大学物理(机械工业出版社)第四章课后答案
- 格式:doc
- 大小:303.92 KB
- 文档页数:4
第四章机械振动4.1一物体沿x 轴做简谐振动,振幅A = 0.12m ,周期T = 2s .当t = 0时,物体的位移x = 0.06m ,且向x 轴正向运动.求:(1)此简谐振动的表达式;(2)t = T /4时物体的位置、速度和加速度;(3)物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间. [解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m ,角频率ω = 2π/T = π.当t = 0时,x = 0.06m ,所以cos φ = 0.5,因此φ = ±π/3. 物体的速度为v = d x /d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sin φ,由于v > 0,所以sin φ< 0,因此:φ = -π/3.简谐振动的表达式为:x = 0.12cos(πt – π/3).(2)当t = T /4时物体的位置为;x = 0.12cos(π/2 – π/3) = 0.12cosπ/6 = 0.104(m). 速度为;v = -πA sin(π/2 – π/3) = -0.12πsinπ/6 = -0.188(m·s -1).加速度为:a = d v /d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s -2). (3)方法一:求时间差.当x = -0.06m 时,可得cos(πt 1 - π/3) = -0.5, 因此πt 1 - π/3 = ±2π/3.由于物体向x 轴负方向运动,即v < 0,所以sin(πt 1 - π/3) > 0,因此πt 1 - π/3 = 2π/3,得t 1 = 1s .当物体从x = -0.06m 处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt 2 - π/3) = 0, 可得 πt 2 - π/3 = -π/2或3π/2等.由于t 2> 0,所以πt 2 - π/3 = 3π/2, 可得t 2 = 11/6 = 1.83(s).所需要的时间为:Δt = t 2 - t 1 = 0.83(s).方法二:反向运动.物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间就是它从x = 0.06m ,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得 πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x 0/A ),(-π<φ<= π), 初位相的取值由速度决定.由于v = d x /d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sin φ,当v > 0时,sin φ< 0,因此 φ = -arccos(x 0/A );当v < 0时,sin φ> 0,因此φ = arccos(x 0/A )π/3.可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x 0 = A 时,φ = 0;当初位置x 0 = -A 时,φ = π.4.2已知一简谐振子的振动曲线如图所示,试由图求:(1)a ,b ,c ,d ,e 各点的位相,及到达这些状态的时刻t 各是多少?已知周期为T ; (2)振动表达式; (3)画出旋转矢量图. [解答]方法一:由位相求时间.(1)设曲线方程为x = A cos Φ,其中A 表示振幅,Φ = ωt + φ表示相位. 由于x a = A ,所以cos Φa = 1,因此Φa = 0.由于x b = A /2,所以cos Φb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t 增加,b 点位相就应该大于a 点的位相,因此Φb = π/3.由于x c = 0,所以cos Φc = 0,又由于c 点位相大于b 位相,因此Φc = π/2.同理可得其他两点位相为:Φd = 2π/3,Φe = π.c 点和a 点的相位之差为π/2,时间之差为T /4,而b 点和a 点的相位之差为π/3,时间之差应该为T /6.因为b 点的位移值与O 时刻的位移值相同,所以到达a 点的时刻为t a = T /6. 到达b 点的时刻为t b = 2t a = T /3.图4.2到达c 点的时刻为t c = t a + T /4 = 5T /12. 到达d 点的时刻为t d = t c + T /12 = T /2. 到达e 点的时刻为t e = t a + T /2 = 2T /3.(2)设振动表达式为:x = A cos(ωt + φ),当t = 0时,x = A /2时,所以cos φ = 0.5,因此φ =±π/3; 由于零时刻的位相小于a 点的位相,所以φ = -π/3, 因此振动表达式为. 另外,在O 时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t 轴 相交于f 点,由于x f = 0,根据运动方程,可得所以:.