《数学分析》第十七章 多元函数微分学 .ppt
- 格式:ppt
- 大小:1.35 MB
- 文档页数:29
《数学分析》多元函数微分学多元函数微分学是数学分析的重要分支之一,研究的对象是多元函数。
在微积分领域,一元函数的微分学研究的是一元函数的导数及其应用,而多元函数微分学则研究的是多元函数的偏导数、全微分、方向导数等。
在多元函数微分学中,最基本的概念是偏导数。
对于一个多元函数,其偏导数就是固定其它变量,只对一个变量求导。
偏导数描述了函数在其中一方向上的变化率。
一元函数的导数可以理解为函数在一条直线上的变化率,而偏导数可以理解为函数在一个坐标轴上的变化率。
在多元函数微分学中,我们也可以定义高阶偏导数。
高阶偏导数描述了多元函数的曲率和变化率的变化。
高阶偏导数可以通过迭代地对偏导数求导得到。
除了偏导数以外,多元函数微分学还研究了全微分。
全微分是函数在其中一点的微小增量与自变量的增量之间的线性关系。
全微分可以用来近似表示函数的改变。
多元函数微分学还研究了方向导数。
方向导数是函数在其中一点沿着其中一方向的变化率。
方向导数可以用来描述函数在一些方向上的变化速率,其计算方法与偏导数类似。
在多元函数微分学中,还有许多重要的定理和应用。
例如,拉格朗日中值定理可以描述函数在一些区间上的变化率与端点的关系;极值定理可以帮助我们找到函数的最大值和最小值;隐函数定理可以帮助我们求解由方程组确定的隐函数。
多元函数微分学在各个科学领域具有广泛的应用。
在物理学中,多元函数微分学可以帮助我们描述物体运动的速度和加速度;在经济学中,多元函数微分学可以帮助我们描述生产函数和边际效益;在工程学中,多元函数微分学可以帮助我们分析电路、流体力学等问题。
总之,多元函数微分学是数学分析的重要分支,研究的是多元函数的偏导数、全微分、方向导数等。
多元函数微分学具有广泛的应用,是许多科学领域的基础。
第十七章 多元函数的微分学 §1 可微性教学目的 掌握多元函数偏导数,可微性与全微分的定义,可微的必要条件. 教学要求(1) 基本要求:掌握多元函数偏导数,可微性与全微分的定义,熟记可微的必要条件与充分条件.(2) 较高要求:切平面存在定理的证明.教学建议(1)本节的重点是多元函数偏导数,可微性与全微分的定义.(2) 通过讨论可微的必要条件与充分条件,弄清多元函数连续,存在偏导数与可微这三个分析性质之间的关系.教学程序一、 可微性与全微分:由一元函数可微性引入二元函数可微性.定义1(可微性) 设函数(,)z f x y =在点000(,)P x y 的某邻域0()U P 内有定义,对于0()U P 中的点00(,)(,)P x y x x y y =+∆+∆,若函数f 在点0P 处的全增量可表示为 00(,)(,)()z f x x y y f x y A x B y ρ∆=+∆+∆-=∆+∆+,其中A ,B 是仅与点0P 有关的常数,22,()x y ρρ=∆+∆是较ρ高阶的无穷小量,则称函数f 在点0P 处可微。
全微分:当,x y ∆∆充分小时0000(,)(,)()()dz zf x y f x y A x x B y y ≈∆≈+-+-. 例1 考查函数xy y x f =),(在点) , (00y x 处的可微性 .二 、 偏导数(一)、偏导数的定义、记法),(y x f 在点),(00y x 存在偏导数定义为:000000),(),(lim ),(0x x y x f y x f y x f x x x --=→ 或 xy x f y x x f y x f x x x ∆-∆+=→∆),(),(lim ),(0000000 000000),(),(lim ),(0y y y x f y x f y x f y y y --=→ 或 y y x f y y x f y x f y y y ∆-∆+=→),(),(lim ),(0000000 偏导数的几何意义:(二)、求偏导数:例2 ),(y x f =)12sin()32(2+++y x x . 求偏导数.例3 ),(y x f = 1)1ln(2+++y x x . 求偏导数.例4 ),(y x f =22y x y x ++. 求偏导数, 并求) 1 , 2 (-x f . 