【精品】泰勒公式的证明及其应用
- 格式:doc
- 大小:764.00 KB
- 文档页数:24
一.摘要 (3)前言 (3)二、泰勒公式极其极其证明........................ (3)(一)带有皮亚诺型余项的泰勒公式 (3)(二)带有拉格朗日型余项的泰勒公式 (4)(三)带有柯西型余项的泰勒公式 (5)(四)积分型泰勒公式 (6)(五)二元函数的泰勒公式 (7)三、泰勒公式的若干应用 (8)(一)利用泰勒公式求极限 (8)(二)利用泰勒公式求高阶导数 (9)(三)利用泰勒公式判断敛散性 (10)(四)利用泰勒公式证明中值定理 (12)(五)利用泰勒公式证明不等式 (13)(六)利用泰勒公式求近似和值误差估计 (15)(七)利用泰勒公式研究函数的极值 (16)四、我对泰勒公式的认识 (16)参考文献 (17)英文翻译 (17)Taylor 公式的证明及应用【摘要】数学中的著名的公式都是一古典的数学问题,它们在数学,化学与物理领域都有很广泛的运用。
在现代数学中Taylor 公式有着重要地位,它对计算极限,敛散性的判断,不等式的证明、中值问题及高阶导的计算以及近似值的计算等方面都有很大的作用。
在本文中,我将谈到关于公式的几种形式及其证明方法并对以上几个方面进一步的运用,和我对几者之间的一些联系和差异的看法。
并通过具体事例进行具体的说明相关运用方法 【关键词】泰勒公式 佩亚诺余项 拉格朗日余项 极限 级数1、常见Taylor 公式定义及其证明我们通常所见的Taylor 公式有皮亚诺型、拉格朗日型、柯西型与积分型,还有常用的二元函数的Taylor 公式和高阶函数的Taylor 公式。
定义:设函数存在n 阶导数,由这些导数构成n 次多项式,称为函数在该点处的泰勒多项式各项系数称为泰勒系数。
1.1首先是带皮亚诺型余项的Taylor 公式:若函数f 在点0x 存在且有n 阶导数,则有0()()(())n n f x T x x x =+ο-即"'200000()()()()()()2!f x f x f x f x x x x x =+-+-+⋯()00()()!n n f x x x n +-0(())n x x +ο-. (2) 其中()n T x 是由这些导数构造的一个n 次多项式,"()'20000000()()()()()()()()2!!n n n f x f x T x f x f x x x x x x x n =+-+-+⋯+- (3)称为函数f 在点0x 处的Taylor 多项式,()n T x 的各项系数()0()!k f x k (1,2,,)k n =⋯称为Taylor 系数。
泰勒公式的证明及应用作者:李晟威来源:《课程教育研究》2018年第42期【摘要】本篇论文主要讲述了泰勒公式的发展历程,并且通过柯西中值定理来对泰勒公式进行推导。
随后结合实际例子来说明泰勒公式在数值计算以及极限推导中的应用。
最后探究了泰勒公式演化出牛顿迭代法数值计算方法和计算逻辑。
【关键词】泰勒公式 ;导数 ;牛顿迭代法 ;罗尔中值定理 ;拉格朗日中值定理 ;柯西中值定理【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2018)42-0129-02当我们首次接触到泰勒公式及其定理时,我们会感觉到它的磅礴大气,但其实究其本质,这是一种让我们在实际问题中,用多项式函数去逼近光滑函数,并得到误差的方法。
那么这个伟大的公式是如何一步步被我们得到,以及进行运用的呢?一、泰勒公式的发展泰勒公式是以18世纪早期英国数学家泰勒(Brook Taylor)命名。
1708年,23岁的泰勒得到了“振动中心问题”的解,引起了人们的注意,在这个工作中他用了牛顿的瞬的记号。
1717年,泰勒以泰勒定理求解了数值方程。
本质来讲,泰勒公式是将函数用多项式来进行表示。
并且通过函数在某点的信息来描述点附近取值的公式。
如果函数是光滑的情况下,泰勒公式可以使用该点附近的各阶导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。
并且泰勒公式中通过柯西中值定理给出了这个多项式和实际的函数值之间的偏差。
在下面,我们将会对泰勒公式进行详细证明以及对其实际应用进行探讨。
二、泰勒公式及其证明定理:如果函数f(x)在x0的某个领域U(x0)内具有(n+1)阶导数,那么对任意x∈U(x0),有f(x)=f(x0)+f′(x0)(x-x0)+■(x-x0)2+…+■(x-x0)n+Rn(x)其中Rn(x)=■(x-x0)n+1,α为x0与x之间的某个值。
在证明泰勒公式的定理前,首先要介绍柯西中值定理的推导,而柯西中值定理可由罗尔中值定理推出,使用的是构造对应函数求导的方法,所以证明罗尔定理为第一步。
