6第六章 明渠恒定非均匀流教程文件
- 格式:ppt
- 大小:658.50 KB
- 文档页数:14
第16讲(2课时)第六章 明渠恒定非均匀流明渠非均匀流特点:明渠大的底坡线、水面线、总水头线彼此互不平行。
产生非均匀流的原因:断面几何形状或尺寸沿流程改变,粗糙度或底坡沿流程改变,或有局部干扰。
分为渐变流和急变流。
分析水深的变化规律,)(s f h =;为区别将均匀流的水深称为正常水深,并以0h 表示。
★6-1 明渠水流的三种流态微波波速(相对速度)w V ,断面平均流速V 。
w V V <时,水流为缓流,干扰波能向上游传播; w V V =时,水流为临界流,干扰波不能向上游传播; w V V >时,水流为急流,干扰波不能向上游传播。
由连续方程2)(V h h hV w ∆+=及能量方程gV h h gV h w 2222221αα+∆+=+,可得:gh h h h h gh V w ≈∆+∆+=)2/1()/1(2,若为任意断面时,h g V w =,B A h /=平均水深。
定义佛汝德数(Froude ), hg V Fr =则:当Fr<1时,水流为缓流;当Fr=1时,水流为临界流;当Fr>1时,水流为急流。
佛汝德数的物理意义是,一单位动能与单位势能之比的两倍开方;二惯性力与重力的对比。
★6-2 断面比能与临界水深一、断面比能、比能曲线断面比能:以渠底为基准面,所计算得到的单位总能量,以s E 表示。
2222222cos gAQ h gV h gV h E s αααθ+=+≈+=当流量和过水断面的形状尺寸一定时,断面比能仅是水深的函数。
即)(h f E s =。
比能曲线:断面比能随水深变化的关系曲线。
以h 为纵坐标,以比能为横坐标。
比能曲线特征:当0→h 时,0→A ,则∞→222gAQ α,故∞→s E ;当∞→h 时,∞→A ,则0222→gA Q α,故∞→s E 。
比能曲线是一支二次抛物线,曲线的下端以水平线为渐进线,上端以过原点的45度直线为渐进线。
有一最小值,将曲线分为两支。
第六章 明渠恒定非均匀流明渠中由于水工建筑物的修建、渠道底坡的改变、断面的扩大或缩小等都会引起非均匀流动。
非均匀流动是断面水深和流速均沿程改变的流动。
非均匀流的底坡线、水面线、总水头线三者互不平行。
根据流线不平行的程度,同样可将水流分为渐变流和急变流。
明渠非均匀流的水面曲线有雍水和降水之分,即渠道的水深沿程可升可降。
解决明渠非均匀流问题的思路:建立微分方程,进行水面曲线的定性分析和定量计算。
第一节 明渠水流的两种流态及其判别一、从运动学观点研究缓流和急流1、静水投石,以分析干扰波在静水中的传播干扰波在静水中的传播速度称为干扰波波速和微波波速,以w v表示。
如果投石子于流水之中,此时干扰所形成的波将随着水流向上、下游移动,干扰波传播的速度应该是干扰波波速wv 与水流速度v 的矢量和。
此时有如下三种情况。
(1)wv v <,此时,干扰波将以绝对速度0<-='w v v v 上向上游传播(以水流速度v的方向为正方向讨论),同时也以绝对速度0>+='w v v v 下向下游传播,由于下上v v '<',故形成的干扰波将是一系列近似的同心圆。
(2)wv v =,此时,干扰波将向上游传播的绝对速度0=-='w v v v 上,而向下游传播的绝对速度02>=+='w w v v v v 下,此时,形成的干扰波是一系列以落入点为平角的扩散波纹向下游传播。
(3)wv v >,此时,干扰波将不能向上游传播,而是以绝对速度0>-='w v v v 上向下游传播,并与向下游传播的干扰波绝对速度0>+='w v v v 下相叠加,由于下上v v '<',此时形成的干扰波是一系列以落入点为顶点的锐角形扩散波纹。
这样一来,我们就根据干扰波波速wv 与水流流速v 的大小关系将明渠水流分为如下三种流态——缓流、急流、临界流。
水力学教案第六章明槽恒定流动【教学基本要求】1、了解明槽水流的分类与特征,了解棱柱体渠道的概念,掌握明槽底坡的概念与梯形断面明渠的几何特征与水力要素。
2、了解明槽均匀流的特点与形成条件,熟练掌握明槽均匀流公式,并能应用它来进行明渠均匀流水力计算。
3、理解水力最佳断面与允许流速的概念,掌握水力最佳断面的条件与允许流速的确定方法,学会正确选择明渠的糙率n值。
4、掌握明槽均匀流水力设计的类型与计算方法,能进行过流能力与正常水深的计算,能设计渠道的断面尺寸。
5、掌握明渠水流三种流态(急流、缓流、临界流)的运动特征与判别明渠水流流态的方法,理解佛汝德数Fr的物理意义。
6、理解断面比能、临界水深、临界底坡的概念与特性,掌握矩形断面明渠临界水深h k的计算公式与其它形状断面临界水深的计算方法。
7、了解水跃与水跌现象,掌握共轭水深的计算,特别就是矩形断明渠面共轭水深计算。
8、能进行水跃能量损失与水跃长度的计算。
9、掌握棱柱体渠道水面曲线的分类、分区与变化规律,能正确进行水面线定性分析,了解水面线衔接的控制条件。
10、能进行水面线定量计算。
11、了解缓流弯道水流的运动特征。