显然f 点的速度大于零,所以取负值,解得t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为:t a = T /4 + t f = T /6, 其位相为:. 由图可以确定其他点的时刻,同理可得各点的位相.4.3 有一弹簧,当其下端挂一质量为M 的物体时,伸长量为9.8×10-2m .若使物体上下振动,且规定向下为正方向.(1)t = 0时,物体在平衡位置上方8.0×10-2m 处,由静止开始向下运动,求运动方程;(2)t = 0时,物体在平衡位置并以0.60m·s -1速度向上运动,求运动方程. [解答]当物体平衡时,有:Mg – kx 0 = 0, 所以弹簧的倔强系数为:k = Mg/x 0, 物体振动的圆频率为:s -1). 设物体的运动方程为:x = A cos(ωt + φ).(1)当t = 0时,x 0 = -8.0×10-2m ,v 0 = 0,因此振幅为:=8.0×10-2(m);由于初位移为x 0 = -A ,所以cos φ = -1,初位相为:φ = π. 运动方程为:x = 8.0×10-2cos(10t + π).(2)当t = 0时,x 0 = 0,v 0 = -0.60(m·s -1),因此振幅为:v 0/ω|=6.0×10-2(m);由于cos φ = 0,所以φ = π/2;运动方程为:x = 6.0×10-2cos(10t +π/2).4.4 质量为10×10-3kg 的小球与轻弹簧组成的系统,按的规律作振动,式中t 以秒(s)计,x 以米(m)计.求: (1)振动的圆频率、周期、振幅、初位相; (2)振动的速度、加速度的最大值;(3)最大回复力、振动能量、平均动能和平均势能;cos(2)3t x A T ππ=-cos(2)03t T ππ-=232f t Tπππ-=±203a a t T πΦπ=-=ω==0||A x ==A =20.1cos(8)3x t ππ=+(4)画出这振动的旋转矢量图,并在图上指明t 为1,2,10s 等各时刻的矢量位置. [解答](1)比较简谐振动的标准方程:x = A cos(ωt + φ),可知圆频率为:ω =8π,周期T = 2π/ω = 1/4 = 0.25(s),振幅A = 0.1(m),初位相φ = 2π/3.(2)速度的最大值为:v m = ωA = 0.8π = 2.51(m·s -1); 加速度的最大值为:a m = ω2A = 6.4π2 = 63.2(m·s -2). (3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A = 0.632(N); 振动能量为:E = kA 2/2 = mω2A 2/2 = 3.16×10-2(J), 平均动能和平均势能为:= kA 2/4 = mω2A 2/4 = 1.58×10-2(J). (4)如图所示,当t 为1,2,10s 等时刻时,旋转矢量的位置是相同的.4.5 两个质点平行于同一直线并排作同频率、同振幅的简谐振动.在振动过程中,每当它们经过振幅一半的地方时相遇,而运动方向相反.求它们的位相差,并作旋转矢量图表示.[解答]设它们的振动方程为:x = A cos(ωt + φ), 当x = A /2时,可得位相为:ωt + φ = ±π/3.由于它们在相遇时反相,可取Φ1 = (ωt + φ)1 = -π/3,Φ2 = (ωt + φ)2 = π/3,它们的相差为:ΔΦ = Φ2 – Φ1 = 2π/3,或者:ΔΦ` = 2π –ΔΦ = 4π/3.矢量图如图所示.4.6一氢原子在分子中的振动可视为简谐振动.已知氢原子质量m = 1.68×10-27kg ,振动频率v = 1.0×1014Hz ,振幅A = 1.0×10-11m .试计算:(1)此氢原子的最大速度; (2)与此振动相联系的能量.[解答](1)氢原子的圆频率为:ω = 2πv = 6.28×1014(rad·s -1), 最大速度为:v m = ωA = 6.28×103(m·s -1).(2)氢原子的能量为:= 3.32×10-20(J).4.7 如图所示,在一平板下装有弹簧,平板上放一质量为1.0kg 的重物,若使平板在竖直方向上作上下简谐振动,周期为0.50s ,振幅为2.0×10-2m ,求:(1)平板到最低点时,重物对平板的作用力;(2)若频率不变,则平板以多大的振幅振动时,重物跳离平板? (3)若振幅不变,则平板以多大的频率振动时,重物跳离平板? [解答](1)重物的圆频率为:ω = 2π/T = 4π,其最大加速度为:a m = ω2A ,合力为:F = ma m ,方向向上.重物受到板的向上支持力N 和向下的重力G ,所以F = N – G . 重物对平板的作用力方向向下,大小等于板的支持力: N = G + F = m (g +a m ) = m (g +ω2A ) = 12.96(N).(2)当物体的最大加速度向下时,板的支持为:N = m (g - ω2A ). 当重物跳离平板时,N = 0,频率不变时,振幅为:A = g/ω2 = 3.2×10-2(m).(3)振幅不变时,频率为:3.52(Hz).4.8 两轻弹簧与小球串连在一直线上,将两弹簧拉长后系在固定点A 和B 之间,整个系统放在光滑水平面上.