泰勒公式高中数学应用泰勒公式是数学中一种重要的数值逼近方法,常应用于高等数学、物理学等科学领域中。
它的基本思想是通过泰勒级数将一个函数在一些点处展开成无穷级数,从而在该点的邻域内用该级数来逼近原函数的值,从而简化计算或研究问题。
下面将介绍泰勒公式的原理以及在高中数学应用中的具体例子。
泰勒公式的原理:泰勒公式是将一个函数在其中一点的邻域内用无穷级数来表示的方法。
它利用函数在该点处的导数以及所有高阶导数来进行级数展开。
对于光滑函数f(x),在特定点a处的泰勒级数展开可以表示为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...这里f(a)为函数在点a处的函数值,f'(a)为一阶导数在点a处的函数值,f''(a)为二阶导数在点a处的函数值,依此类推。
可以看出,泰勒级数展开的每一项都是原函数在a点的一些导数乘以(x-a)的幂和阶乘的商。
泰勒级数展开常常会被截断为有限项,这样就得到了泰勒公式:f(x)≈f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...+f^n(a)(x-a)^n/n!这里n为截断的项数。
在高中数学中,泰勒公式主要应用于以下几个方面:1.函数逼近:在一些情况下,一些函数无法直接求出解析表达式,但是可以通过泰勒公式对其进行逼近计算。
比如,对指数函数exp(x)在x=0处进行泰勒级数展开:exp(x) = 1 + x + x^2/2! + x^3/3! + ...然后,可以通过截断泰勒级数并选取合适的项数,来逼近计算exp(x)的值。
这种方法同样适用于对三角函数、对数函数等的逼近计算。
2.函数极值:在高中数学的最优化问题中,经常需要求取函数的极值点。
泰勒公式可以辅助求解函数的极值点。
泰勒公式的证明及其应用XXX(XX 学校 XX 院 09级 XX 专业 2班)摘 要:泰勒公式是数学分析中的一部分重要内容。
本文论述了泰勒公式的基本内容,并着重从7个方面介绍了泰勒公式在数学分析和实际生活中的一些应用:利用泰勒公式证明恒等式和不等式,求极限和中值点的极限,还有应用在函数方程中,除此外,还可用泰勒公式求极值,研究函数图形的局部形态,从而更加清楚地认识泰勒公式的重要性.关键词:泰勒公式;极限;极值;中值点;函数;应用引言泰勒主要是从有限差分出发,得到格里戈里–牛顿插值公式,然后令初始变量为零,项数为无穷,但没有给出余项的具体表达式.随着后人的不断研究与完善,形成今天实用的泰勒公式.现代也有很多期刊和教材对这部分内容进行了介绍,对近似计算上的应用介绍也较全面,较系统,但在其它领域的应用则显简单,不系统,不全面,为了方便以后的学习,有必要对此部分内容进行归纳总结,而泰勒公式是一个多项式的拟合问题,而多项式是一种简单函数,它的研究对计算机编程计算极为方便.1 Taylor 公式首先看第一个问题,为了提高近似的精确程度,可以设想用一个x 的n 次多项式在0x 附近去逼近f ,即令()()()nn x x a x x a a x f 0010-++-+= (1.1)从几何上看,这表示不满足在0x 附近用一条直线(曲线()x f y =在点()()00,x f x 的切线)去代替()x f y =,而是想用一条n 次抛物线()()()nn x x a x x a a x f 0010-++-+= 去替代它.由此猜想在点()()00,x f x 附近这两条曲线可能会拟合的更好些,那么系数n a a a ,,10如何确定呢?假设f 本身就是一个n 次多项式,显然,要用一个n 次多项式去替代它,最好莫过它自身了,因此应当有()()()nn x x a x x a a x f 0010-++-+=于是得:()00x f a =求一次导数可得: ()01x f a '= 又求一次导数可得:()!202x f a ''= 这样进行下去可得:()()()()()!,,!4,!3004403n x f a x f a x f a n n =='''= 因此当f 是一个n 次多项式时,它就可以表成:()()()()()()()()()()k nk k nn x x k x f x x n x f x x x f x f x f 00000000!!-=-++-'+=∑= (1.2) 即0x 附近的点x 处的函数值()f x 可以通过0x 点的函数值和各级导数去计算.