯求积公式的精度是最高的.但它的求得比牛顿—柯特斯公式要困难得多.虽然它的节点和权也可由待定系数法确定,但得到的方程是非线性的.2.4.1 高斯求积公式[11]为说明高斯求积公式,推导区间[]1,1-上的两点公式1112221()()()()()I f f x dx w f x w f x G f -=≈+=⎰,其中的节点1x 、2x 及权1w 、2w 按使求积公式阶数最大化的原则选取.令公式对前四个单项式精确成立,得力矩方程组112111122112221122113331122112,0,2,30.w w dx w x w x xdx w x w x x dx w x w x x dx ----⎧+==⎪⎪+==⎪⎪⎨⎪+==⎪⎪+==⎪⎩⎰⎰⎰⎰这个非线性方程组的一个解为12121,1,x x w w =-===另一个解可通过改变1x ,2x 的符号而得到.这样,两点高斯求积公式为2()(G f f f =-+,阶数为3.另外,高斯求积公式的节点也可以由正交多项式得到.若p 是n 次多项式,且满足()0,0,,1,bk ap x x dx k n ==-⎰L 则p 与[],a b 区间上所有次数小于n 的多项式正交,容易证明:1. p 的n 个零点都是实的、单的,且位于开区间(,)a b .2. 区间[],a b 上以p 的零点为节点的n 点插值型求积公式的阶数为2n-1,是唯一的n 点高斯公式.定义2.2[12] 如果1n +个节点的求积公式()()()nbk k ak x f x dx A f x ρ=≈∑⎰(2.14)的代数精度达到21n +,则称式(2.14)为高斯型求积公式,此时称节点k x 为高斯点,系数k A 称为高斯系数.定理2.5[12] 以01,,,n x x x L 为高斯点的插值型求积公式具有21n +次代数精确度的充要条件是以这些节点为零点的多项式101()()()()n n x x x x x x x ω+=---L与任意次数不超过n 的多项式()p x 带权()x ρ均在区间[],a b 上正交,即1()()()0bn ax p x x dx ρω+=⎰. (2.14)定理2.6 高斯公式()()nbi i ai f x dx A f x =≈∑⎰(2.15)的求积系数k A 全为正,且 2()(),0,1,,bbk k k aaA l x dx l x dx k n ===⎰⎰L . (2.16)定理2.7 对于高斯公式(2.14),其余项为 (22)211()()()()(22)!b n n a R f f x x dx n ξρω++=+⎰ , (2.17) 其中[]101,,()()()().n n a b x x x x x x x ξω+∈=---L2.4.2 高斯—勒让德(Gauss-Legendre )公式[13] 对于任意求积区间[],a b ,通过变换22a b b ax t +-=+,可化为区间[]1,1-,这时11()()222bab a a b b af x dx f t dt --+-=+⎰⎰. 因此,不失一般性,可取1,1a b =-=,考查区间[]1,1-上的高斯公式 11()()ni i i f x dx A f x -==∑⎰. (4.5)我们知道,勒让德多项式1211111()(1)2(1)!n n n n n d L x x n dx+++++⎡⎤=-⎣⎦+, (4.6) 是区间[]1,1-上的正交多项式,因此,1()n L x +的n+1个零点就是高斯公式(4.5)的n+1个节点.特别地,称1()n L x +的零点为高斯点,形如(4.5)的高斯公式称为高斯—勒让德公式.以上这些公式中的节点和求积系数可查表得到. 2.4.3 高斯—哈米特求积公式(Gauss-Hermite )[14] Gauss-Hermite 求积公式2()0()()nx n k k k ef x dx f x ω∞--∞=≈∑⎰, (4.7)其余项为(22)1(().2(22)!n n n n R f f n ξ+++=+ (4.8)2.4.4 高斯—切比雪夫(Gauss-Chebyshev )求积公式[15] 区间为[]1,1-,权函数()x ρ=Gauss 型求积公式,其节点k x 是Chebyshev多项式1()n T x +的零点,即21cos (0,1,,)2(1)k k x k n n