武汉大学2013年《信号与系统》试卷(A)
- 格式:doc
- 大小:404.00 KB
- 文档页数:7
试卷及答案信号与系统试卷(1)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共2页一一线性非时变离散系统,具有一初始状态x(0),当激励为时f(k),响应为y(k)=((1/2)k+1)u(k);若初始状态不变,当激励为-f(k)时,响应y(k)=((-1/2)k-1)u(k)为;试求当初始状态2x(0)为,激励为4f(k)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。
(8分)t(2). 试概略画出信号y(t)=u(t 2-4) 的波形图。
(8分)三 计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2))dt (4分) (2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h (t) (8分)(3). f(k)=1, k=0,1,2,3, h(k)=1, k=0,1,2,3, y(k)=f(k)*h (k) (8分) (4) 已知f(t)=e -2t u(t), 求y(t)=[t f(2t)] 的富立叶变换 (8分) (5)y’(t)+2y(t)=δ(t)+u(t), y(0)=0, 试求y(t)=? (8分) (6). y(k)-y(k-1)-2y(k-2)=u(k)+2u(k-2), y(-1)= 2,y(-2)= -1/2, 试求零输入响应y x (k)=? 零状态响应y f (k)=? (8分)四 一线性非时变因果系统,当激励为u(t)时,响应为)]2()([cos )(cos )(ππ---+=-t u t u t t tu e t g t ,求当激励f(t)=δ(t)时的响应)(t h 。
(10分)五 某一子系统,当输入f(t)=e -t u(t)时,零状态响应y f (t) = (1/2 e -t - e -2t +1/2e -3t )u(t), 试求将两个这样的子系统串联时,总系统的冲激响应。
信号与系统期末考试试题一、选择题(共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的)1、 卷积f 1(k+5)*f 2(k-3) 等于 。
(A )f 1(k)*f 2(k) (B )f 1(k)*f 2(k-8)(C )f 1(k)*f 2(k+8)(D )f 1(k+3)*f 2(k-3)2、 积分dt t t ⎰∞∞--+)21()2(δ等于 。
(A )1.25(B )2.5(C )3(D )53、 序列f(k)=-u(-k)的z 变换等于 。
(A )1-z z (B )-1-z z (C )11-z (D )11--z 4、 若y(t)=f(t)*h(t),则f(2t)*h(2t)等于 。
(A ))2(41t y (B ))2(21t y (C ))4(41t y (D ))4(21t y 5、 已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+)(t δ,当输入f(t)=3e —t u(t)时,系统的零状态响应y f (t)等于(A )(-9e -t +12e -2t )u(t) (B )(3-9e -t +12e -2t )u(t)(C ))(t δ+(-6e -t +8e -2t )u(t) (D )3)(t δ +(-9e -t +12e -2t )u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性(C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A ) 1(B )2(C )3(D )48、序列和()∑∞-∞=-k k 1δ等于 (A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()s e ss s F 2212-+=的愿函数等于 10、信号()()23-=-t u te t f t 的单边拉氏变换()s F 等于二、填空题(共9小题,每空3分,共30分)1、卷积和[(0.5)k+1u(k+1)]*)1(k -δ=________________________2、单边z 变换F(z)=12-z z 的原序列f(k)=______________________3、已知函数f(t)的单边拉普拉斯变换F(s)=1+s s ,则函数y(t)=3e -2t ·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、单边拉普拉斯变换s s s s s F +++=2213)(的原函数f(t)=__________________________6、已知某离散系统的差分方程为)1(2)()2()1()(2-+=----k f k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=20)()(t dx x f t y 的单边拉氏变换Y(s)=______________________________8、描述某连续系统方程为该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三、(8分)四、(10分)如图所示信号()t f ,其傅里叶变换 ()()[]t f jw F F =,求(1) ()0F (2)()⎰∞∞-dw jw F 六、(10分)某LTI 系统的系统函数()1222++=s s s s H ,已知初始状态()(),20,00=='=--y y 激励()(),t u t f =求该系统的完全响应。