通过这个特殊的情形,得到一个启示,对于一般的函数f ,只要它在0x 点存在直到n 阶的导数,由这些导数构成一个n 次多项式()()()()()()()()()200000002!!nnn f x f x T x f x f x x x x x x x n '''=+-+-++-称为函数()f x 在点0x 处的泰勒多项式,()n T x 的各项系数()()()01,2,3,,!kf x k n k =,称为泰勒系,因而n 次多项式的n 次泰勒多项式就是它本身.2 泰勒公式的应用由于泰勒公式涉及到的是某一定点0x 及0x 处函数()0f x 及n 阶导数值:()0x f ',()()()00,,x f x f n '',以及用这些值表示动点x 处的函数值()f x ,本文研究泰勒公式的具体应用,比如证明中值公式,求极限等中的应用.2.1 应用Taylor 公式证明等式例1 设()f x 在[],a b 上三次可导,试证:(),c a b ∃∈,使得 ()()()()()1224a b f b f a f b a f c b a +⎛⎫''''=+-+- ⎪⎝⎭证明 (利用待定系数法)设k 为使下列式子成立的实数:()()()()310224a b f b f a f b a k b a +⎛⎫'-----= ⎪⎝⎭(2.1) 这时,问题归为证明,(),c a b ∃∈,使得:()k f c '''=令()()()()()31224a x g x f x f a f x a k x a +⎛⎫'=-----⎪⎝⎭,则()()0g a g b ==. 根据罗尔定理,(),a b ξ∃∈,使得()0g ξ'=,即:()()202228a a a k f f f a ξξξξξ++-⎛⎫⎛⎫''''----=⎪ ⎪⎝⎭⎝⎭ 这是关于k 的方程,注意到()f ξ'在点2a ξ+处的泰勒公式:()()()212228a a a f f f f c a ξξξξξ++-⎛⎫⎛⎫'''''''=++- ⎪ ⎪⎝⎭⎝⎭其中(),c a b ∃∈,比较可得原命题成立.例2 设()f x 在[],a b 上有二阶导数,试证:(),c a b ∃∈,使得()()()()31224baa b f x dx b a f f c b a +⎛⎫''=-+- ⎪⎝⎭⎰ (2.2) 证明 记02a bx +=,则()f x 在0x 处泰勒公式展开式为:()()()()()()200002f f x f x f x x x x x ξ'''=+-+- (2.3)对(2.3)式两端同时取[],a b 上的积分,注意右端第二项积分为0,对第三项的积分,由于导数有介值性,第一积分中值定理成立:(),c a b ∃∈,使得()()()()()()2300112bbaaf x x dx f c x x dx f c b a ξ''''''-=-=-⎰⎰ 因此原命题成立.从上述两个例子中得出泰勒公式可以用来证明一些恒等式,既可以证明微分中值等式,也可以证明积分中值等式,以后在遇到一些等式的证明时,不妨可以尝试用泰勒公式来证明,证明等式后我们在思考,它能否用来证明不等式呢?经研究是可以的,下面通过两个例子来说明一下.2.2 应用Taylor 公式证明不等式例3 设()f x 在[],a b 上二次可微,()0f x ''<,试证:12n a x x x b ∀≤≤<<≤,()1110,1,nn ni i i i i i i i i k k f k x k f x ===⎛⎫≥=> ⎪⎝⎭∑∑∑.证明 取01ni ii x k x ==∑,将()i f x 在0x x =处展开()()()()()()()()()200000002!i i i i i f f x f x f x x x x x f x f x x x ξ''''=+-+-<+-其中(1,2,3,.)i n =以i k 乘此式两端,然后n 个不等式相加,注意11nii k==∑()0110nniii ii i k x x k x x==-=-=∑∑得:()()011nn i i i i i i k f x f x f k x ==⎛⎫<= ⎪⎝⎭∑∑例4 设()f x 在[]0,1上有二阶导数,当01x ≤≤时,()(),2f x f x ''<.试证:当01x ≤≤时,()3f x '≤. 证明 ()f t 在x 处的泰勒展开式为:()()()()()()22!f f t f x f a t x t x ξ'''=+-+- 其中将t 分别换为1,0t t ==可得:()()()()()()21112!f f f x f x x x ξ'''=+-+- (2.4) ()()()()()()202!f f f x f x x x ψ'''=+-+- (2.5)所以(2.4)式减(2.5)()()()()()()221012!2!f f f f f x x x ξψ'''''-=+-- 从而()()()()()()()2222111012121322f x f f f x f x x x ξψ''''≤++-+≤+-+≤+= 由上述两个例子可以看出泰勒公式还可以用来证明不等式.