17第六章多元函数微分学
- 格式:ppt
- 大小:687.00 KB
- 文档页数:27
第六章多元函数微积分复习要点一、基本概念及相关定理1.多元函数的极限定义:函数(,)z f x y =在区域D 内有定义,当点P(x ,y )D ∈沿任意路径无限趋于点000(,)P x y (0P P ≠)时, (,)f x y 无限趋于一个确定的常数A,则称常数A 是函数(,)z f x y =当P(x ,y )趋于000(,)P x y 时的极限.记作0lim (,)x xy y f x y A →→=,或00(,)(,)lim(,)x y x y f x y A →=,或(,)f x y A →,00(,)(,)x y x y →,或lim (,)f x y A ρ→=,或(,)f x y A →,0ρ→.其中,ρ= 2.二元函数连续的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 内有定义,如果对任意0(,)()P x y U P ∈,都有0000(,)(,)lim(,)(,)x y x y f x y f x y →=(或0lim ()()P P f P f P →=),则称函数(,)z f x y =在点000(,)P x y 处连续.3.偏导数的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 内有定义.(1)函数(,)z f x y =在点000(,)P x y 处对x 的偏导数定义为00000(,)(,)lim x f x x y f x y x∆→+∆-∆,记作00x x y y zx ==∂∂,或00x x y y f x==∂∂,或00(,)x z x y ',或00(,)x f x y ',即x x y y zx==∂∂=00000(,)(,)lim x f x x y f x y x∆→+∆-∆.(2)函数(,)z f x y =在点000(,)P x y 处对y 的偏导数定义为00000(,)(,)lim y f x y y f x y y∆→+∆-∆,记作00x x y y zy ==∂∂,或00x x y y f y==∂∂,或00(,)y z x y ',或00(,)y f x y ',即x x y y zy==∂∂=00000(,)(,)lim y f x y y f x y y∆→+∆-∆.而称z x∂∂,或f x ∂∂,或(,)x z x y ',或(,)x f x y '及[z y ∂∂,或f y∂∂,或(,)y z x y ',或(,)y f x y ']为(关于x 或关于y )偏导函数.高阶偏导数:22(,)xx z zf x y x x x∂∂∂⎛⎫''== ⎪∂∂∂⎝⎭或(,)xx z x y '', 2(,)xy z zf x y y x x y∂∂∂⎛⎫''== ⎪∂∂∂∂⎝⎭或(,)xy z x y '', 2(,)yx z zf x y x y y x⎛⎫∂∂∂''== ⎪∂∂∂∂⎝⎭或(,)yx z x y '', 22(,)yyz zf x y y y y⎛⎫∂∂∂''== ⎪∂∂∂⎝⎭或(,)yy z x y ''. 同理可得,三阶、四阶、…,以及n 阶偏导数.4.全微分定义:设函数(,)z f x y =在点(,)P x y 的某一邻域()U P 内有定义,若函数在点(,)x y 的全增量(,)(,)z f x x y y f x y ∆=+∆+∆-可表示为()z A x B y ρ∆=∆+∆+,其中A 、B 不依赖于x ∆、y ∆,仅于x、y有关,ρ=,则称函数(,)z f x y =在点(,)x y 处可微分,称A x B y ∆+∆为函数(,)z f x y =在点(,)x y 的全微分,记为dz ,即dz A x B y =∆+∆.可微的必要条件:若函数(,)z f x y =在点(,)x y 处可微分,则(1)函数(,)z f x y =在点(,)x y 的偏导数z x ∂∂、zy∂∂必存在;(2)全微分为z z dz x y z x y z dx dy x y∂∂+∂∂∂=∆+∆=∂∂∂. 推广:函数(,,)u f x y z =在点(,,)x y z 的全微分为u u udu dx dy dz x y z∂∂∂=++∂∂∂.可微的充分条件:若函数(,)z f x y =的偏导数z x∂∂、z y∂∂在点(,)x y 处连续⇒(,)z f x y =在点(,)x y 处可微分.5.复合函数微分法(5种情况,由简单到复杂排列): (1)含有多个中间变量的一元函数(,,)z f u v w =,()u u x =,()v v x =,()w w x =,则dz z du z dv z dwdx u dx v dx w dx∂∂∂=++∂∂∂, 称此导数dzdx为全导数;(2)只有一个中间变量的二元复合函数 情形1:()z f u =,(,)u u x y =,则z dz ux du x∂∂=∂∂ ,z dz u y du y∂∂=∂∂. 情形2:(,,)z f x y u =,(,)u u x y =,则z f z u x x u x∂∂∂∂=+∂∂∂∂ ,z f z u y y u y∂∂∂∂=+∂∂∂∂. zx wv u xx zuyxzy yuxx其中,f x∂∂与z x∂∂是不同的,z x∂∂是把复合函数[,,(,)]z f x y u x y =中的y 看作不变量而对x 的偏导数;f x∂∂是把函数(,,)f x y u 中的y 及u 看作不变量而对x 的偏导数。