三 、 可微条件(一)、必要条件定理17.1设) , (00y x 为函数),(y x f 定义域的内点 . ),(y x f 在点) , (00y x 可微的必要条件是) , (00y x f x 和) , (00y x f y 存在 , 且==),(00),(00y x df dfy x ) , (00y x f x +∆x ) , (00y x f y y ∆.证明:由于dy y dx x =∆=∆ , , 微分记为=),(00y x df ) , (00y x f x +dx ) , (00y x f y dy .定理17.1给出了计算可微函数全微分的方法. 但是两个偏导数存在只是可微的必要条件, 而不是充分条件.例5.考查函数 ⎪⎩⎪⎨⎧=+≠++=0 , 0, 0 , ),(222222y x y x y x xy y x f在原点的可微性 .这个例子说明,偏导存在不一定可微,(这一点与一元函数不同!)(二)、充分条件定理17.2(可微的充分条件)若函数),(y x f z =的偏导数在的某邻域内存在 , 且x f 和y f 在点) , (00y x 处连续 . 则函数f 在点) , (00y x 可微。
第十七章 多元函数微分学1可微性一、可性性与全微分定义1:设函数z=f(x,y)在点P 0(x 0,y 0)的某邻域U(P 0)上有定义,对于U(P 0)中的点P(x,y)=(x 0+△x,y 0+△y),若f 在点P 0处的全增量可表示为: △z=f(x 0+△x,y 0+△y)-f(x 0,y 0)=A △x+B △y+o (ρ),其中ρ=22y x ∆+∆, o (ρ)是较ρ高阶的无穷小量,A,B 是仅与点P 0有关的常数, 则称函数f 在P 0可微. 并称A △x+B △y 为函数f 在点P 0的全微分, 记作dz|0P =df(x 0,y 0)=A △x+B △y.当|△x|,|△y|充分小时,dz 可作为△z 的近似值,即 f(x,y)≈f(x 0,y 0)+A(x-x 0)+B(y-y 0). 有时也表示为: △z= A △x+B △y+α△x+β△y ;其中)0,0()y x,(lim→∆∆α=)0,0()y x,(lim→∆∆β=0.例1:考察函数f(x,y)=xy 在点(x 0,y 0)处的可微性. 解:在点(x 0,y 0)处函数的全增量为:△z=f(x 0+△x,y 0+△y)-f(x 0,y 0)=y 0△x+x 0△y+△x △y.∵ρy x ∆∆ρy∆≤ρ→0, ρ→0.∴△x △y=o (ρ),∴f 在(x 0,y 0)处的可微, 且df=y 0△x+x 0△y.二、偏导数定义2:设函数z=f(x,y), (x,y)∈D, 若(x 0,y 0)∈D 且f(x,y 0)在x 0的某一邻域内有定义,则极限x )y ,x (f lim00x 0x ∆∆→∆=x)y ,x (f )y x,x (f lim 00000x ∆-∆+→∆存在时,这个极限称为函数f 在(x 0,y 0)关于x 的偏导数,记作: f x (x 0,y 0)或z x (x 0,y 0),)y ,(x 0xf∂∂,)y ,(x 00xz ∂∂.同样定义f 在点(x 0,y 0)关于y 的偏导数为:f y (x 0,y 0)或)y ,(x 00yf ∂∂.若f 在区域D 上每一点(x,y)都存在对x(或对y)的偏导数,则f 在区域D 上对x(或对y)的偏导函数(简称偏导数),记作:f x (x,y)或xy)f(x,∂∂ (f y (x,y)或y y)f(x ,∂∂) 也简写为f x ,z x 或x f ∂∂,xz ∂∂( f y ,z y 或y f ∂∂,y z ∂∂).注:1、这里符号x ∂∂,y ∂∂专用于偏导数运算,与一元函数的导数符号dxd相似,又有差别;2、定义中,f 在点(x 0,y 0)存在关于x(或y)的偏导数,f 至少在 {(x,y)|y=y 0,|x-x 0|<δ}(或{(x,y)|x=x 0,|y-y 0|<δ})上必须有定义.二元函数偏导数的几何意义:设P 0(x 0,y 0,z 0)是曲面z=f(x,y)上一点,过P 0作平面y=y 0与曲面的交线为C :其中⎩⎨⎧==y),x (f z y y 0是平面上的一条曲线.因此,f x (x 0,y 0)作为一元函数f(x,y 0)在x=x 0的导数,就是曲线C 在点P 0处的切线T x 对于x 轴的斜率,即T x 与x 轴正向所成倾角的正切tan α.同样的,f y (x 0,y 0)是平面x=x 0曲面z=f(x,y)的交线⎩⎨⎧==y),x (f z x x 0在点P 0处的切线T y 关于y 轴的斜率tan β.