考试课程:信号与系统试卷类别:A卷 B卷□ 考试形式:闭卷开卷□适用专业年级: 11级电子信息工程,11级电子信息科学与技术,11级电子科学与技术班级姓名学号装订线题号一二三四五六七八九十总分得分一、选择题 10%,每题2分得分1、()信号是下列哪种运算的结果:A.右移2 B.左移2C.右移4 D.左移1/22、()以下哪个信号具有周期性:A. B.C.D.3、()理想低通滤波器是:A.因果系统,物理可实现 B.因果系统,物理不可实现C.非因果系统,物理可实现D.非因果系统,物理不可实现4、()下列信号的分类不正确的是:A.确定信号和随机信号 B.周期信号和非周期信号C.因果信号和反因果信号D.数字信号和离散信号5、()已知信号f (t)如下图所示,其傅里叶变换为F(j),则F(0)为A.2 B.C. D.4二、填空题 20%,每题2分得分1、若信号,则此信号的平均功率P=____________。
2、3、已知序列的z变换,当的收敛域为____________时,是因果序列。
4、某系统的零状态响应为y[k]=3f[k]-4,则此系统______(填是或否)线性的_____________(填稳定或不稳定)系统5、对应的拉普拉斯变换为_____________________。
6、某离散LTI系统的h(k) ={ 2 ,1 ,5},则当激励为f (k) ={ 0,3 ,4, 6}↑k=0 ↑k=0时系统的零状态响应__________________________________________________。
7、一连续LTI系统的单位阶跃响应,则此系统的单位冲激响应h(t)=______________________。
8、有限频带信号f(t)的最高频率为200Hz,则对的最小取样频率:___________。
9、已知某因果LTI系统的有两个极点,一个位于S平面的左半开平面,一个位于右半开平面,则__________。
《信号与系统》期末试题A 参考答案及评分细则电子信息工程和通信工程专业 一、填空题(每空2分,部分正确得1分,共26分)1.2;2.01t j ej ωαω-+; 3.)()(32t u eett---; 4.22(2)(2)1s s s ++++-;5.)2()2(2---t u et ; 6.32(3)n u n --; 7. (3)(1)n u n ----; 8.单位圆内;9.1K >; 10.40 80; 11.0、2;二、解:425.0===TT s πωπ(1))(t f s 的频谱图和输出)(t r 的频谱图如图所示:(6分)(2)由图可知)(2)(ωπωF R =,故有)(2)(t f t r π=(2分)三、解:(本题10分)(1)2(2)()[(1)9](2)s s H s H s s -=+++( 2分)0(0)lim ()2s h sH s H +→∞=== (2 分)22(2)()[(1)9](2)s s H s s s -∴=+++ ( 1分)(2)幅频特性曲线如图所示:(3 分) 通频特性为带通。
( 2分)四、解:3212()()(2)zH z z z -=-- (1)收敛域的三种情况:2z >12z <122z << (2分)(2) 12()2z zH z z z =--- (2分)2z >时 12()[()2]()nnh n u n =- 系统因果不稳定 (2分) 12z <时 12()[()2](1)nn h n u n =-+-- 系统非因果不稳定 (2分)122z <<时12()()()2(1)nnh n u n u n =+-- 系统非因果稳定 (2分)五、求解各题1.(1)电路的S 域模型为:525)(2++=s s s H (3分)极、零点图如图所示: (2分)极点位于左半平面系统是稳定系统。
华侨大学信息科学与工程学院《信号与系统》期末考试试卷(A 卷)题 目 一 总 分 核分人 复查人 得分题目部分,(卷面共有100题,100分,各大题标有题量和总分)评卷人 得分一、解答题(100小题,共100分)1.画出下列各复合函数的波形。
(1)21()(4)f t U t =- (2)22()sgn(1)f t t =- (3)3()sgn[cos()]f t t π=2.分别判断题图所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?3.若输入信号为0cos()t ω,为使输出信号中分别包含以下频率成分:(1)0cos(2)t ω (2)0cos(3)t ω (3)直流请你分别设计相应的系统(尽可能简单)满足此要求,给出系统输出与输入的约束关系式。
讨论这三种要求有何共同性、相应的系统有何共同性。
4.电容1C 与2C 串联,以阶跃电压源()()t Eu t υ=串联接入,试分别写出回路中的电流()i t 及每个电容两端电压1()C t υ、2()C t υ的表示式。
5.求图所示电路中,流过电阻R 中的稳态电流i(t)恒为零时激励电压0sin ()t U t ω中的ω值。
6.已知12,2()0,2t t f t t ⎧-≤⎪=⎨>⎪⎩,2()(5)(5)f t t t δδ=++-,3()(1)(1)f t t t δδ=++-,画出下列各卷积的波形。