设两弹簧的原长分别为l 1和l 2,倔强系统分别为k 1和k 2,A和B 间距为L ,小球的质量为m .(1)试确定小球的平衡位置;k pE E =212m E mv=2ωνπ==(2)使小球沿弹簧长度方向作一微小位移后放手,小球将作振动,这一振动是否为简谐振动?振动周期为多少?[解答](1)这里不计小球的大小,不妨设L > l 1 + l 2,当小球平衡时,两弹簧分别拉长x 1和x 2,因此得方程:L = l 1 + x 1 + l 2 + x 2;小球受左右两边的弹簧的弹力分别向左和向右,大小相等,即k 1x 1 = k 2x 2. 将x 2 = x 1k 1/k 2代入第一个公式解得:.小球离A 点的距离为:.(2)以平衡位置为原点,取向右的方向为x 轴正方向,当小球向右移动一个微小距离x 时,左边弹簧拉长为x 1 + x ,弹力大小为:f 1 = k 1(x 1 + x ), 方向向左;右边弹簧拉长为x 1 - x ,弹力大小为:f 2 = k 2(x 2 - x ), 方向向右.根据牛顿第二定律得:k 2(x 2 - x ) - k 1(x 1 + x ) = ma ,利用平衡条件得:,即小球做简谐振动.小球振动的圆频率为:.4.9如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k = 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅;(2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即:mv = (m + M)v 0.解得子弹射入后的速度为:v 0 = mv/(m + M) = 2(m·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得:(m + M ) v02/2 = kA 2/2, 所以振幅为:10-2(m). (2)振动的圆频率为:= 40(rad·s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为:x = A cos(ωt + φ).当t = 0时,x = 0,可得:φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为:x = 5×10-2cos(40t - π/2).4.10如图所示,在倔强系数为k 的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为:物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为,这也是它们振动的初速度.设振动方程为:x = A cos(ωt + φ),211212()k x L l l k k =--+211111212()k L l x l L l l k k =+=+--+2122d ()0d xm kk x t++=ω=22T πω==A v =ω=v =0m v v m M ==+图4.9 图4.10其中圆频率为:物体没有落下之前,托盘平衡时弹簧伸长为x 1,则:x 1 = Mg/k .物体与托盘磁盘之后,在新的平衡位置,弹簧伸长为x 2,则:x 2= (M + m )g/k . 取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k .因此振幅为:初位相为:4.11 装置如图所示,轻弹簧一端固定,另一端与物体m 间用细绳相连,细绳跨于桌边定滑轮M 上,m 悬于细绳下端.已知弹簧的倔强系数为k = 50N·m -1,滑轮的转动惯量J = 0.02kg·m 2,半径R = 0.2m ,物体质量为m = 1.5kg ,取g = 10m·s -2.(1)试求这一系统静止时弹簧的伸长量和绳的张力;(2)将物体m 用手托起0.15m ,再突然放手,任物体m 下落而整个系统进入振动状态.设绳子长度一定,绳子与滑轮间不打滑,滑轮轴承无摩擦,试证物体m 是做简谐振动; (3)确定物体m 的振动周期;(4)取物体m 的平衡位置为原点,OX 轴竖直向下,设振物体m 相对于平衡位置的位移为x ,写出振动方程.[解答](1)在平衡时,绳子的张力等于物体的重力T = G = mg = 15(N).这也是对弹簧的拉力,所以弹簧的伸长为:x 0 = mg/k = 0.3(m).(2)以物体平衡位置为原点,取向下的方向为正,当物体下落x 时,弹簧拉长为x 0 + x ,因此水平绳子的张力为:T 1 = k (x 0+ x ).设竖直绳子的张力为T 2,对定滑轮可列转动方程:T 2R – T 1R = Jβ, 其中β是角加速度,与线加速度的关系是:β = a/R .对于物体也可列方程:mg - T 2 = ma . 转动方程化为:T 2 – k (x 0 + x ) = aJ/R 2,与物体平动方程相加并利用平衡条件得:a (m + J/R 2) = –kx ,可得微分方程:,故物体做简谐振动. (3)简谐振动的圆频率为:s -1). 周期为:T 2 = 2π/ω = 1.26(s).(4)设物体振动方程为:x = A cos(ωt + φ),其中振幅为:A = 0.15(m). 