例2:求函数f(x,y)=x 3+2x 2y-y 3在点(1,3)关于x 和关于y 的偏导数. 解法1:f x (1,3)=1x dxdf(x,3)==3x 2+12x 1x ==15;f y (1,3)=3y dyy)df(1,==2-3y 23y ==-25.解法2:∵f x (x,y)=3x 2+4xy ,∴f x (1,3)=15;又f y (x,y)=-3y 2+2x 2,∴f x (1,3)=-25.例3:求函数z=x y (x>0)的偏导数. 解:z x =yx y-1;z y =x y lnx.例4:求三元函数u=sin(x+y 2-e z )的偏导数.解:u x =cos(x+y 2-e z );u y =2ycos(x+y 2-e z );u z =-e z cos(x+y 2-e z ).三、可微性条件定理17.1:(可微的必要条件)若二元函数f 在定义域内一点(x 0,y 0)可微,则f 在该点关于每个自变量的偏导数都存在,且△z=A △x+B △y+o (ρ)中A=f x (x 0,y 0), B=f y (x 0,y 0). 即全微分df)y ,(x 00=f x (x 0,y 0)·△x+f y (x 0,y 0)·△y.或dz=f x (x 0,y 0)dx+f y (x 0,y 0)dy. f 在D 上全微分为df(x,y)=f x (x,y)dx+f y (x,y)dy.例5:考察函数f(x,y)=⎪⎩⎪⎨⎧=+≠++0y x 00y x y x xy 222222,在原点的可微性.解:根据偏导数的定义,f x (0,0)=x)0,0(f )x,0(f limx ∆-∆→∆=0; 同理f y (0,0)= 0;△z-dz=f(△x,△y)-f(0,0)-f x (0,0)△x-f y (0,0)△y=22yx y x ∆+∆∆∆.∵ρdz-z lim 0ρ∆→=220ρy x y x lim ∆+∆∆∆→不存在,即△z-dz 不是ρ的高阶无穷小量, ∴f 在原点不可微.定理17.2:(可微的充分条件)若函数z=f(x,y)的偏导数在点(x 0,y 0)的某邻域上存在,且f x 与f y 在点(x 0,y 0)连续,则函数f 在点(x 0,y 0)可微. 证:△z=f(x 0+△x,y 0+△y)-f(x 0,y 0)=[f(x 0+△x,y 0+△y)-f(x 0,y 0+△y)]+[f(x 0,y 0+△y)-f(x 0,y 0)];即全增量等于两个偏增量的和. 对它们分别应用拉格朗日中值定理得: △z=f x (x 0+θ1△x,y 0+△y)△x+f y (x 0,y 0+θ2△y)△y, 0<θ1,θ2<1. (中值公式) ∵f x 与f y 在点(x 0,y 0)连续,∴f x (x 0+θ1△x,y 0+△y)=f x (x 0,y 0)+α, f y (x 0,y 0+θ2△y)=f y (x 0,y 0)+β, 其中当(△x,△y)→(0,0)时,α→0, β→0. ∴△z=f x (x 0,y 0)△x+f y (x 0,y 0)△y+α△x+β△y ,即f 在点(x 0,y 0)可微.注1:例2函数f(x,y)=x 3+2x 2y-y 3在点(1,3)可微,且df(1,3)=15dx-25dy ;例3函数z=x y 在D={(x,y)|x>0,- ∞<y<+∞}上可微,且dz=yx y-1dx+x y lnxdy. 注2:偏导数连续并不是函数可微的必要条件,如函数f(x,y)=⎪⎩⎪⎨⎧=+≠+++0y x 00y x y x 1sin )y x (22222222,在原点(0,0)可微,但 f x 与f y 却在点(0,0)不连续. 若z=f(x,y)在点(x 0,y 0)的偏导数f x ,f y 连续,则称f 在(x 0,y 0)连续可微.定理17.3:(中值公式)设函数f 在点(x 0,y 0)的某邻域上存在偏导数,若(x,y)属于该邻域,则存在ξ=x 0+θ1(x-x 0)和η=y 0+θ2(y-y 0), 0<θ1,θ2<1,使得 f(x,y)-f(x 0,y 0)=f x (ξ,y 0)(x-x 0)+f y (x 0,η)(y-y 0).注:1、函数可微必连续,但连续不一定存在偏导数,也不一定可微. 