π⎡⎤+==⎢⎥+⎣⎦L ,而(0,1,,)1k A k n n π==+L于是得到1021cos 12(1)nk k f n n ππ-=⎡⎤+≈⎢⎥++⎣⎦∑⎰(4.9) 称为Gauss-Chebyshev 求积公式,公式的余项为 (22)2(1)2()(),(1,1)2(22)!n n n R f f n πηη++=∈-+ , (4.10) 这种求积公式可用于计算奇异积分.2.5 递推型高斯求积[10]高斯求积公式不具有递推性:当节点个数一定时,如果自由选择所有的节点和权以达到最高的阶数,则节点个数不同的公式一般没有公共节点,这意味着与一组节点对应的积分值,在用另外一组节点计算积分值时不能被利用.Kronrod 求积公式避免了这种工作量的增加,这类公式是对称的,n 点高斯公式n G 与2n+1个点Kronrod 公式21n K +对应.21n K +节点的约束条件为:以n G 的节点作为21n K +的节点,按求积公式达到最高阶数的要求确定21n K +中剩下的n+1个节点及2n+1个权(其中包括n G 的节点的权).这样,求积公式的阶数可达到3n+1,而真正2n+1个点高斯公式应该是4n+1阶的,所以精度和效率是一对矛盾.使用两个节点个数不同的求积公式的主要原因是可以用它们的差估计积分近似值的误差.使用Gauss-Kronrod 公式对时,若以21n K +的值作为积分的近似值,则一半基于理论,一半基于经验,可以得到关于误差的保守估计: 1.521(200)n n G K +-.Gauss-Kronrod 公式不仅有效地提供了较高的精度,还给出了可靠误差估计,所以它被认为是最有效的求积公式之一,并且构成了主要软件库中求积程序的基础,特别地,公式715(,)G K 已被普遍使用.三、 总结部分因为一些定积分的求解比较复杂,所以数值积分的理论与方法一直是计算数学研究的基本课题.各种定积分的数值计算方法的出现和发展,加快和简化了求解定积分的效率和步骤.以上主要介绍了各种数值积分的方法——牛顿-科茨求积公式,复合求积公式,龙贝格积分法,高斯求积公式等.每种方法都有各自的优缺点,针对不同的积分函数采用不同的方法,所以在实际计算时,要做适当的采取.相信随着理论分析和研究的日益深入,求定积分的数值计算方法将更加简单和完善,为我们的计算带来前所未有的方便,在数学领域也将会更上一层楼.四、参考文献[1] 孙志忠,吴宏伟,袁慰平,闻震初.计算方法与实习(第4版)[M].南京:东南大学出版社,2009,(2): 128~129.[2]Micheal T .Heath . 张威,贺华,冷爱萍译.科学计算导论(第2版)[M].北京:清华大学出版社,2005,(10): 396~297.[3]李桂成.计算方法[M].北京:电子工业出版社,2005,(10):186.[4] 现代应用数学手册编委会. 现代应用数学手册——计算与数值分析卷[M]. 北京:清华大学出版社,2005,(1): 163~168.[5] 林成森. 数值计算方法(上)[M]. 北京:科学出版社,2004,(5): 220~221.[6]冯康.数值计算方法[M].北京:国防工业出版社,1978,(12): 45~47.[7]孙志忠,袁慰平,闻震初.数值分析(第2版)[M].南京:东南大学出版社,2002,(1): 191~194.[8] (美)柯蒂斯F .杰拉尔德 帕特里克O .惠特莱. 应用数值分析(第7版)[M].北京:机械工业出版社,2006,(8): 222~225.[9]夏爱生,胡宝安,孙利民,夏凌辉.复化Simpson 数值求积公式的外推算法[J].军事交通学院学报.2006,第8卷(第1期): 66~68.[10](美)David Kincaid, Ward Cheney .王国荣,俞耀明,徐兆亮译.数值分析(原书第三版)[M].北京:机械工业出版社,2005,(9): 400~403.[11]M.T.Heath. Scientific Computing:An Introductory Survey, Sscond Edition[M].清华大学出版社.英文影印版. 2001,(10): 351~355.[12]封建湖,车刚明,聂玉.数值分析原理[M].北京:科学出版社,2001,(9): 111~114.[13]杨大地,涂光裕.数值分析[M].重庆:重庆大学出版社,,2006,(9): 139~142.[14] 黄明游,刘播,徐涛.数值计算方法[M].北京:科学出版社,2005,(8):137~138.[15]Jeffery J.Leader. Numerical Analysis and Scientific Computation[M].英文影印本.北京:清华大学出版社,2005,(8): 342~349。