(1)112()()()s t f t f t =* (2)2122()()()()s t f t f t f t =** (3)313()()()s t f t f t =*7.如图所示电路,激励信号()sin ()e t U t =电感起始电流为零,求响应0()u t ,指出其自由响应和强迫响应分量,大致画出波形。
8.求下图所示系统的单位冲激响应()h t 。
9.已知1()1p H p p-=+,()()te t e U t =-求零状态响应并粗略画出输入输出波形。
信号与系统试题及答案一、选择题1.在信号的描述中,连续变量而将定义域是有限的信号称为()。
A.连续信号B.离散信号C.周期信号D.非周期信号答案:B2.信号的傅里叶变换(Fourier Transform,FT)是信号处理中常用的分析方法,其定义为()。
A.连续时间歧波函数B.非周期连续时间信号C.连续时间冲激函数D.连续时间信号答案:D3.对于离散时间信号,其傅里叶变换可以采用()来表示。
A.傅里叶级数展开B.离散时间傅里叶变换C.拉普拉斯变换D.傅里叶变换答案:B4.信号的卷积运算在信号处理中起着重要的作用,下面关于卷积的叙述中,哪一项是错误的?A.卷积运算是线性运算B.卷积运算是可交换的C.卷积运算是可结合的D.卷积运算是时不变的答案:B二、填空题1.连续时间信号x(t)的自相关函数定义为()。
答案:R_xx(tau) = E[x(t)x(t-tau)]2.离散时间信号x[n]的傅里叶变换定义为()。
答案:X(e^jw) = ∑(n=-∞)^(∞) x[n]e^(-jwn)3.周期信号x(t)的复指数傅里叶级数展开公式为()。
答案:x(t) = ∑(k=-∞)^(∞) c_ke^(jwt)4.信号x(t)和h(t)的卷积定义为()。
答案:(x*h)(t) = ∫[(-∞)-(∞)] x(tau)h(t-tau)dtau三、解答题1.连续时间信号与离散时间信号的区别是什么?答:连续时间信号是在连续的时间域上定义的信号,可以取连续的值;而离散时间信号是在离散的时间点上定义的信号,只能取离散的值。
2.请简要解释信号的功率谱密度是什么。
答:功率谱密度是描述信号功率在频域上的分布情况,可以看作是傅里叶变换后信号幅度的平方。
它表示了信号在不同频率上的功率强度,可以用于分析信号的频谱特性。
3.请简述卷积运算在信号处理中的应用。
答:卷积运算在信号处理中十分常见,主要应用于线性时不变系统的描述。
通过卷积运算,可以计算输入信号与系统的响应之间的关系,从而对信号进行滤波、去噪等处理操作。
试卷及答案信号与系统试卷(1)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共2页一一线性非时变离散系统,具有一初始状态x(0),当激励为时f(k),响应为y(k)=((1/2)k+1)u(k);若初始状态不变,当激励为-f(k)时,响应y(k)=((-1/2)k-1)u(k)为;试求当初始状态2x(0)为,激励为4f(k)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。
(8分)X(t)21t(2). 试概略画出信号y(t)=u(t 2-4) 的波形图。
(8分)三 计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2))dt (4分) (2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h (t) (8分)(3). f(k)=1, k=0,1,2,3, h(k)=1, k=0,1,2,3, y(k)=f(k)*h (k) (8分) (4) 已知f(t)=e -2t u(t), 求y(t)=[t f(2t)] 的富立叶变换 (8分) (5)y’(t)+2y(t)=δ(t)+u(t), y(0)=0, 试求y(t)=? (8分) (6). y(k)-y(k-1)-2y(k-2)=u(k)+2u(k-2), y(-1)= 2,y(-2)= -1/2, 试求零输入响应y x (k)=? 零状态响应y f (k)=? (8分)四 一线性非时变因果系统,当激励为u(t)时,响应为)]2()([cos )(cos )(ππ---+=-t u t u t t tu e t g t ,求当激励f(t)=δ(t)时的响应)(t h 。
(10分)五 某一子系统,当输入f(t)=e -t u(t)时,零状态响应y f (t) = (1/2 e -t - e -2t +1/2e -3t )u(t), 试求将两个这样的子系统串联时,总系统的冲激响应。
《信号与系统》期末试卷A 卷班级: 学号:__________ 姓名:________ _ 成绩:_____________一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 D 。
A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 C 。
A.因果时不变B.因果时变C.非因果时不变D. 非因果时变3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u et h t,该系统是 A 。
A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 D 。