当t = 0时,x = -0.15m ,v 0 = 0,可得:cos φ = -1,因此φ = π或-π, 所以振动方程为:x = 0.15cos(5t + π),或x = 0.15cos(5t - π).4.12一匀质细圆环质量为m ,半径为R ,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]通过质心垂直环面有一个轴,环绕此轴的转动惯量为:I c = mR 2.根据平行轴定理,环绕过O 点的平行轴的转动惯量为I = I c + mR 2 = 2mR 2.当环偏离平衡位置时,重力的力矩为:M = mgR sin θ, 方向与角度θ增加的方向相反.ω=A ==00arctan v x ϕω-==222d 0d /x kx t m J R +=+ω=根据转动定理得:Iβ = -M ,即,由于环做小幅度摆动,所以sin θ≈θ,可得微分方程:. 摆动的圆频率为:周期为:4.13 重量为P 的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)前面已经证明:当两根弹簧串联时,总倔强系数为k = k1k 2/(k 1 + k 2),因此固有频率为(2)前面还证明:当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为.4.14质量为0.25kg 的物体,在弹性力作用下作简谐振动,倔强系数k = 25N·m -1,如果开始振动时具有势能0.6J ,和动能0.2J ,求:(1)振幅;(2)位移多大时,动能恰等于势能?(3)经过平衡位置时的速度.[解答]物体的总能量为:E = E k + E p = 0.8(J).(1)根据能量公式E = kA2/2,得振幅为:.(2)当动能等于势能时,即E k = E p ,由于E = E k + E p ,可得:E = 2E p ,即,解得:= ±0.179(m). (3)再根据能量公式E = mv m2/2,得物体经过平衡位置的速度为: 2.53(m·s -1).4.15 两个频率和振幅都相同的简谐振动的x-t 曲线如图所示,求: (1)两个简谐振动的位相差;(2)两个简谐振动的合成振动的振动方程. [解答](1)两个简谐振动的振幅为:A = 5(cm), 周期为:T = 4(s),圆频率为:ω =2π/T = π/2,它们的振动方程分别为:x 1 = A cos ωt =5cosπt /2, x 2 = A sin ωt =5sinπt /2 =5cos(π/2 - πt /2)即x 2=5cos(πt /2 - π/2).位相差为:Δφ = φ2 - φ1 = -π/2. (2)由于x = x 1 + x 2 = 5cosπt /2 +5sinπt /2 = 5(cosπt /2·cosπ/4 +5sinπt /2·sinπ/4)/sinπ/4 合振动方程为:(cm).22d sin 0d I mgR tθθ+=22d 0d mgRt Iθθ+=ω=222T πω===2ωνπ===2ωνπ===A =2211222kA kx =⨯/2x =m v =cos()24x t ππ=- (b)图4.134.16 已知两个同方向简谐振动如下:,.(1)求它们的合成振动的振幅和初位相; (2)另有一同方向简谐振动x 3 = 0.07cos(10t +φ),问φ为何值时,x 1 + x 3的振幅为最大?φ为何值时,x 2 + x 3的振幅为最小?(3)用旋转矢量图示法表示(1)和(2)两种情况下的结果.x 以米计,t 以秒计.[解答](1)根据公式,合振动的振幅为:=8.92×10-2(m). 初位相为:= 68.22°.(2)要使x 1 + x 3的振幅最大,则:cos(φ– φ1) = 1,因此φ– φ1 = 0,所以:φ = φ1 = 0.6π. 要使x 2 + x 3的振幅最小,则 cos(φ– φ2) = -1,因此φ– φ2 = π,所以φ = π + φ2 = 1.2π.(3)如图所示.4.17质量为0.4kg 的质点同时参与互相垂直的两个振动:, .式中x 和y 以米(m)计,t 以秒(s)计.(1)求运动的轨道方程;(2)画出合成振动的轨迹;(3)求质点在任一位置所受的力.[解答](1)根据公式:,其中位相差为:Δφ = φ2 – φ1 = -π/2,130.05cos(10)5x t π=+210.06cos(10)5x t π=+A =11221122sin sin arctancos cos A A A A ϕϕϕϕϕ+=+0.08cos()36x t ππ=+0.06cos()33y t ππ=-2222212122cos sin x y xyA A A A ϕϕ+-∆=∆所以质点运动的轨道方程为:. (2)合振动的轨迹是椭圆.(3)两个振动的圆频率是相同的ω = π/3,质点在x 方向所受的力为,即F x = 0.035cos(πt /3 + π/6)(N).在y 方向所受的力为,即F y = 0.026cos(πt /3 - π/3)(N).用矢量表示就是,其大小为,与x 轴的夹角为θ = arctan(F y /F x ).4.18 将频率为384Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为3.0Hz ,在待测音叉的一端加上一小块物体,则拍频将减小,求待测音叉的固有频率.