例3说明泰勒公式可以根据题目的条件来证明函数的凹凸性,例4说明可以对某些函数在一定范围内的界进行估计,证明不等式有很多种方法,而学习了泰勒公式后,又增添了一种方法,在以后的学校中,要会灵活应用,但前提是要满足应用的条件,那就是泰勒公式成立的条件.2.3 应用Taylor 公式求极限例5 设函数()x ϕ在[),o +∞上二次连续可微,如果()x x ϕ+∞→lim 存在,且()x ϕ''在[),o +∞上有界,试证:()0lim ='+∞→x x ϕ. 证明 要证明()0lim ='+∞→x x ϕ,即要证:0,0εδ∀>∃>,当x M >时()x ϕε'<.利用Taylor 公式,0h ∀>,()()()()212x h x x h h ϕϕϕϕξ'''+=++ (2.6) 即()()()()112x x h x h hϕϕϕϕξ'''=+--⎡⎤⎣⎦ (2.7)记()x A x ϕ+∞→=lim ,因()x ϕ''有界,所以0M ∃>,使得()x M ϕ''≤ , ()0x ∀≥ 故由(2.7)知()()()()112x x h A A x h h ϕϕϕϕξ⎡⎤'''≤+-+-+⎣⎦ (2.8) 0ε∀>,首先可取0h >充分小,使得122Mh ε<,然后将h 固定,因()x A x ϕ+∞→=lim ,所以0δ∃>,当x δ>时()()12x h A A x h εϕϕ⎡⎤+-+-<⎣⎦ 从而由(2.8)式即得:()22x εεϕε'<+=,即()0lim ='+∞→x x ϕ例6 判断下列函数的曲线是否存在渐近线,若存在的话,求出渐近线方程.(1)y =(2)1521cos x y x e x -⎛⎫=- ⎪ ⎪⎝⎭. 解 (1)首先设所求的渐近线为y ax b =+,并令1u x=,则有:()()12330121lim lim x u u u a bu ax b u→∞→-+--⎤-=⎥⎦()0221133lim u u u a bu o u u →⎛⎫⎛⎫-+--+ ⎪⎪⎝⎭⎝⎭= ()01lim0u a bu o u u→--+== 从中解出:1,0a b ==。
泰勒公式的证明及应用work Information Technology Company.2020YEAR摘要:泰勒公式是数学分析中的重要组成部分,是一种非常重要的数学工具。
它集中体现了微积分“逼近法”的精髓,在微积分学及相关领域的各个方面都有重要的应用。
本文通过对泰勒公式的证明方法进行介绍,归纳整理其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用,从而进一步加深对泰勒公式的认识。
关键词:泰勒公式,佩亚诺余项,拉格朗日余项,验证,应用绪论随着近代微积分的发展,许多数学家都致力于相关问题的研究,尤其是泰勒,麦克劳林、费马等人作出了具有代表性的工作。
泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒,在微积分学中将函数展开成无穷级数而定义出来的。
泰勒将函数展开成级数从而得到泰勒公式,对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构成一个n 次多项式()20000000()()()()()()()(),1!2!!n n n f x f x f x T x f x x x x x x x n '''=+-+-++-称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x ο=+-即()200000000()()()()()()()()(()).2!!n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+- 称为泰勒公式.众所周知,泰勒公式是数学分析中非常重要的内容,是研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,且有很高的精确度,在微积分的各个方面都有重要的应用。
泰勒展开与泰勒公式的原理及应用在数学领域中,泰勒展开和泰勒公式是非常重要的概念。
它们不仅仅是数学的基本理论,还有广泛的应用,涉及到数学、物理、工程等各个领域。
本文将对泰勒展开和泰勒公式的原理和应用进行详细的讲解。
一、泰勒展开的原理泰勒展开是将一个函数在某点进行展开,使得该函数在该点处的函数值等于其展开式中前几项的和。
具体来说,泰勒展开的原理是利用函数的导数来逼近函数的值。
泰勒展开公式如下:$f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3+…$其中,$f(x)$表示要展开的函数,$a$表示展开点,$f'(a)$表示$f(x)$在$a$点的一阶导数,$f''(a)$表示二阶导数,$f'''(a)$表示三阶导数,$…$表示高阶导数。
