计算方法 数值积分 插值型积分
- 格式:ppt
- 大小:644.00 KB
- 文档页数:8
计算方法数值积分_插值型积分
一.概述
插值型积分是数值积分的一项重要方法,它是将要计算的曲面上的积分点根据插值函数或其中一种样条函数,插值成一条直线之后再求解。
插值型积分主要有牛顿-拉夫逊插值内插法、Chebyshev插值内插法、余弦和正弦插值内插法和Hermite插值内插法等,主要用来解决二元函数、多项式、函数的积分。
同时,插值型积分可以用来求解非常复杂的不可积函数,也可以用于求解紧密的积分,可以节省一定的计算时间。
二、牛顿-拉夫逊插值内插法
牛顿-拉夫逊插值内插法是插值型积分中最常用的方法,它通过在给定的多项式基函数上拟合曲线,计算曲线上积分点的函数值,然后把它们拟合到牛顿-拉夫逊插值函数中,最后将插值函数作为定积分的函数,通过求解插值函数的积分来解决问题。
牛顿-拉夫逊插值内插法一般采用牛顿-拉夫逊插值函数,它是基于多项式的函数,由节点上的函数值和其导数值建立插值函数,其积分也可以由插值函数和它的导数求解。
牛顿-拉夫逊插值函数具有以下特点:
1.多项式阶数不受限;
2.插值函数结果是一条曲线;
3.可以非常精确地表示复杂的函数;。
计算方法课程总结心得体会一、课程简介:本课程是信息与计算科学、数学与应用数学本科专业必修的一门专业基础课.我们需在掌握数学分析、高等代数和常微分方程的基础知识之上,学习本课程•在实际中,数学与科学技术一向有着密切关系并相互影响,科学技术各领域的问题通过建立数学模型与数学产生密切的联系,并以各种形式应用于科学和工程领域.而所建立的这些数学模型,在许多情况下,要获得精确解是十分困难的,甚至是不可能的,这就使得研究各种数学问题的近似解变得非常重要了,“数值计算方法”就是专门研究各种数学问题的近似解的一门课程•通过这门课程的教学,使学生掌握用数值分析方法解决实际问题的算法原理及理论分析,提高我们应用数学知识解决实际问题的能力.二、本课程主要内容包括:误差分析,插值法与拟合,数值积分,数值微分,线性方程组的直接解法和迭代解法,非线性方程求根,矩阵特征值问题计算、常微分方程初值问题数值解法.三、本课程重点难点:1、绝对误差限、相对误差限、有效数字2、基函数、拉格朗日插值多项式、差商、牛顿插值多项式、截断误差3、曲线拟合的最小二乘法(最小二乘法则、法方程组)4、插值型数值积分(公式、积分系数)a) N-C求积公式(梯形公式、Simpson公式、Cotes公式-系数、代数精度、截断误差)b)复合N-C公式(复合梯形公式、复合Simpson公式、收敛阶、截断误差)c)龙贝格算法的计算公式5、非线性方程求根的迭代法收敛性定理牛顿切线法、下山法、正割法(迭代公式、收敛阶)6 高斯消去法、列主元素高斯消去法、LU分解法解线性方程组Jacobi迭代法、S-R迭代法(迭代公式、迭代矩阵、收敛的充要条件、充分条件)矩阵的范数、谱半径、条件数、病态方程组7、欧拉方法(欧拉公式、向后欧拉公式、改进的欧拉公式)四、实际应用我们本学期的计算方法这门学科中,主要介绍了两种数值计算方法即:数值逼近与数值代数。
前面几章讲的关于插值和拟合是属于数值逼近,而后面几章则介绍了非线性方程、解线性方程组、以及最后一章的常微分方程则属于数值代数的部分。
数值分析简述及求解应用摘要:数值分析是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,本文主要介绍了数值分析的一些求解方法的原理和过程,并应用在电流回路和单晶硅提拉过程中的,进一步体现数值分析的实际应用。
关键字:解方程组插值法牛顿法一、引言随着科学技术的发展,提出了大量复杂的数值计算问题,在建立电子计算机成为数值计算的主要工具以后,它以数字计算机求解数学问题的理论和方法为研究对象。