[解答]标准音叉的频率为v 0 = 384(Hz), 拍频为Δv = 3.0(Hz), 待测音叉的固有频率可能是v 1 = v 0 - Δv = 381(Hz), 也可能是v 2 = v 0 + Δv = 387(Hz).在待测音叉上加一小块物体时,相当于弹簧振子增加了质量,由于ω2 = k/m ,可知其频率将减小.如果待测音叉的固有频率v 1,加一小块物体后,其频率v`1将更低,与标准音叉的拍频将增加;实际上拍频是减小的,所以待测音叉的固有频率v 2,即387Hz .4.19示波器的电子束受到两个互相垂直的电场作用.电子在两个方向上的位移分别为x = A cos ωt 和y = A cos(ωt +φ).求在φ = 0,φ = 30º,及φ = 90º这三种情况下,电子在荧光屏上的轨迹方程.[解答]根据公式,其中Δφ = φ2 – φ1 = -π/2,而φ1 = 0,φ2 = φ.(1)当Δφ = φ = 0时,可得,质点运动的轨道方程为y = x ,轨迹是一条直线.(2)当Δφ = φ = 30º时,可得质点的轨道方程, 即,轨迹是倾斜的椭圆.(3)当Δφ = φ = 90º时,可得, 即x 2 + y 2 = A 2,质点运动的轨迹为圆.4.20三个同方向、同频率的简谐振动为,,.222210.080.06x y +=22d d x x x F ma m t==20.08cos()6m t πωω=-+22d d y y y F ma m t==20.06cos()3m t ωω=--πi+j x y F F F =F =2222212122cos sin x y xyA A A A ϕϕ+-∆=∆2222220x y xyA A A+-=222214x y A+=222/4x y A +=22221x y A A +=10.08cos(314)6x t π=+20.08cos(314)2x t π=+350.08cos(314)6x t π=+求:(1)合振动的圆频率、振幅、初相及振动表达式; (2)合振动由初始位置运动到所需最短时间(A 为合振动振幅). [解答]合振动的圆频率为:ω = 314 = 100π(rad·s -1). 设A 0 = 0.08,根据公式得:A x = A 1cos φ1 + A 2cos φ2 + A 3cos φ3 = 0,A y = A 1sin φ1 + A 2sin φ2 + A 3sin φ3 = 2A 0 = 0.16(m), 振幅为:,初位相为:φ = arctan(A y /A x ) = π/2.合振动的方程为:x = 0.16cos(100πt + π/2).(2)当时,可得:,解得:100πt + π/2 = π/4或7π/4.由于t > 0,所以只能取第二个解,可得所需最短时间为t = 0.0125s .x A =A =/2x =cos(100/2)2t ππ+。
第一章 质点的运动1-1 已知质点的运动方程为:23010t t x +-=,22015t t y -=。
式中x 、y的单位为m ,t 的单位为s。
试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向。
分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解(1) 速度的分量式为t txx 6010d d +-==v 当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为设v o 与x 轴的夹角为α,则23tan 00-==xy αv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==ta y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β β=-33°41′(或326°19′)1-2 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动。
现测得其加速度a =A-B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程。
分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v后再两边积分. 解选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题 v vB A ta -==d d (1)用分离变量法把式(1)改写为t B A d d =-vv(2) 将式(2)两边积分并考虑初始条件,有得石子速度 )1(Bt e BA--=v 由此可知当,t →∞时,BA→v 为一常量,通常称为极限速度或收尾速度.(2) 再由)1(d d Bt e BAt y --==v 并考虑初始条件有得石子运动方程)1(2-+=-Bt e BAt B A y 1-3 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即a = -kv 2,k 为常数。
⼤学物理知识总结习题答案(第四章)静电场第四章静电场本章提要1.电荷的基本性质两种电荷,量⼦性,电荷⾸恒,相对论不变性。