展开式总共有无限项,即展开式中包含了函数的所有导数。
如果只取展开式中的前$n$项,则可以得到如下式子:$f(x)=\sum\limits_{k=0}^{n}\frac{f^{(k)}(a)}{k!}(x-a)^k$这就是泰勒展开的$n$阶近似公式。
二、泰勒公式的原理泰勒公式是将一个函数在某个区间内进行展开,使得该函数在这个区间内的函数值可以用展开式中的前几项来近似表示。
具体来说,泰勒公式的原理是通过多项式逼近原函数。
泰勒公式与泰勒展开的区别在于,泰勒公式是在一个区间内进行展开,而泰勒展开一般是在某一点进行展开。
泰勒公式可以表示为:$f(x)=\sum\limits_{k=0}^{n}\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k+R_n(x)$其中,$f(x)$表示要展开的函数,$n$表示要展开的级数,$x_0$表示展开的中心点,$R_n(x)$表示余项,表示展开式与原函数之间的误差。
不同余项型泰勒公式的证明与应用一、不同余项型泰勒公式的证明$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x)$$其中$f(x)$是需要展开的函数,$f'(x)$是$f(x)$的一阶导数,$f''(x)$是$f(x)$的二阶导数,$f^{(n)}(x)$是$f(x)$的$n$阶导数,$R_n(x)$是余项。
证明不同余项型泰勒公式的关键是对余项$R_n(x)$的估计。
根据拉格朗日中值定理,存在$x$在$x$和$a$之间,使得$f(x)$的$n$阶导数$f^{(n)}(x)$等于$f^{(n)}(a)$和$f^{(n)}(x)$之间的差值。
即存在一个$\xi$满足$a < \xi < x$,使得$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$$这里用到了泰勒公式的剩余项的拉格朗日型余项。
二、不同余项型泰勒公式的应用1.近似计算函数值不同余项型泰勒公式可以用于近似计算复杂函数在其中一点处的函数值。
通过泰勒展开,我们可以用函数的高阶导数来逐步逼近函数的真实值,使得计算更加简化。
尤其是在计算机数值计算中,利用不同余项型泰勒公式进行近似计算可以大大提高计算效率和精度。
例如,在计算$\sin(x)$时,我们可以通过泰勒展开将其逼近为一系列多项式函数的和,计算复杂度大幅减少。
2.证明其他重要结论不同余项型泰勒公式也可以用于证明其他数学中的重要结论。
例如,在证明函数的极限或导数存在时,我们可以通过利用泰勒展开,并将余项$R_n(x)$进行估计,从而得到极限或导数的正确表达式。
这在实分析学中经常应用,可以大大简化证明的步骤。
另外,不同余项型泰勒公式也可以用于证明函数的逼近性质。
泰勒公式的证明及推广应用泰勒公式是一种用于近似计算函数的工具,它将函数表示为无穷级数的形式。
这个公式是由英国数学家布鲁诺·泰勒(Brook Taylor)在18世纪提出的。
在本文中,我们将简要介绍泰勒公式的证明,并探讨一些关于泰勒公式的推广应用。
证明泰勒公式的一种常用方法是使用数学归纳法。
我们可以根据函数的导数逐次展开来得到一般形式的泰勒公式。
假设函数f(x)的n次导数在区间[a,b]内连续,以及f(x)的(n+1)次导数在区间[a,b]内存在。
我们可以得到以下泰勒公式的一般形式:f(x)=f(a)+f'(a)(x-a)/1!+f''(a)(x-a)²/2!+...+fⁿ(a)(x-a)ⁿ/n!+Rⁿ(x)其中,Rⁿ(x)是余项,它可以表示为(fⁿ⁺¹(z)(x-a)ⁿ⁺¹)/(n+1)!,其中a<z<x。
余项Rⁿ(x)可以用于估计泰勒级数的误差,并在实际应用中对所得近似值进行修正。
泰勒公式可以应用于各种数学和物理问题中。
下面是一些泰勒公式的推广应用的例子:1.近似计算:泰勒公式可以用于近似计算复杂函数的值。
通过截断级数,我们可以得到一个有限项的泰勒多项式,用于计算函数在其中一点的近似值。
2.数值积分:通过将函数展开为泰勒级数,并对级数进行求和,我们可以将函数的积分转化为级数的求和。
这种方法广泛应用于数值积分的算法中。
3.近似求解微分方程:很多微分方程难以找到解析解,但可以使用泰勒公式来近似求解。
通过将微分方程转化为泰勒级数,并截断级数至有限项,我们可以得到一个逼近解。
4.反函数的泰勒展开:泰勒公式不仅适用于函数的展开,也适用于反函数的展开。
通过将函数和它的逆函数展开为泰勒级数,并对级数进行求和,我们可以得到函数的反函数的泰勒展开。
在实际应用中,泰勒公式的推广应用不仅局限于以上几个领域。
它可以使用在各种数学和物理问题中,包括信号处理、金融工程、计算机图形学等。
泰勒(taylor)公式在不等式证明中的应用
礼节介绍