多元函数微分学多元函数微分学是微积分的一个重要分支,它研究的是多变量函数的导数、微分以及相关的性质和应用。
在这个领域中,我们主要关注多元函数的变化率和方向导数,以及求解相关的极值和最优化问题。
在一元函数微分学中,我们研究的是只有一个自变量的函数。
而在多元函数微分学中,我们研究的是有多个自变量的函数。
多元函数可以表示为f(x1, x2, ... , xn),其中x1,x2, ..., xn分别为自变量。
用微分学的语言来描述,我们要研究的是这个函数在一个点p上的切平面的性质。
首先,我们来看一下多元函数的导数。
多元函数的导数分为偏导数和全导数两种。
偏导数表示的是函数在某一变量上的变化率,而全导数则表示的是函数在所有变量上的综合变化率。
用数学符号来表示,对于多元函数f(x1, x2, ..., xn),它的偏导数为∂f/∂xi,也可以记为f'xi。
全导数可以用向量∇f表示。
接下来,我们来看一下多元函数的微分。
微分是导数的线性逼近,可以看作是函数在某一点上的局部线性近似。
多元函数的微分可以表示为df = ∂f/∂x1*dx1 + ∂f/∂x2*dx2+ ... + ∂f/∂xn*dxn,其中dx1, dx2, ..., dxn为自变量的微小变化量。
在多元函数微分学中,我们还需要研究方向导数和梯度。
方向导数表示的是函数在某一方向上的变化率,可以用向量的点积来表示。
梯度是一个向量,它的方向指向函数变化最快的方向,大小表示变化率最大的值。
方向导数和梯度在求解优化问题中具有重要应用。
最后,我们来看一下多元函数微分学的应用。
在实际问题中,多元函数微分学可以应用于求解极值、最小二乘法、约束优化等各种问题。
例如,在工程领域中,我们可以用多元函数微分学来求解最优设计、最优控制等问题。
总结起来,多元函数微分学是微积分的一个重要分支,研究的是多变量函数的导数、微分以及相关的性质和应用。
它在数学、物理、工程等领域中都有广泛的应用,是现代科学和技术发展中不可或缺的工具。
多元函数微分学一:全微分函数在处可微的充分条件:(,)z f x y =00(,)x y ''22(,)(,)()()x y z f x y x f x y y x y ∆-∆-∆∆+∆22()()0x y ∆+∆→当时是无穷小量222222221()sin ,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩例1:函数在[(0,0)(0,0)]()x y z f x f y o ρ∆-∆+∆=(0,0)处是否可微?0(0,0)(0,0)lim x y z f x f yρρ→∆-∆-∆22222201[()()]sin ()()lim ()()x y x y x y ρ→∆+∆∆+∆=∆+∆0=即函数f (x , y )在原点(0,0)可微.sin 2yz y x e μ=++例2:计算的全微分11,cos ,22yz yz u u y u ze ye x y z∂∂∂==+=∂∂∂解:1(cos )22yz yz y du dx ze dy ye dz =+++所求全微分:二:复合函数求偏导1、偏导数求法(1) 求关于x的偏导数,把z=f (x , y) 中的y看成常数,对x仍用一元函数求导法求偏导.(2) 求关于y的偏导数,把z=f (x , y) 中的x看成常数,对y仍用一元函数求导法求偏导.(3)求分界点、不连续点处的偏导数要用定义求.2:链式法则的几种情况:1:),(,),(,),(,)x y x y x y z f u f v f w x u x v x w xz f u f v f w y u y v y w yμυωμμυυωω===∂∂∂∂∂∂∂=++∂∂∂∂∂∂∂∂∂∂∂∂∂∂=++∂∂∂∂∂∂∂中间变量多于两个的情况:设z=f(,,''2:),(,)(),()x y z f u u z f u u f u f u x u x x y u y yμμμ=∂∂∂∂∂∂∂∂====∂∂∂∂∂∂∂∂中间变量只有一个的情况:设z=f(3:,),(),(),v x v v x z x z f u f v x u x u xμμμ==∂∂∂∂∂=+∂∂∂∂∂自变量只有一个的情况:设z=f(则是的一元复合函数,它对x 的导数称为全导数,有(,,),(,),(,),,z f x y t x x s t y y s t z f x f y z f x f y f s x s y s t x t y t t===∂∂∂∂∂∂∂∂∂∂∂=+=++∂∂∂∂∂∂∂∂∂∂∂4:设则例3:).1())),(,(,()(,)1,1(,)1,1(,1)1,1(,),(2ϕϕ'=='='=求,可微x x f x f x f x b f a f f y x f y x解⋅='))),(,(,(2)(x x f x f x f x ϕ⋅'+'))),(,(,())),(,(,({21x x f x f x f x x f x f x f ⋅'+')),(,()),(,([21x x f x f x x f x f ))]},(),((21x x f x x f '+')]}([{12)1(b a b a b a +++⋅⋅='ϕ)(232b ab ab a +++=解:3个方程, 