有可靠的理论分析,要有数值实验,并对计算的结果进行误差分析。
数值分析的主要内容包括插值法,函数逼近,曲线拟和,数值积分,数值微分,解线性方程组的直接方法,解线性方程组的迭代法,非线性方程求根,常微分方程的数值解法。
运用数值分析解决问题的过程包括:实际问题→数学建模→数值计算方法→程序设计→上机计算求出结果。
在自然科学研究和工程技术中有许多问题可归结为求解方程组的问题,方程组求解是科学计算中最常遇到的问题。
如在应力分析、电路分析、分子结构、测量学中都会遇到解方程组问题。
在很多广泛应用的数学问题的数值方法中,如三次样条、最小二乘法、微分方程边值问题的差分法与有限元法也都涉及到求解方程组。
在工程中常会遇到求解线性方程组的问题,解线性方程组的方法有直接法和迭代法,直接法就是经过有限步算术运算,可求的线性方程组精确解的方法(若计算过程没有舍入误差),但实际犹如舍入误差的存在和影响,这种方法也只能求得近似解,这类方法是解低阶稠密矩阵方程组级某些大型稀疏矩阵方程组的有效方法。
直接法包括高斯消元法,矩阵三角分解法、追赶法、平方根法。
迭代法就是利用某种极限过程去逐步逼近线性方程组精确解的方法。
将方程组的解看作是某极限过程的极限值,且计算这一极限值的每一步是利用前一步所得结果施行相同的演算步骤而进行。
迭代法具有需要计算机的存储单元少,程序设计简单,原始系数矩阵在计算过程始终不变等优点,但存在收敛性级收敛速度问题。
迭代法是解大型稀疏矩阵方程组(尤其是微分方程离散后得到的大型方程组)的重要方法。
河北联合大学第2012-2013-1学期《数值计算方法》教学大纲依据我校章程,特制定了适合我校理工科各专业本科生的《数值计算方法》教学大纲。
一、课程计划课程名称:数值计算方法Numerical Calculation Methods开课单位:理学院课程类型:专业必修课开设学期:第五学期讲授学时:共15周,每周4学时,共60学时学时安排:课堂教学44学时+实验教学16学时适用专业:信科、数学、统计理科专业本科生教学方式:讲授(多媒体为主)+上机考核方式:闭卷40% +上机实验20%+课程报告20% +平时成绩10%学分:4学分与其它课程的联系预修课程:数学分析、高等代数、常微分方程、计算机高级语言等。
后继课程:偏微分方程数值解及其它专业课程。
二、课程介绍数值计算方法也称为数值分析,是研究用计算机求解各种数学问题的数值方法及其理论的一门学科。
随着计算科学与技术的进步和发展,科学计算已经与理论研究、科学实验并列成为进行科学活动的三大基本手段,作为一门综合性的新科学,科学计算已经成为了人们进行科学活动必不可少的科学方法和工具。
数值计算方法是科学计算的核心内容,它既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际实验的高度技术性的特点,是一门与计算机使用密切结合的实用性很强的数学课程。
主要介绍数值计算的误差、插值法、函数逼近与曲线拟合、线性方程组迭代解法、数值积分与数值微分、非线性方程组解法、矩阵特征值与特征向量数值计算以及常微分方程数值解,并特别加强实验环节的训练以提高学生动手能力。
通过本课程的学习,不仅能使学生初步掌握数值计算方法的基本理论知识,了解算法设计及数学建模思想,而且能使学生具备一定的科学计算能力和分析与解决问题的能力,不仅为学习后继课程打下良好的理论基础,也为将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。
教学与实验教学课堂教学实验教学论文报告机动课内学时课外学时学时数44 16 8 2 60 10三、重点难点课程重点:理解各种常用数值计算方法的数学原理和理论分析过程,掌握各种数值计算方法的示范性上机程序,学会设计数值算法的基本思路、一般原理和各种数值算法的程序实现。