1、泰勒公式是由美国数学家乔治·布莱尔·泰勒于1815年发明的,它是一种用来分析函数在某一点处的切线和曲线抛物线的数学工具,从而可以估计函数类型和特征。
2、泰勒公式可以用于函数无穷小展开式的应用,它可以解决许多函数的不等式证明、微积分和科学计算等问题。
3、泰勒公式的主要用在不等式证明中,它可以帮助数学家分析函数的某个特定点处的变化情况,从而推导出函数的不等式,有效地证明这个不等式。
4、使用泰勒公式证明不等式的步骤是:
(1)通过求解函数的导数来理解函数某点处的变化情况;
(2)求解函数在某处的切线;
(3)使用抛物线来拟合函数;
(4)使用推到出的抛物线上的不等式来表述函数中的不等式;
(5)最后,需要对不等式进行证明。
5、由于泰勒公式对函数分析和验证都有极大的帮助,它广泛应用于统计学、总体估计、微分方程、函数优化等多个领域中。
此外,它也可以为有效管理和校验一些数值问题提供有力的帮手,也是数学科学领域中数值分析的有力工具。
泰勒公式的证明及其应用摘要:以柯西定理、罗尔定理为基础,应用构造辅助函数法对带有Lagrange 余项的泰勒公式进行证明。
泰勒公式集中体现了微积分“逼近法”的精髓,在微积分学及相关领域的各个方面都有重要的应用。
在现行教材对泰勒公式证明基础上,介绍泰勒公式的证明方法,并归纳了其在求极限与导数、判定级数敛散性、不等式证明、定积分证明、行列式计算、导数的中值公式等方面的应用。
关键词:Taylor 公式;Lagrange 余项;柯西定理;罗尔定理;辅助函数1.引言泰勒公式是高等数学中一个非常重要的内容,它将一些复杂的函数近似的表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力工具。
18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor )。
于1717年,他以泰勒定理求解了数值方程。
泰勒的主要著作是1715年出版的《正的和反的增量方法》,书内陈述出他已于1712年7月给其老师梅钦(数学家 、天文学家)信中首先提出的著名定理——泰勒定理。
泰勒公式以现代形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成的,当x =0时便称作麦格劳林定理。
1772年,拉格朗日强调了此公式之重要性,而且称之为微分学基本定理,但泰勒于证明当中并没有考虑级数的收敛性,因而使证明不严谨, 这工作直至十九世纪二十年代才由柯西完成。
泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。
泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。
他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。
此外,此书还包括了他于数学上之其他创造性工作,如论述常微分方程的奇异解,曲率问题之研究等。
2.泰勒公式的证明泰勒公式的表示形式:()()()()()()()()()()n 21!2!!nn f a f a f a f x f a x a x a x a R x n '''=+-+-++-+(2.1)这里()n R x 为()f x 在点a 的n 次泰勒公式,简称泰勒余项。
泰勒公式的证明及其应用数学与应用数学专业胡心愿[摘要]泰勒公式的相关理论是函数逼近论的基础.本文主要探索的是泰勒公式的一些证明方法,并对不同的证明方法进行相应的比较分析,在此基础上讨论泰勒公式在证明不等式、求函数极限、求近似值、求行列式的值、讨论了函数的凹凸性,判别拐点,判断级数敛散性等方面的应用.本文还针对多元函数的泰勒公式的推导和应用做了简单的论述。
[关键词]泰勒公式;不等式;应用;ProofofTaylor'sFormulaandItsApplicationMathematicsandApplicedMathematicsMajorHUXin-yuanAbstract:ThetheoryaboutTaylor'sFormulaisthebasiccontentofApproximationTheory。
WhatthispaperexploresissomemethodsthatprooftheTaylor'sFormula,andthepaperanalyseandcomparethem。
Onthatbasis,thepaperdiscusstheapplicationofTaylor’sFormulainsomerespects,suchasInequalityproof,functionallimit,approximatevalue,determinantvalue,convexity—concavityoffunction,thedecisionofinflectionpoint,divergenceoftheseries。