2.库仑定律两个静⽌的点电荷之间的作⽤⼒12122204kq q q q rr==F r rπε其中922910(N m /C )k =??122-1-2018.8510(C Nm )4k -==??επ3.电场强度q =F E0q 为静⽌电荷。
由10102πε得112204kq q rr==E r rπε4.场强的计算(1)场强叠加原理电场中某⼀点的电场强度等于各个点电荷单独存在时在该点产⽣的电场强度的⽮量和。
i=∑E E(2)⾼斯定理电通量:在电场强度为E 的某点附近取⼀个⾯元,规定S ?=?S n ,θ为E 与n 之间的夹⾓,通过S ?的电场强度通量定义为e cos E S ?ψ=?=??v Sθ取积分可得电场中有限⼤的曲⾯的电通量ψd e sS=E⾼斯定理:在真空中,通过任⼀封闭曲⾯的电通量等于该封闭曲⾯内的所有电荷电量的代数和除以0ε,与封闭曲⾯外的电荷⽆关。
即i 01ε5.典型静电场(1)均匀带电球⾯0=E (球⾯内)204q rπε=E r(球⾯外)(2)均匀带电球体304q R πε=E r(球体内)204q rπε=E r(球体外)(3)均匀带电⽆限长直线场强⽅向垂直于带电直线,⼤⼩为02E rλπε=(4)均匀带电⽆限⼤平⾯场强⽅向垂直于带电平⾯,⼤⼩为2E σε=6.电偶极矩电偶极⼦在电场中受到的⼒矩=?M P E思考题4-1 02两式有什么区别与联系。
答:公式q FE =是关于电场强度的定义式,适合求任何情况下的电场。
⽽公式204q rπε=E r是由库仑定理代⼊定义式推导⽽来,只适于求点电荷的电场强度。
4-2⼀均匀带电球形橡⽪⽓球,在⽓球被吹⼤的过程中,下列各场点的场强将如何变化?(1)⽓球内部(2)⽓球外部(3)⽓球表⾯答:取球⾯⾼斯⾯,由00d nii q ε=?=∑?? E S 可知(1)内部⽆电荷,⽽⾯积不为零,所以E 内= 0。
思 考 题4.1 阿伏伽德罗定律指出:在温度和压强相同的条件下,相同体积中含有的分子数是相等的,与气体的种类无关。
试用气体动理论予以说明。
答: 据压强公式 p nkT = ,当压强和温度相同时,n 也相同,与气体种类无关; 4.2 对一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大。
当体积不变时,压强随温度的升高而增大。
从微观角度看,两种情况有何区别。
答:气体压强是器壁单位面积上受到大量气体分子频繁地碰撞而产生的平均作用力的结果。
当温度不变时,若体积减小,分子数密度增大,单位时间内碰撞器壁的分子数增加,从而压强增大;而当体积不变时,若温度升高,分子的平均平动动能增大,分子碰撞器壁的力度变大,从而压强增大;4.3 从气体动理论的观点说明:(1)当气体的温度升高时,只要适当地增大容器的容积,就可使气体的压强保持不变。
(2)一定量理想气体在平衡态(p 1,V 1,T 1)时的热动平衡状况与它在另一平衡态(p 2,V 2,T 2)时相比有那些不同?设气体总分子数为N ,p 2< p 1,V 2< V 1。
(3)气体在平衡状态下,则222213x y z v v v v ===, 0x y z v v v ===。
(式中x v 、y v 、z v ,是气体分子速度v 的三个分量)。
答:(1)由p nkT = 可知,温度升高时,n 适当地减小,可使压强不变;(2) 在平衡态(2p ,2V ,2T )时分子的平均平动动能较在平衡态(1p ,1V ,1T )时小,但分子数密度较大;(3) 因分子向各方向运动的概率相同,并且频繁的碰撞,速度的平均值为零,速度平方的平均值大小反映平均平动动能的大小,所以各分量平方平均值相等;4.4 有人说“在相同温度下,不同气体分子的平均平动动能相等,氧分子的质量比氢分子的大,所以氢分子的速率一定比氧分子大”。
这样讲对吗?答:不对,只能说氢分子的速率平方平均值比氧分子的大。
第四章 气体动理论一、基本要求1.理解平衡态的概念。
2.了解气体分子热运动图像和理想气体分子的微观模型,能从宏观和统计意义上理解压强、温度、内能等概念。
3.初步掌握气体动理论的研究方法,了解系统的宏观性质是微观运动的统计表现。
4.理解麦克斯韦速率分布律、速率分布函数和速率分布曲线的物理意义,理解气体分子运动的最概然速率、平均速率、方均根速率的意义,了解玻尔兹曼能量分布律。
5.理解能量按自由度均分定理及内能的概念,会用能量均分定理计算理想气体的内能。
6.了解气体分子平均碰撞频率及平均自由程的意义及其简单的计算。
二、基本内容1. 平衡态在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。
2. 理想气体状态方程在平衡态下,理想气体各参量之间满足关系式pV vRT =或 n k T p =式中v 为气体摩尔数,R 为摩尔气体常量 118.31R J mol K --=⋅⋅,k 为玻尔兹曼常量 2311.3810k J K --=⨯⋅3. 理想气体压强的微观公式21233t p nm n ε==v4. 温度及其微观统计意义温度是决定一个系统能否与其它系统处于热平衡的宏观性质,在微观统计上32t kT ε=5. 能量均分定理在平衡态下,分子热运动的每个自由度的平均动能都相等,且等于2kT 。
以i 表示分子热运动的总自由度,则一个分子的总平均动能为2t i kT ε=6. 速率分布函数()dNf Nd =v v麦克斯韦速率分布函数232/22()4()2m kT m f e kTππ-=v v v7. 三种速率最概然速率p =≈v 平均速率==≈v 方均根速率==≈8. 玻尔兹曼分布律平衡态下某状态区间(粒子能量为ε)的粒子数正比于kT e /ε-。