如:函数f(x,y)=22y x +(圆锥)在原点连续,但在该点不存在偏导数; 2、函数在某一点存在对所有自变量的偏导数,不保证在该点连续,如:f(x,y)=⎪⎩⎪⎨⎧=+≠++0y x 00y x y x xy222222, 在原点不连续,但两个偏导数都为0.四、可微性几何意义及应用定义3:设P 是曲面S 上一点,T 为通过点P 的一个平面,曲面S 上的动点Q 到定点P 和到平面T 的距离分别为d 与h ,若当Q 在S 上以任何方式趋近于P 时,恒有dh→0,则平面T 为曲面S 到点P 处的切平面,P 为切点.定理17.4:曲面z=f(x,y)在点P(x 0,y 0,f(x 0,y 0))存在不平行于x 轴的切平面T 的充要条件是函数f 在点(x 0,y 0)可微.证:[充分性]若函数f 在点(x 0,y 0)可微,由定义知,△z=z-z 0=f x (x 0,y 0)(x-x 0)+f y (x 0,y 0)(y-y 0)+o (ρ);ρ=2020)y -(y )x -(x +. 在过P 的平面T 上任取点(X,Y,Z),若有Z-z 0=f x (x 0,y 0)(X-x 0)+f y (x 0,y 0)(Y-y 0);则曲面上任一点Q(x,y,z)到这个平面的距离为: h=)y ,(x f )y ,(x f 1|)y -)(y y ,(x f -)x -)(x y ,(x f -z -z |002y002x000y 000x 0++=)y ,(x f )y ,(x f 1|) (ρ|002y002x++ο,又P 到Q 的距离为d=202020)z -(z )y -(y )x -(x ++=202)z -(z ρ+≥ρ. 由0≤dh <ρh =)y ,(x f )y ,(x f 11ρ|) (ρ|002y 002x ++ο→0, ρ→0,根据定义3知, 平面T 为曲面z=f(x,y)在点P(x 0,y 0,f(x 0,y 0))的切平面.[必要性]若曲面z=f(x,y)在点P(x 0,y 0,f(x 0,y 0))存在不平行于x 轴的切平面, 且Q(x,y,z)是曲面上任意一点,则点Q 到这个平面的距离为: h=22000B A 1|)y -B(y -)x -A(x -z -z |++,令△x=x-x 0,△y=y-y 0,△z=z-z 0,ρ=22y x ∆+∆.由切平面定义知,当Q 充分接近P 时,dh →0,∴对于充分接近P 的Q 有d h =22B A 1d |y B -x A -z |++∆∆∆<22BA 121++, 即 |△z-A △x-B △y|<2d=222z y x 21∆+∆+∆=22z ρ21∆+<21(ρ+|△z|), 又|△z|-|A||△x|-|B||△y|≤|△z-A △x-B △y|<21(ρ+|△z|),∴21|△z|<|A||△x|+|B||△又由ρ|z |∆<2(|A|ρ|x |∆+|B|ρ|y |∆)+1<2(|A|+|B|)+1知,ρ|z |∆有界,从而 由ρd =ρz ρ22∆+=2ρz 1⎪⎪⎭⎫ ⎝⎛∆+<1+ρz ∆<2(|A|+|B|+1)知,ρd也有界. 于是,当ρ→0时,有ρ|y B -x A -z |∆∆∆=2222B A 1ρd B A 1d |y B -x A -z |++++∆∆∆=22B A 1ρdd h ++→0,ρ→0, 即△z= A △x|+B △y+o (ρ),即函数z=f(x,y)在点(x 0,y 0)可微.注:定理17.4说明,若函数f 在点(x 0,y 0)可微,则曲面z=f(x,y)在点P(x 0,y 0,f(x 0,y 0))的切平面方程为:z-z 0=f x (x 0,y 0)(x-x 0)+f y (x 0,y 0)(y-y 0), 过切点P 与切平面垂直的直线称为曲面在点P 的法线. 由切面方程知,法线的方向数为:±(f x (x 0,y 0),f y (x 0,y 0),-1),即 过切点P 的法线方程为:)y ,(x f x -x 00x 0=)y ,(x f y -y 00x 0=1-z -z 0.二元函数全微分的几何意义如图所示: 当自变量x,y 的增量分别为△x,△y 时, 函数z=f(x,y)的增量△z 是竖坐标上的一段NQ , 而二元函数z=f(x,y)在点(x 0,y 0)的全微分 dz=f x (x 0,y 0)△x+f y (x 0,y 0)△y 的值是过点P 的切平面PM 1MM 2上相应的增量NM , 于是△z 与dz 之差MQ 的值随着ρ→0而趋于零, 而且是较ρ高阶的无穷小量.