数值计算中的数值积分方法数值计算是应用数学的一个分支,它主要涉及数值计算方法、算法和数值实验。
其中,数值积分作为数值计算中的一个重要环节,其作用在于将连续函数转化为离散的数据,从而方便计算机进行计算和处理。
本文将介绍数值积分的概念、方法和应用。
一、数值积分的概念数值积分是利用数值方法对定积分进行估计的过程。
在数值积分中,积分被近似为离散区间的和,从而可以被计算机进行处理。
数值积分中,被积函数的精确的积分值是无法计算的,而只能通过数值方法进行估计。
数值积分的目的是通过选取合适的算法和参数来尽可能减小误差,达到精度和效率的平衡。
二、数值积分的方法1. 矩形法矩形法是数学上最简单的数值积分方法之一。
矩形法的算法是将要积分的区间分为若干个小区间,然后计算每个小区间中矩形的面积,最后将所有小矩形的面积加起来得到近似的积分值。
矩形法的精度一般较低,适用于计算不需要高精度的函数积分。
2. 梯形法梯形法是数值积分中常用的一种方法,其原理是将区间分为若干个梯形,并计算每个梯形的面积,最后将所有梯形的面积加起来得到近似的积分值。
梯形法的计算精度较高,但其计算量较大。
3. 辛普森法辛普森法是数值积分中一种高精度的方法,它是利用二次多项式去估计原函数。
辛普森法的原理是将区间分为若干等分小区间,并计算每个小区间中的二次多项式的积分值,最后将所有小区间的积分值加起来得到近似的积分值。
辛普森法的优点是其精度高,计算量相对较小。
三、数值积分的应用数值积分方法在各个领域都有广泛的应用。
例如,它可以被用于工程学、物理学和金融学中的数值计算。
在工程学中,数值积分被用于数值模拟和计算机辅助设计中。
在物理学中,数值积分则被用于数值求解微分方程和计算机模拟等领域。
在金融学中,数值积分则被应用于计算复杂的金融模型和风险分析。
总之,数值积分方法是数学和计算机科学中非常重要的一部分。
通过不同的数值积分方法来近似计算定积分,我们能够利用计算机更加高效地进行数学计算和数据分析,从而使得数学和物理等学科的研究者能够更加快速地得出准确的结果。
几种定积分的数值计算方法一、梯形法则(Trapezoidal Rule):梯形法则是一种常见的确定积分的数值计算方法。
它的基本思想是通过将函数曲线上的曲线段看作是一系列梯形,然后计算这些梯形的面积之和来近似表示定积分的值。
具体来说,我们将定积分区间[a,b]均匀地划分为n个小区间,每个小区间的宽度为h=(b-a)/n,然后计算每个小区间内的梯形面积,再将这些面积相加即可得到定积分的近似值。
梯形法则的公式如下:∫(a to b) f(x) dx ≈ h/2 * (f(a) + 2f(a+h) + 2f(a+2h) + ... + 2f(a+(n-1)h) + f(b))梯形法则的优点是简单易懂,容易实现,并且对于一般的函数都能达到较好的近似效果。
然而,它的缺点是精度较低,需要较大的划分数n才能得到较准确的结果。
二、辛普森法则(Simpson's Rule):辛普森法则是一种比梯形法则更高级的确定积分方法,它通过将函数曲线上的曲线段看作是由一系列抛物线组成的,然后计算这些抛物线的面积之和来近似表示定积分的值。
与梯形法则类似,我们将定积分区间[a,b]均匀地划分为n个小区间,每个小区间的宽度为h=(b-a)/n,然后计算每两个相邻小区间内的抛物线面积,再将这些面积相加即可得到定积分的近似值。
辛普森法则的公式如下:∫(a to b) f(x) dx ≈ h/3 * (f(a) + 4f(a+h) + 2f(a+2h) +4f(a+3h) + ... + 2f(a+(n-2)h) + 4f(a+(n-1)h) + f(b))辛普森法则相较于梯形法则具有更高的精度,尤其对于二次或更低次的多项式函数来说,可以得到非常准确的结果。
但是,辛普森法则在处理高次多项式或非多项式函数时可能会出现误差较大的情况。
三、高斯求积法(Gaussian Quadrature):高斯求积法是一种基于插值多项式的数值积分方法。