重力场中粒子数密度按高度的分布(温度均匀):kT m gh e n n /0-=9. 范德瓦尔斯方程采用相互作用的刚性球分子模型,对于1mol 气体RT b V V ap m m=-+))((2 10. 气体分子的平均自由程λ==11. 输运过程 内摩擦dS dz du df z 0)(η-=, 1133mn ηλρλ==v v 热传导dSdt dz dT dQ z 0)(κ-= 13v c κρλ=v 扩散dSdt dz d D dM z 0)(ρ-= 13D λ=v三、习题选解4-1 一根铜棒的两端分别与冰水混合物和沸水接触,经过足够长的时间后,系统也可以达到一个宏观性质不随时间变化的状态。
第四章 刚体的转动4-1 一汽车发动机曲轴的转速在12s 内由3102.1⨯r.min -1增加到3107.2⨯r.min -1。
(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转? 解:曲轴做匀变速转动。
(1)角速度n πω2=,根据角速度的定义dtd ωα=,则有:()=-=-=tn n t002πωωα13.1rad.s -2 (2)发动机曲轴转过的角度为t t t 221020ωωαωθ+=+=()t n n 0+=π在12秒内曲轴转过的圈数为 N 390220=+==t n n πθ圈。
4-2 一半径为0.25米的砂轮在电动机驱动下,以每分钟1800转的转速绕定轴作逆时针转动,现关闭电源,砂轮均匀地减速,15秒钟后停止转动.求(1)砂轮的角加速度;(2)关闭电源后10=t s 时砂轮的角速度,以及此时砂轮边缘上一点的速度和加速度大小.解:(1)4.1886060180020==⨯=ππω rad.s 1- 57.12415600=-=-=πα rad.s 2- (2)7.621057.124.1880=⨯-=+=t αωω rad.s 1-7.1525.07.62=⨯==r v ω m.s 1-14.3-==αr a t m.s 2- , 9872==ωr a n m. s 2-98822=+=n t a a a m. s 2-.4-3如图,质量201=m kg 的实心圆柱体A 其半径为20=r cm ,可以绕其固定水平轴转动,阻力忽略不计,一条轻绳绕在圆柱体上,另一端系一个质量102=m kg 的物体B ,求:(1)物体B 下落的加速度;(2)绳的张力T F 。
解: (1) 对实心圆柱体A ,利用转动定律αα2121r m J r F T == ——①对物体B ,利用牛顿定律a m F g m T 22=- ——② 有角量与线量之间的关系 αr a = 解得:9.422212=+=m m g m a m ·s -2(2)由②得 492)(2121=+=-=g m m m m a g m F T N4—3题图4-4如图,一定滑轮两端分别悬挂质量都是m 的物块A 和B ,图中R 和r ,已知滑轮的转动惯量为J ,求A 、B 两物体的加速度及滑轮的角加速度(列出方程即可)。
第四章 流体力学
#4-1如本题图,试由多管压力计中水银面高度的读数确定压力水箱中A 点的相对压强(P -P 0)。
(所有读数均自地面算起,其单位为米) 解:根据gh P ρ=得
)
-(汞7.08.103g P P ρ=- )-(水7.0232g P P ρ-=-
)-(汞9.0221g P P ρ=- )-(
-水9.05.21g P P ρ=- m g m g P P 9.22.20⨯⨯=-∴水汞-ρρ
4-2如本题图,将一充满水银的气压计下端浸在一个广阔的盛水银的容器中,其读数为 -2
5
m N 10950.0⋅⨯=p 。
(1)求水银柱的高度h 。
(2)
考虑到毛细现象后,真正的大气压强0p 多大? 已知毛细管的直径
m 100.23-⨯=d ,接触角π=θ,水银的表面张力系数-1m N 49.0⋅=σ。
解:(1)gh p ρ=
cm g p h 3.716
.138.910950.05≈⨯⨯==∴ρ
(2)Pa d p p 43
500106.9100.1cos 49.021095.02
cos 2'⨯=⨯⨯+⨯=+
=-π
θσ 4-3灭火筒每分钟喷出60m 3的水,假定喷口处水柱的截面积为1.5cm 2,问水柱喷到2m 高时其截面积有多大? 解:流量2211S v S v Q ==
且 gh v v 2212
2-=-
s m m s m S Q v /107.6105.1606032
43
11⨯≈⨯=
=∴- 2212235.42cm gh
v Q v Q S =-==
4-4油箱内盛有水和石油,石油的密度为0.9g /cm 3,水的厚度为1m ,油的厚度为4m 。
求水自箱底小孔流出的速度。
解:如图,流线上1、2点分别是油面和小孔处的两点。
根据伯努利方程
水
习题4-1图
习题4-2图
恒量=++p gh v ρρ2
2
1 得: 水水水油油gh v gh ρρρ-=2
2
1
s m h h g v /5.9)(
2≈+=∴水油水
油
ρρ 4-5一截面为5.0cm 2
的均匀虹吸管从容积很大的容器
中把水吸出。
虹吸管最高点高于水面1.0m ,出口在水下0.60m 处,求水在虹吸管内作定常流动时管内最高点的压强和虹吸管的体积流量。