例6:试求抛物面z=ax 2+by 2在点M(x 0,y 0,z 0)的切平面方程与法线方程. 解:∵f x (x 0,y 0)=2ax 0, f y (x 0,y 0)=2by 0, ∴在点M(x 0,y 0,z 0)的切平面方程为: z-z 0=2ax 0(x-x 0)+2by 0(y-y 0),即z=2ax 0x+2by 0y-z 0-z=0; 在点M(x 0,y 0,z 0)的法线方程为:002ax x -x =002by y -y =1-z -z 0.例7:求1.083.96的近似值.解:设f(x,y)=x y , 令x 0=1, y 0=4, △x=0.08, △y=-0.04, 则 1.083.96=f(x 0+△x,y 0+△y)≈f(1,4)+f x (1,4)△x+f y (1,4)△y =1+4×0.08+0×(-0.04)=1.32.例8:应用公式S=21absinC 计算某三角形面积,现测得a=12.50, b=8.30,C=30⁰,若测量a,b 的误差为±0.01,C 的误差为±0.1⁰,求用此公式计算三角形面积时的绝对误差限与相对误差限. 解:依题意,测量中a,b,C 的绝对误差限分别为:|△a|=0.01, |△b|=0.01, |△C|=0.1⁰=08001π. ∴S 的绝对误差限分别为: |△S|≈|dS|=a a S ∆∂∂+b b S∆∂∂+C C S ∆∂∂≤a a S ∆∂∂+b b S ∆∂∂+C C S ∆∂∂=21|bsinC||△a|+21|asinC||△b|+21|abcosC|≈0.13. 又S=21absinC ≈25.94,∴S 的相对误差限为:SS ∆≈25.9413.0≈0.5%.习题1、求下列函数的偏导数: (1)z=x 2y ;(2)z=ycosx ;(3)z=22y x 1+;(4)x=ln(x 2+y 2);(5)z=e xy ;(6)z=arctan x y ;(7)z=xye sin(xy);(8)u=x y +y z -zx ;(9)u=(xy)z ;(10)u=zy x .解:(1)z x =2xy; z y =x 2. (2)z x =-ysinx; z y =cosx.(3)z x =322)y (x x +-; z y =322)y (x y +-.(4)z x =22y x x 2+; z y=22y x y2+. (5)z x =ye xy ; z y =xe xy . (6)z x =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+22x y 1x x-=22y x x -+; z y =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+2x y 1x 1=22yx x +. (7)z x =ye sin(xy)+xy 2e sin(xy)cos(xy); z y =xe sin(xy)+x 2ye sin(xy)cos(xy). (8)u x =-2x y -z 1; u y =x 1-2y z ; u z =y 1+2zx. (9)u x =yz(xy)z-1; u y =xz(xy)z-1; u z =(xy)z ln(xy). (10)u x =y z1y z x -; u y =zy z-1zy x lnx; u z =y zzy x lnx·lny.2、设f(x,y)=x+(y-1)arcsinyx,求f x (x,1). 解:∵f(x,1)=x ,∴f x (x,1)=1.3、设f(x,y)=⎪⎩⎪⎨⎧=+≠++0y x 00y x yx 1ysin 222222,,考察f 在原点(0,0)的偏导数. 解:∵x)0,0(f )x,00(f lim0x ∆-∆+→∆=x 00lim 0x ∆-→∆=0,∴f x (0,0)=0;又y )0,0(f )y ,00(f lim 0y ∆-∆+→∆=20y y)(1sin lim ∆→∆不存在,f y (0,0)不存在.4、证明函数z=22y x +在点(0,0)连续,但偏导数不存在.证:∵22)0,0()y x,(y x lim +→=0=z(0,0),∴z=22y x +在点(0,0)连续. 