A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 B 。
A.tt22sin B.t t π2sin C. t t 44sin D. ttπ4sin 6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 A 。
A.∑∞-∞=-k k )52(52πωδπB. ∑∞-∞=-k k)52(25πωδπ C. ∑∞-∞=-k k )10(10πωδπD.∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为C 。
A. )}(Re{ωj eX j B. )}(Re{ωj e X C. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 D 。
A. 500 B. 1000 C. 0.05D. 0.0019、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 C 。
中山大学考试卷(A卷)课程:信号与系统(闭卷)(2013/06)专业 _____________ 班级 ___________ 姓名 ______________ 学号 ____________________一. 选择题(每小题2分,共20分)1 •连续信号f(t)与务(t-to)的乘积,即f(t)6(t—t o)= ______________(a) f(t°)、(t) (b) f(t-t。
) (c)、(t) (d) f(t o)、(t-t o)2. ______________________________________________________ 离散信号f(k)与6 (k-k。
)的卷积,即f(k)*6(k-k°)= ____________________________________________________ 。
(a) f(k) (b) f(k-k。
) (c) ;(k) (d)、(k-k°)3. ____________________________ 系统无失真传输的条件是。
(a)幅频特性等于常数(b)相位特性是一通过原点的直线(c)幅频特性等于常数,相位特性是一通过原点的直线(d)幅频特性是一通过原点的直线,相位特性等于常数4. _______________________________________________________________ 已知f(t)的傅里叶变换F(j^),贝M言号f(2t-5)的傅里叶变换是 _________________________________ 。
. . . 5 . 5(a) 1F(j )e^^ (b) F(j )e" (c) F(j )J2' (d) ?F(j)「2'2 2 2 2 2 25 .若Z变换的收敛域是IzpF^则该序列是 ____________________ 。
武汉大学考试卷(A 卷)课程:信号与系统(闭卷)(2013/06)专业 班级 姓名 学号一. 选择题(每小题2分,共20分)1.连续信号)(t f 与)(0t t -δ的乘积,即=-)()(0t t t f δ_______。
(a) )()(0t t f δ (b) )(0t t f - (c) )(t δ (d) )()(00t t t f -δ 2.离散信号()f k 与0()k k δ-的卷积,即0()()f k k k δ*-=_______。
(a) ()f k (b) 0()f k k - (c) ()k δ (d) 0()k k δ- 3.系统无失真传输的条件是_______。
(a) 幅频特性等于常数 (b) 相位特性是一通过原点的直线 (c) 幅频特性等于常数,相位特性是一通过原点的直线 (d) 幅频特性是一通过原点的直线,相位特性等于常数4.已知()f t 的傅里叶变换()F j ω,则信号(25)f t -的傅里叶变换是_______。
(a) 51()22j j F e ωω- (b) 5()2j j F e ωω-(c) 52()2j j F e ωω- (d) 521()22j j F e ωω-5.若Z 变换的收敛域是 1||x z R > 则该序列是_______。
(a) 左边序列 (b)右边序列 (c)双边序列 (d) 有限长序列6.已知某系统的系统函数()H s ,唯一决定该系统单位冲激响应()h t 函数形式的是_______。
(a) ()H s 的极点(b) ()H s 的零点 (c)系统的输入信号(d) 系统的输入信号与()H s 的极点7.已知某信号()f t的傅里叶变换为2()2() F jjωπδωω=+,则该信号的导数()f t'的拉普拉斯变换及其收敛域为_______。
(a) 2,σ-∞<<∞(b)21,0sσ+>(c)2,0sσ>(d)22,0sσ>8.若离散时间系统是因果稳定的,则它的系统函数的极点_______。
(a) 全部落于单位圆外(b) 全部落于单位圆上(c) 全部落于单位圆内(d) 上述三种情况都不对9.已知(),zF z z az a=<-,其对应的离散时间信号为_______。
(a) ()ka kε--(b) (1)ka kε---(c)()ka kε-(d) (1)ka kε--10.对信号sin()()tf ttππ=进行抽样,则其奈奎斯特抽样间隔为______。