ThepaperexplorethederivationofTaylor'sFormulaofthefunctionofmanyvariablesan ditsapplication。
Keywords:Taylor'sFormula;inequality;application目录1泰勒公式。
.。
.。
.。
.。
.。
........。
...。
.。
....。
..。
.。
..。
.11。
1泰勒定理的证明过程。
.。
...。
.。
.。
.。
..。
...。
..。
...。
.。
...。
.。
.。
.。
.。
12余项估计。
.。
.。
..。
..。
.。
.。
.。
.。
......。
.。
...。
.........。
..。
...。
22。
1泰勒中值定理。
.。
.。
.。
.。
.。
..。
.。
.。
..。
..。
.。
.。
.。
.22。
2拉格朗日余项..。
....。
....。
...。
.。
.。
.。
..。
...。
....。
.。
...。
32。
3柯西余项...。
..。
..。
..。
...。
.。
.。
..。
..。
.。
..。
..。
.。
.。
.。
...。
.。
62.4积分余项。
..。
...。
...。
..。
..。
.....。
......。
....。
..。
....。
..。
.。
.。
.7 3泰勒公式的应用。
.。
.。
..。
.。
.。
...。
.........。
...。
..。
.。
..。
.。
...。
.。
..9 3。
1利用泰勒公式证明不等式。
..。
.。
....。
.。
..。
...。
..。
.。
.。
.。
93。
1.1泰勒公式在含有定积分的不等式中的应用。
...。
.。
.....。
..。
.。
.。
.9 3.1.2泰勒公式在含有导函数的不等式中的应用。
.。
.。
.......。
..。
.。
.。
10 3.2利用泰勒公式求函数值与函数极限.。
..。
.。
..。
.。
.。
.。
..。
..。
..11 3。
3利用泰勒公式讨论函数的凹凸性,判别拐点.。
.。
..。
....。
...。
...。
.。
.123.4判断级数的敛散性。
......。
..。
.。
.。
.。
..。
...。
.。
.。
1 4 3.5利用泰勒公式求行列式的值..。
...。
.。
......。
.。
..。
..。
.。
.。
.。
.。
.15 4多元函数的泰勒公式.。
..。
....。
.。
.。
...。
.。
.。
.。
.。
.。
.。
.。
..。
..。
..。
.16 4。
1二元函数泰勒公式的证明.。
.。
...。
.。
.。
...。
.。
.。
.。
.。
..。
.17 4.2二元函数泰勒公式的应用。
.。
...。
...。
.。
...。
..。
.。
.。
...。
.....。
.。
18 结束语。
...。
..。
.。
...。
....。
..........。
..。
.。
...。
..。
...。
19 参考文献.。
.。
..。
.。
.。
..。
..。
.。
..。
.。
.。
..。
.。
...。
..。
.....。
.。
19 致谢...。
.。
..。
.....。
....。
.。
...。
..。
.。
.。
.。
.。
...。
.。
.。
....。
20泰勒公式是数学分析的一个重要内容,它将一些复杂的函数近似地表示为简单的多项式函数,分析比较它的各种证明方法和归纳其各种应用是本文的主要内容.关于泰勒公式的证明主要是讨论泰勒余项。
1泰勒定理若函数()x f 在0x 处存在n 阶导数,则()0x U x ∈∀,有()()()[]nn x x x T x f 0-+=ο()1其中()()()()()()()()()n n n x x n x f x x x f x x x f x f x T 00200000!!2-++-''+-'+= , ()()[]nn x x x R 0-=ο()0x x →,即()x R n 是比()nx x 0-的高阶无穷小。
()1式称为()x f 在0x(展开)的泰勒公式。