又x)0,0(f )x,00(f lim0x ∆-∆+→∆=x |x |lim 0x ∆∆→∆,y )0,0(f )y ,00(f lim 0y ∆-∆+→∆=x |x |lim0x ∆∆→∆, 即两个极限都不存在,∴两个偏导数都不存在.5、考察函数f(x,y)=⎪⎩⎪⎨⎧=+≠++0y x 00y x yx 1xysin 222222,在点(0,0)的可微性. 解:∵x)0,0(f )x,00(f lim 0x ∆-∆+→∆=x 00lim 0x ∆-→∆=0,∴f x (0,0)=0;同理f y (0,0)=0;又ρy)0,0(f -x )0,0(f f y x ∆∆-∆=2222y)(x)(1siny)(x)(y x ∆+∆∆+∆∆∆≤2222y)(x)(2y)(x)(∆+∆∆+∆=2y)(x)(22∆+∆→0,ρ→0,∴f 在点(0,0)可微.6、证明函数f(x,y)=⎪⎩⎪⎨⎧=+≠++0y x 00y x y x y x 2222222,在点(0,0)连续且偏导数存在,但在此点不可微.证:∵222yx y x +≤2xy y x 2=2x→0,(x,y)→0,即)0,0()y x,(lim →f(x,y)=0=f(0,0),∴f 在点(0,0)连续. 又x )0,0(f )x,00(f lim0x ∆-∆+→∆=x 00lim 0x ∆-→∆=0,y )0,0(f )y ,00(f lim 0y ∆-∆+→∆=x 00lim 0x ∆-→∆=0, ∴f x (0,0)=0; f y (0,0)=0. 但ρy)0,0(f -x )0,0(f f y x ∆∆-∆=3222]y)(x)[(y x)(∆+∆∆∆. 当△x=△y 时,3222]y)(x)[(y x)(∆+∆∆∆=81,当y=0时,3222]y)(x)[(yx)(∆+∆∆∆=0.∴ρy)0,0(f -x )0,0(f f lim y x 0ρ∆∆-∆→不存在,∴f 在点(0,0)不可微.7、证明函数f(x,y)=⎪⎩⎪⎨⎧=+≠+++0y x 00y x y x 1sin )y x (22222222,在点(0,0)连续且偏导数存在,但偏导数在点(0,0)不连续,而f 在点(0,0)可微. 证:∵2222y x 1sin)y x (++≤x 2+y 2→0,(x,y)→0,即)0,0()y x,(lim →f(x,y)=0=f(0,0),∴f 在点(0,0)连续.当x 2+y 2≠0时,f x (x,y)=2xsin 22yx 1+-22y x x +cos 22y x 1+, ∵)0,0()y x,(lim →2xsin 22yx 1+=0,而)0,0()y x,(lim→22yx x +cos22yx 1+不存在,∴)0,0()y x,(lim →f x (x,y)不存在,即f x (x,y)在点(0,0)不连续, 同理f x (x,y)在点(0,0)不连续. 但x)0,0(f )x,00(f lim 0x ∆-∆+→∆=x 1x sin lim 0x ∆∆→∆=0,∴f x (0,0)=0;同理f y (0,0)=0. ∴ρy)0,0(f -x )0,0(f f y x ∆∆-∆=222222y)(x)(1siny)(x)(y)(x)(∆+∆∆+∆∆+∆≤22y)(x)(∆+∆→0,ρ→0,∴f 在点(0,0)可微.8、求下列函数在给定点的全微分: (1)z=x 4+y 4-4x 2y 2在点(0,0), (1,1);(2)z=22yx x +在点(1,0),(0,1).解:(1)∵z x =4x 3-8xy 2,z y =4y 3-8x 2y 在(0,0)和(1,1)都连续,∴z 在(0,0)和(1,1)都可微;又z x (0,0)=0, z y (0,0)=0; z x (1,1)=-4, z y (1,1)=-4;∴dz|(0,0)=0;dz|(1,1)=-4(dx+dy).(2)∵z x =2222222yx y x x y x ++-+=3222)y (x y +在(1,0)和(0,1)都连续;z y =2222yx y x xy ++-=322)y (x xy -+在(1,0)和(0,1)也都连续;∴z 在(1,0)和(0,1)都可微;又z x (1,0)=0, z y (1,0)=0; z x (0,1)=1, z y (0,1)=0; ∴dz|(1,0)=0;dz|(0,1)= dx.9、求下列函数的全微分:(1)z=ysin(x+y);(2)u=xe yz +e -z +y. 