4个变量的方程组,)(),(),(x z z x y y x u u ===确定3个1元函数:方程组两边对x 求导=x u d d ⎪⎪⎪⎩⎪⎪⎪⎨⎧x g x h x f x y f y d d +x y g y d d ⋅+x z g z d d ⋅+0=xz h z d d ⋅+0=⎪⎩⎪⎨⎧===.0),(,0),,(),,()(z x h z y x g y x f u x u 由方程组设函数例4:,0,0,≠∂∂≠∂∂zh y g 且所确定.d d x u 求=x u d d ⎪⎪⎪⎩⎪⎪⎪⎨⎧x g x h x f x y f y d d +)1(x y g y d d ⋅+x z g z d d ⋅+0=)2(x z h z d d ⋅+0=)3(代入可得:d d y x y z x x y y zf g f g h u f x g g h ⋅⋅⋅=-+⋅三:高阶偏导定理 如果函数),(y x f z =的两个二阶混合偏导数x y z ∂∂∂2及yx z ∂∂∂2在区域D 内连续,那末在该区域内这两个二阶混合偏导数必相等.215()(),y z z f xy xf f y x x y ∂=+∂∂例:有连续二阶偏导数,求'()'()'()z y y y f xy f f x x x x ∂=+-∂解:2()z z x y y x ∂∂∂=∂∂∂∂11''()''()'()''()y y y y xf xy f f f x x x x x x=+--22222222(0,0)(0,0)22(),06:(,),|,|0,0xy x y x y f f f x y x y x y y x x y ⎧-+>∂∂⎪=+⎨∂∂∂∂⎪+=⎩例求22232222222222()(3)2(),0()0,0x y x y y x y x y x y f x y x x y ⎧+---+>∂⎪=+⎨∂⎪+=⎩解:2(0,)(0,0)(0,0)0|||lim 1y y f f f x x x y y →∂∂-∂∂∂==-∂∂22322222222222()(3)2(),0()0,0x y x xy xy x y x y f x y y x y ⎧+---+>∂⎪=+⎨∂⎪+=⎩(,0)(0,0)2(0,0)0|||lim 1x y f f f y y y x x→∂∂-∂∂∂==∂∂注:对不连续的函数求导,用定义法四:隐函数求导1:一个方程的情况:1.1 显化法:(一元隐函数)把一元隐函数化为显函数后,再利用显函数求导的方法,来求该一元隐函数的导数,即(,)0F x y =()y y x ='()xdy dy x y dx dx==2'ln()0,(x y x xy y x+-=例7:设求一元隐函数)22ln()x y y x xy xy e x x -=--⇒-=21x e y x x -⇒=-利用显函数求导方法,有:22222'211(12)(12)11()()x x x e x y x x y x x x x -----==--1.2公式法: .x yF dy dx F =-1.3对数求导法:80,,x zz z z y x y ∂∂-=∂∂例:设求(多元隐函数)ln ln x zz y x z z y ==解:原方程可化为,方程两边同时取对数得:2ln ln ln ln (ln )x y z z z z x z y x y z z z y x z y ⎧==⎪--⎪⎨⎪=⎪-⎩所以2ln ln ln ln (ln )x y z z z z x z y x y z z z y x z y ⎧==⎪--⎪⎨⎪=⎪-⎩所以2:方程组的情况:2.1直接对方程两边求偏导,再解关于偏导数的方程sin ,,cos uu x e u v u u x y y e u v ⎧=+∂∂⎪⎨∂∂=-⎪⎩例9:设求1sin cos 0s cos (sin )u u x u u v e v u v x x xu u v e v u v x x x∂∂∂=++∂∂∂∂∂∂=---∂∂∂两个方程两边关于求偏导,得:(1)(2)(1)sin (2)cos v v v x ∂⨯-⨯∂,消去得22sin (sin cos )(sin cos )uu u v e v v v v x x ∂∂=-++∂∂sin 1sin cos u u u v x e v e v∂=∂+-同理可求:cos 1sin cos u u u v y e v e v∂-=∂+-Thanks for your listening!。
多元函数微分学
多元函数微分学是研究多元函数多变量之间关系及其变化性质的
数学分支。
它不仅仅是研究函数的变化性质,而且它还为数学分析奠
定了坚实的基础。
利用多元函数微分学,我们能够描述和分析函数多
变量之间的关系,从而有效地定义和研究函数的变化性质。
多元函数微分学的基本原理是求导原理或微分原理,即对多元方
程求导,使用梯度来描述其变化性质,以及如何利用线性算法解决系
统的微分方程。
多元函数微分学的实际应用可以概括为数学物理学中
的各种多元函数场解和最优化问题,数学统计学中的概率分布估计,
模式识别和控制中的数学建模以及机器学习算法等等。
多元函数微分学是一门应用广泛,理论深入的数学学科,在解决
实际问题中发挥着重要作用,是工程数学中不可或缺的重要组成部分。
它不仅用于理解函数的变化性质,而且用于分析系统运行特征,找出
系统内因素的影响,并在做出有效的决策及其实现方式中发挥关键作用。