解:如图选取C 点高度为零。
在流线上,A 是容器中水面一点,B 是虹吸管最高点,C 是出
水口一点。
根据伯努利方程
恒量=++p gh v ρρ2
21 得: 02
2122
1)(21p v p h h g v C B B +=+++ρρρ
又因为定常流动 S v S v Q C B ==
=
+-=∴)(210h h g p p B ρ02
0222
121p v p gh v C A +=++ρρρ 0=A v 22gh v C =
∴
341071.1m S v Q C -⨯≈=∴
4-7在一20cm ×30cm 的矩形截面容器内盛有深度为50cm 的水。
如果从容器底部面积
为2.0cm 2
的小孔流出,求水流出一半时所需的时间。
解:如图,流线AB 中A 、B 分别是任意时刻液面上和小孔处的两点。
根据伯努利方程得:
02
022
121p v p gh v B A +=++ρρρ 又 B B A A S v S v =
gh v S S B A
21212=⎥⎥⎦
⎤
⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛∴ (1) 上式两边同时对t 求导,得
A A
A B A gv dt dv
v S S 2122=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛
即 gdt dv S S A B A
=⎥⎥⎦
⎤
⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛12
1
2
油h 水h
1h
2h
A
C
B
h
A
B
两边同时积分,得
gt v v S S At A B A
=-⎥⎥⎦
⎤
⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛)(102
又因为由(1)得 当H h =时,⎥⎥⎦
⎤⎢⎢⎣⎡-⎪⎪⎭
⎫
⎝⎛=
122
0B
A A S S
gH v
当2
H
h =
时,⎥⎥⎦
⎤
⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛=12
B A At S S gH v
g H S S t 1)(
)12(221--=∴1.28)12(2
1≈-≈g
H
S S 4-8如本题图所示,在一高度为H 的量筒侧壁上开一系列高度h 不同的小孔。
试证明:当h =H /2时水的射程最大。
解:如图,流线AB 中A 、B 分别是水面上和小孔处的两点。
根据伯努利方程得:
02
02
1)(p v p h H g B +=+-ρρ
)(2h H g v B -=∴
g
h
t 2=
又
所以,射程)(4h H h t v S B -=
=
2
2)2
(42H h
H --=
∴当2
H
h =
时,水的射程最大。
4-9使机车能在行进时装水,所用的装置如本题图所示,顺着铁轨装一长水槽,以曲管引至机车上。
曲管之另一端浸入水槽中,且其开端朝向运动的前方。
试计算,火车的速度多大,才能使水升高5.1m ?
解:在曲管内取一流线,流线上1、2点分别是曲管上、下端口的两点。
根据伯努利方程得
0210222
1
21p gh v p v ++=+ρρρ 令 01=v 则 s m gh v /101.58.9222≈⨯⨯==
A B
习题4-8图
习题4-9图
4-10 密度为2.56g /cm 3、直径为6.0mm 的玻璃球在一盛甘油的筒中自静止下落。
若测得小球的恒定速度为3.1cm /s ,试计算甘油的粘滞系数。
甘油的密度为1.26g /cm 3。
解:小球在下落过程中受到浮力F 、黏性阻力f 和重力G 。
当以恒定速度运动时,受力平衡,即
G f F =+ 斯托克斯公式 vr f πη6= 333
4634r g vr r g
πρπηπρ球油=+∴ S P 82.018/)(a 2⋅=-=∴v gd 油球ρρη
4-11一半径为0.10cm 的小空气泡在密度为0.72×103kg /m 3、粘滞系数为0.11Pa ·s
的液体中上升,求其上升的终极速度。
解:小空气泡在上升过程中受到浮力F 和黏性阻力f (重力忽略)。
当受力平衡时,将以恒定速度m v 运动。
f F =,斯托克斯公式 r v f m πη6= 33
63
4r v r g
m πηπρ=∴液体 s m g r v m /1043.19222
-⨯==
∴液体ρη
4-12试分别计算半径为1.0×10-3mm 和5.0×10-2mm 的雨滴的终极速度。
已知空气的粘滞系数为1.81×10-5a ·s ,密度为1.3×10-3g /cm 3。
解:雨滴在下落过程中受到浮力F 、黏性阻力f 和重力G 。
当受力平衡时,将以恒定速度m v 运动。
G f F =+ , 斯托克斯公式 r v f m πη6= 3333
4634r g r v r g
m πρπηπρ空气雨+=∴ g r v m )-空气雨ρρη
(922
=
∴ 所以,mm r 3
1100.1-⨯=时,s m g r v m /102.19)
(242
11-⨯=-=
η
ρρ空气雨;
mm r 2
2100.5-⨯=时,s m g r v m /3.09)
(2222=-=
η
ρρ空气雨。