解:(1)∵z x =ycos(x+y), z y =sin(x+y)+ycos(x+y)在R 2上都连续, ∴z 在R 2上可微;且dz=ycos(x+y)dx+[sin(x+y)+ycos(x+y)]dy. (2)∵u x =e yz , u y =xze yz +1, u z =xye yz -e -z 在R 3上都连续, ∴u 在R 3上可微;且dz=e yz dx+(xze yz +1)dy+(xye yz -e -z )dz.10、求曲面z=arctan xy 在点(1,1,4π)的切平面方程和法线方程. 解:∵z 在(1,1)处可微,∴切平面存在. 又z x (1,1)=-21,z x (1,1)=21, ∴切平面方程为-21(x-1)+21(y-1)-(z-4π)=0,即x-y+2z=2π;法线方程:21-1-x =211-y =14π-z -,即2(1-x)=2(y-1)=4π-z.11、求曲面3x 2+y 2-z 2=27在点(3,1,1)的切平面与法线方程.解:3x 2+y 2-z 2=27两边对x 微分得:6x-2z·z x =0,∴z x =3x 1z 2z6x ===9;3x 2+y 2-z 2=27两边对y 微分得:2y-2z·z y =0,∴z y =1x 1z 2z2y===1;∴切平面方程为9(x-3)+(y-1)-(z-1)=0,即9x+y-z-27=0; 法线方程:93-x =11-y =11-z -,即x-3=9(y-1)=9(1-z).12、在曲面z=xy 上求一点,使这点的切平面平行于平面x+3y+z+9=0, 并写出该切平面方程和法线方程.证:设该点为(x 0,y 0,x 0y 0),∵z x (x 0,y 0)=y 0; z y (x 0,y 0)=x 0;∴切平面方程为y 0(x-x 0)+x 0(y-y 0)-(z-x 0y 0)=0,即y 0x+x 0y-z-x 0y 0=0; 由切平面平行于平面x+3y+z+9=0知,y 0=-1; x 0=-3. ∴该点切平面方程为-x-3y-z-3=0,即x+3y+z+3=0. 由00y x -x =00x y -y =1-y x -z 00得1-3x +=3-1y +=1-3-z . ∴该切平面的法线方程为: 3(x+3)=y+1=3(z-3).13、计算近似值:(1)1.002×2.0032×3.0043;(2)sin29⁰·tan46⁰.解:(1)设u=xy 2z 3; x 0=1,y 0=2,z=3; △x=0.002, △y=0.003, △z=0.004;则 u(1,2,3)=108; u x (1,2,3)=108; u y (1,2,3)=108; u z (1,2,3)=108.由u(1.002,2.003,3.004)=u(1,2,3)+u x (1,2,3)△x+u y (1,2,3)△y+u z (1,2,3)△z, 得1.002×2.0032×3.0043≈108(1+0.002+0.003+0.004)=108.972. (2)设z=sinxtany; x 0=6π,y 0=4π; △x=-180π, △y=180π;则 z(6π,4π)=21;z x (6π,4π)=tan 4πcos 6π=23; u z (6π,4π)=sin 6πsec 24π=1;∴sin29⁰·tan46⁰≈21-23×180π+180π≈0.5023.14、设圆台上下底的半径分别为R=30cm, r=20cm, 高h=40cm. 若R,r,h 分别增加3mm,4mm,2mm ,求此圆台体积变化的近似值. 解:圆台体积为:V(R,r,h)=3πh(R 2+Rr+r 2), ∴V R (30,20,40)=3π(2×40×30+40×20)=33200π, V r (30,20,40)=3π(2×40×20+40×30)=32800π, V h (30,20,40)=3π(302+30×20+202)=31900π, 当△R=0.3,△r=0.4,△h=0.2时, △V ≈33200π×0.3+32800π×0.4+31900π×0.2=820π≈2576(cm 3). ∴此圆台体积约增加了2576cm 3.15、证明:若二元函数f 在点P(x 0,y 0)的某邻域U(P)上的偏导函数f x 与f y 有界,则f 在U(P)上连续.证:∵f x ,f y 在U(P)有界, 设此邻域为U(P;δ1),则 存在M>0, 使|f x |<M, |f y |<M 在U(P;δ1)内成立. 