1.1泰勒定理的证明过程由高阶无穷小的定义知,若要证明()[]nn x x x R 0-=⎪⎭⎫ ⎝⎛ο,只需要证明 ()()()()()0limlim000=-T -=-→→nn x x nn x x x x x x f x x x R因为这是0的待定型,可以应用1-n 次的洛必达法则来证明.()()()=T -=x x f x R n n()()()()()()()()()⎥⎦⎤⎢⎣⎡-++-''+-'+-n n x x n x f x x x f x x x f x f x f 00200000!!2!1 ()()()()()()()()()⎥⎦⎤⎢⎣⎡--++-''+'-'='-100000!1!1n n nx x n x f x x x f x f x f x R ()()()()()()()()⎥⎦⎤⎢⎣⎡--++-'''+''-''=''-⎪⎭⎫ ⎝⎛200000!2!1n n n x x n x f x x x f x f x f x R ()()()()()()()()⎥⎦⎤⎢⎣⎡-+-=---⎪⎭⎫⎝⎛-0010111!1x x x f x f x f x R n n n n n因为当0x x →时,()x R n ,⎪⎭⎫ ⎝⎛'x R n , ,()()x R n n 1-以及()k x x 0-(+N ∈k )都是无穷小,所以由洛必达法则,有()()()()=--''=-'=--⎪⎭⎫ ⎝⎛→-⎪⎭⎫ ⎝⎛→⎪⎭⎫ ⎝⎛→201001limlimlimn nx x n nx x nx x x x n n x R x x n x R x x x R n ()()()01!lim 0x x n x Rn nx x -=-→, 将()()()()()()()()⎥⎦⎤⎢⎣⎡-+-=---⎪⎭⎫⎝⎛-0010111!1x x x f x f x f x R n n n n n带入上式得()()()()()()()()()()()()[]0!1!1lim lim000011000=-=⎥⎦⎤⎢⎣⎡---=---→→x f x f n x f x x x f x f n x x x R n n n n n x x nn x x , 因此,可以得到()[]nn x x x R 0-=⎪⎭⎫ ⎝⎛ο。
2余项估计泰勒定理中给出的余项()[]nn x x x R 0-=⎪⎭⎫ ⎝⎛ο称为佩亚诺余项.佩亚诺余项()[]nx x 0-ο只是给出来余项的定性描述,它不能估算余项⎪⎭⎫ ⎝⎛x R n 的数值。
还需要进一步的进行定量描述.2。
1泰勒中值定理泰勒中值定理[1]若函数()x f 在()0x U 内存在1+n 阶导数,()0x U x∈∀,函数()t G 在以x 与0x 为端点的闭区间I 连续,在其开区间可导,且()0≠'t G ,则x 与0x 之间至少存在一点ξ,使()()()()()() +-''+-'+=200000!2x x x f x x x f x f x f()()()()()()()()()[]ξξξG x G x x G n f x x n x f n n nn --'+-++0100!! 其中()()()()()()()[]ξξξG x G x x G n f x R n n n --'=+01!。
证明()x f 的泰勒多项式()()()()()()()()()n n n x x n x f x x x f x x x f x f x 00200000!!2-++-''+-'+=T 。
我们记()()()()()()()()()n n t x n t f t x t f t x t f t f t F -++-''+-'+=!!22,则 ()()()()()()()()() +-'''+-''--''+'-'='2!2t x t f t x t f t x t f t f t f t F()()()()()()()()()()n n nn n n t x n t f t x n t f t x n t f -=-+---++-!!!1111。
可以看出函数()t F 与()t G 在闭区间I 连续,在其开区间可导,()0≠'t G , 且可以看出()()x f x F =.应用柯西中值定理有:x 与0x 之间至少存在一点ξ,使()()()()()() +-''+-'+=200000!2x x x f x x x f x f x f()()()()()()()()()[]ξξξG x G x x G n f x x n x fn n nn --'+-++0100!!, 其中()()()()()()()[]ξξξG x G x x G n f x R n n n --'=+01!. 2.2拉格朗日余项若函数f 在()0x U 内为存在1+n 阶的连续导数,则()0x U x∈∀有()()()()()()()()()()x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+=00200000!!2 ()2()()()()()101!1++-+=n n n x x n f x R ξ称为拉格朗日余项,其中ξ在x 与0x 之间,称()2式为()x f 在0x 的带拉格朗日余项的泰勒公式。