【内容提要与教学重点】这一章就是工程水力学部分内容最丰富也就是实际应用最广泛的一章。
本章有4个重点:明渠均匀流水力计算;明渠水流三种流态的判别;明渠恒定非均匀渐变流水面曲线分析与计算,这部分也就是本章的难点;水跃的特性与共轭水深计算。
学习中应围绕这4个重点,掌握相关的基本概念与计算公式。
明渠水流的复杂性在于有一个不受边界约束的自由表面,自由表面能随上下游的水流条件与渠道断面周界形状的变化而上下变动,相应的水流运动要素也发生变化,形成了不同的水面形态。
6、1 明槽与明槽水流的几何特征与分类(1)明槽水流的分类明槽恒定均匀流明槽恒定非均匀流(包括渐变流与急变流)明槽非恒定流明槽非恒定流一定就是非均匀流。
明槽非均匀流根据其流线不平行与弯曲的程度,又可以分为渐变流与急变流。
第六章 明渠恒定非均匀流考点一 明渠恒定非均匀流产生的条件及特点1、明渠恒定非均匀流的产生当明渠底坡或粗糙系数沿程变化,或渠道的横断面形状(或尺寸)沿程变化,或在明渠中修建水工建筑物(闸、桥梁、涵洞等)使明渠中的流速和水深发生变化,这些均会在明渠中形成非均匀流。
2、非均匀流的特点非均匀流的特点是明渠的底坡、水面线、总水头线彼此互不平行。
也就是说,水深和断面平均流速v 沿程变化,流线间互不平行,水力坡度线、测压管水头线和底坡线彼此间不平行。
3、主要任务研究明渠恒定非均匀流的主要任务是:(1)定性分析水面线;(2)定量计算水面线。
考点二 明渠水流的三种流态及其判别1、明渠水流的三种流态一般明渠水流有三种流态,即缓流、临界流和急流。
(1)缓流:当水深较大,流速较小,渠道中有障碍物时将会产生干扰波,这时干扰波既能向上游传播也能向下游传播,这种水流流态称为缓流。
(2)急流:当水深较浅,流速较大,渠道中遇障碍物时,同样也产生干扰波,但这种干扰波只能向下游传播,这种水流流态称为急流。
(3)临界流:在缓流和急流之间还存在另一种流动,那就是水流流速与干扰波的波速相等,此时干扰波只能向下游传播,这种水流流态称为临界流,临界流的流动形态不稳定。
2、明渠水流流态的判断方法 (1)微波流速法波速法是只要比较水流的断面平均流速v 与微波的相对速度w v 的大小,就可以判断干扰波是否会向上游传播,也可以判断水流是属于哪一种流态。
当 w v v <时,水流为缓流,干扰波能向上游传播w v v =时,水流为临界流,干扰波不能向上游传播 w v v >时,水流为急流,干扰波不能向上游传播明渠中波速的计算公式为矩形渠道 gh v w =其他渠道 h g B gA v w ==/在断面平均流速为v 的水流中,微波传播的绝对速度绝w v 应是静水中的相对波速w v 与水流速度的代数和,即h g v v v w w ±=±=v 绝式中,微波顺水流方向传播的绝对速度用“+”号,微波逆水流方向传播的绝对速度用“-”号。
第六章明渠恒定均匀流人工渠道、天然河道以及未充满水流的管道等统称为明渠。
明渠流(Open Channel Flow)是一种具有自由表面的流动,自由表面上各点受当地大气压的作用,其相对压强为零,所以又称为无压流动。
与有压管流不同,重力是明渠流的主要动力,而压力是有压管流的主要动力。
明渠水流根据其水力要素是否随时间变化分为恒定流和非恒定流动。
明渠恒定流动又根据流线是否为平行直线分为均匀流和非均匀流。
明渠流动与有压管流的一个很大区别是:明渠流的自由表面会随着不同的水流条件和渠身条件而变动,形成各种流动状态和水面形态,在实际问题中,很难形成明渠均匀流。
但是,在实际应用中,如在铁路、公路、给排水和水利工程的沟渠中,其排水或输水能力的计算,常按明渠均匀流处理。
此外,明渠均匀流理论对于进一步研究明渠非均匀流也具有重要意义。
§6-1 概述1.明渠的分类由于过水断面形状、尺寸与底坡的变化对明渠水流运动有重要影响,因此在水力学中把明渠分为以下类型。
(1)棱柱形渠道和非棱柱形渠道凡是断面形状及尺寸沿程不变的长直渠道,称为棱柱形渠道,否则为非棱柱形渠道。
前者的过水断面面积A仅随水深h变化,即A=f(h);后者的过水断面面积不仅随水深变化,而且还随着各断面的沿程位置而变化,即A=f(h,s),s为过水断面距其起始断面的距离。
(2)顺坡(正坡)、平坡和逆坡(负坡)渠道明渠渠底线(即渠底与纵剖面的交线)上单位长度的渠底高程差,称为明渠的底坡(Bottom slope),用i表示,如图6-1a,1-1和2-2两断面间,渠底线长度为Δs,该两断面间渠底高程差为(a1-a2)=Δa,渠底线与水平线的夹角为θ,则底坡i为。
图6-1θsin 21=∆∆=∆-=sas a a i (6-1-1) 在水力学中,规定渠底高程顺水流下降的底坡为正,因此,以导数形式表示时应为dsdai -= (6-1-2) 当渠底坡较小时,例如i <0.1或θ<6°时,因两断面间渠底线长度Δs ,与两断面间的水平距离Δl ,近似相等,Δs ≈Δl ,则由图6-1a 可知θtan =∆∆≈∆∆=la s a ii=sin θ≈tg θ (6-1-3) 所以,在上述情况下,两断面间的距离Δs 可用水平距离Δl 代替,并且,过水断面可以看作铅垂平面,水深h 也可沿铅垂线方向量取。