又|△f|=|f(x+△x,y+△y)-f(x,y)|=|f x (x+θ1△x,y+△y)△x+f y (x,y+θ2△y)△y| ≤M|△x |+M|△y|, ∴∀ε>0, ∃δ=min{δ1,1)2(M ε}, 使当|△x |<δ,|△y |<δ时,就有|f(x+△x,y+△y)-f(x,y)|< ε,∴f 在U(P; δ)上连续.16、设二元函数f 在区域D=[a,b]×[c,d]上连续. (1)若在intD 内有f x ≡0,试问f 在D 上有何特性? (2)若在intD 内有f x =f y ≡0,f 又怎样?(3)在(1)的讨论中,关于f 在D 上的连续性假设可否省略?长方形区域可否改为任意区域?解: (1)f(x,y)=φ(y). 即函数值与x 无关. 理由如下: 对intD 内任意两点(x 1,y),(x 2,y),由中值定理知: f(x 2,y)-f(x 1,y)=f x (x+θ(x 2-x 1),y)(x 2-x 1)=0,即f(x 2,y)=f(x 1,y), 由(x 1,y),(x 2,y)的任意性知,f(x,y)=φ(y).(2)若在intD 内有f x =f y ≡0,则f(x,y)=常数,即函数值与x,y 无关. 证: 对intD 内任意两点(x 1,y 1),(x 2,y 2),由中值定理知存在 ξ=x 1+θ1(x 2-x 1), η=y 1+θ2(y 2-y 1),使得f(x 2,y 2)-f(x 1,y 1)=f x (ξ,y 2)(x 2-x 1)+f x (x 1,η)(y 2-y 1),∵f x =f y ≡0,∴f(x 2,y 2)≡f(x 1,y 1). 由(x 1,y 1),(x 2,y 2)的任意性知,f(x,y)=常数.(3)(1)中关于f 在D 上的连续性假设不能省略,否则不一定成立.例如,在矩形区域D=⎢⎣⎡-23,⎥⎦⎤23×[0,2]上二元函数f(x,y)=⎩⎨⎧>>中其它部分D 00y 0,x y 3,在intD 内,f x ≡0,但不连续,f(1,1)=1; f(-1,1)=0, 显然f 与x 有关,结论不成立.(1)中长方形区域不能改为任意区域,否则不一定成立.例如,设I={(x,y)|x=0,y ≥0}, D=R 2-I ,则二元函数f(x,y)=⎩⎨⎧>>中其它部分D 0y 0,x y 3, 在D 上连续,且f x ≡0,但f(1,1)=1; f(-1,1)≡0, 即f 与x 有关,结论不成立.17、试证在原点(0,0)的充分小邻域内,有arctan x y1yx ++≈x+y. 证:设f(u,v)=arctan uv1vu ++,u 0=0,v 0=0,△u=x,△v=y ,则 arctanx y1yx ++≈f(u 0,v 0)+f u (u 0,v 0)△u+f v (u 0,v 0)△v ,其中 f(u 0,v 0)=arctan0=0, f u (u 0,v 0)=f v (u 0,v 0)=1,∴arctan x y1yx ++≈△u+△v=x+y.18、求曲面z=4y x 22+与平面y=4的交线在x=2处的切线与Ox 轴的交角.解:∵z x (2,4)=2x|x=2=1;∴切线与Ox 轴的交角为arctan1=4π.19、试证(1)乘积的相对误差限近似于各因子相对误差限之和; (2)商的相对误差限近似于分子和分母相对误差限之和. 证:(1)设u=xy, 则du=ydx+xdy ,∴u u ∆≈u du =y dy x dx +≤x dx +ydy. (2)设v=yx , 则dv=y dx -2y xdy,∴v v ∆≈v dv =y dy x dx -≤x dx +ydy .20、测得一物体的体积V=4.45cm 3, 其绝对误差限为0.01cm 3;又测得重量W=30.80g,其绝对误差限为0.01g. 求由公式d=VW算出的密度d 的相对误差限和绝对误差限. 解:|△d|≈|d W ·△W+d v ·△V|=V VW V W 2∆-∆=01.045.430.804.4501.02⨯-≈0.017. 方法一:d d ∆=W d V ∆=30.80017.045.4⨯≈0.25%; 方法二:d d ∆≈W dW +VdV ≈0.032%+0.225%≈0.26%; ∴密度d 的相对误差限为约0.25%(或0.26%),绝对误差限为0.017.。