(a) 1毫秒(b) 1秒(c) 0.5秒(d) 2秒二、(10分)已知信号1(1)2f t-+的波形如图1所示,画出信号()f t的波形。
图1解:三、(12分)已知()(1)()kkf t t kδ∞=-∞=--∑得分得分(1)画出()f t的波形;(2)求()f t的傅里叶变换()F jω并画出其频谱波形。
解:(1)()f t为周期信号,周期2T=(2)()f t的基波频率2 TππΩ==,其傅里叶级数系数22[()(1)]1(1)jn t nnA t t e dtTπδδ•-=--=--⎰则其傅里叶变换()()[1(1)]()nnn nF j A n nωπδωπδωπ∞∞=-∞=-∞=-Ω=---∑∑&四、(15分)如图2所示系统,已知sin2()()cos3tf t s t tt==,,1||3/()0||3/rad sH jrad sωωω<⎧=⎨>⎩,,画出(),(),(),()f t s t x t y t的频谱图,并求系统的输出()y t。
图2解:4sin2()22()()tf t Sa t F j Gtωπω==↔=()()3()[(3)(3)]s t cos t S jωπδωδω=↔=++-得分0 π。
wF(jw)π-3π-3π(2)π1-1-2 2。
tf(t)11()()()()3()(3)(3)22x t f t s t f t cos t X j F j j F j j ωωω==↔=++- 44()(3)(3)22X j G G ππωωω=++- 22()()()(2)(2)22Y j X j H j G G ππωωωωω==++-22sin ()()()*[(2)(2)]()2sin ()cos 2tSa t G tG Y j ty t ttπωπωπδωδωωπ=↔++-=∴=Q五、(15分)某线性时不变系统如图3所示,已知当()()e t t ε=时,全响应22115()()()426t t r t e te t ε--=--(1)求系统的输入输出方程;(2)求单位冲激响应()h t ;(3)求零输入响应()zi r t 和零状态响应()zs r t 。
图 3 解:(1)由框图可得:()442s+1H s s s =++则系统的输入输出方程为:()4()4()()()r t r t r t e t e t ''''++=+r(t)(2)因为 2211()2)2(2)s+1H s (s s s ==-+++ 所以 2()(1)()t h t t e t ε-=-(3)由于1()E s s=221111442()()()(2)2(2)zs s R s H s E s s s s s s +===-++++ 故 221()(12)()4t t zs r t e te t ε--=-+则 214()()()()()43t zi zs r t r t r t t e t ε-=-=-+六、(12分)反馈系统如图4所示,(1)求系统函数()()()R s H s E s =; (2)求使系统稳定的K 值范围;(3)求系统处于临界稳定时的阶跃响应()r t ε,并指出其中的强迫响应分量和自然响应分量。
图4解:(1) 2(2)()(2)(1)(3)()(2)()(2)231(1)(3)k s R s k s s s H s k s E s s k s k s s +++-===++-+-++-(2)当20230k k ->⎧⎨->⎩,即2k >时系统稳定。
(3)当2k =时,系统处于临界稳定,此时224()1s H s s +=+ 222124442()()(1)11s s R s H s s s s s s s ε+===-++++{()4()4cos ()2sin ()r t t t t t t εεεε=-+14444244443强迫响应分量自由响应分量七、(10分)已知某因果离散系统的系统函数()H z 的极零图如图5所示,且系统单位函数响应()h k 的初值(0)2h =。
(1)确定该系统的系统函数()H z 及其收敛域; (2)求单位函数响应()h k ,并说明系统的稳定性。
图5解:(1)0(1)()(3)(1)z zH z H z z +=+-00(1)(1)(0)lim lim 2(3)(1)(3)(1)z z z z z zh H H H z z z z →∞→∞++====+-+-222(1)22(),:3(3)(1)23z z z zH z ROC z z z z z ++∴==>+-+- (2)()31z zH z z z =++- ()[(3)1]()k h k k ε=-+该系统不稳定。
八、(8分)已知某稳定的离散系统的差分方程为10(1)()(1)()3y k y k y k x k --++=,(1)求系统的单位函数响应()h k ; (2) 说明系统的因果性;(3) 给定初始条件(0)1,(1)2y y ==,求零输入响应()zi y k .解: (1) 231()[],3101833133z z z H z z z z z z ==-<<--+-故 3()[(3)(1)3()]8k k h k k k εε-=---+(2) 系统是非因果的。
(3) 设12()3()3()k k zi y k c k c k εε-=+则有121122518133238c c c c c c ⎧+==⎧⎪⎪⎪⇒⎨⎨+=⎪⎪=⎩⎪⎩于是 53()3()3()88k k zi y k k k εε-=+(资料素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)。