第三章 结构陶瓷
- 格式:ppt
- 大小:33.21 MB
- 文档页数:56
第三章结构材料一、填空题:1、碳的质量分数大于2.11% 的铁碳合金称之为铸铁,通常还含有较多的Si 、Mn、S 、P等元素。
2、优质碳素结构钢的钢号是以碳的平均万分数来表示的。
3、碳钢常规热处理有退火、正火、淬火、回火四种4、碳在铁碳合金中的存在形式有与铁的间隙固溶、化合态的渗碳体、游离态的石墨。
5、高分子材料分子量很大,是由许多相同的结构单元组成,并以共价键的形式重复连接而成。
6、塑料、橡胶、纤维被称为三大合成高分子材料。
7、高分子按结构单元的化学组成可分为碳链高分子、杂链高分子、元素有机高分子、无机高分子。
8、聚合物分子运动具有多重性和明显的松弛特性。
9、聚乙烯可分为低密度聚乙烯、高密度聚乙烯、线性低密度聚乙烯、超高分子质量聚乙烯、改性聚乙烯。
10、陶瓷材料的晶体缺陷有点缺陷、线缺陷、面缺陷,其中导电性与点缺陷有直接关系。
11、陶瓷材料的塑性和韧性较低,这是陶瓷材料的最大弱点。
12、陶瓷材料热膨胀系数小,这是由晶体结构和化学键决定的。
13、由两种或两种以上物理、化学、力学性能不同的物质,经人工组合而成的多相固体材料叫做复合材料。
14、复合材料可分为结构复合材料和功能复合材料两大类。
15、颗粒增韧的增韧机理主要包括相变增韧、裂纹转向增韧、和分叉增韧。
16、界面是复合材料中基体与增强材料之间发生相互作用和相互扩散而形成的结合面。
17、复合材料界面结合的类型有机械结合、溶解与侵润结合、反应结合、混合结合。
二、判断题:1、不锈钢中含碳量越低,则耐腐蚀性就越好。
(√)2、纯铝中含有Fe、Si等元素时会使其性能下降。
(√)3、正火是在保温一段时间后随炉冷却至室温的热处理工艺。
(×)4、受热后软化,冷却后又变硬,可重复循环的塑料称为热塑性塑料。
(√)5、聚乙烯从是目前产量最大,应用最广泛的品种。
(√)6、陶瓷材料在低温下热容小,在高温下热容大。
(√)7、陶瓷材料中位错密度很高。
(×)8、陶瓷材料一般具有优于金属材料的高温强度,高温抗蠕变能力强。
第三章碳化物陶瓷材料碳化物是一类耐高温陶瓷材料,通式为Me x C y,可以分为金属碳化物和非金属碳化物两大类。
根据碳化物的晶体结构特点分类,碳化物也可以分为两大类,一类是具有简单的碳化物结构,例如SiC、B4C、TiC、WC、VC及ZrC等;另一类具有较复杂的结构,例如Fe3C、Cr7C3及Cr3C6等。
前者稳定,具有高的硬度、强度、良好的耐磨特性及高温力学性能,所以其应用与开发较为广泛。
而后者稳定性差一些,熔点与硬度稍低,但是常作为钢铁材料中的强化相,并以各种复杂相而存在,例如(Fe, Mn)3C、(Fe, Cr)3C、(Fe, Cr)7C3、(Fe, W)6C及(Fe, Mo)6C等[1]。
碳化物高温结构陶瓷材料通常是指SiC、B4C、TiC、WC、ZrC及其复合材料。
碳化物陶瓷材料的主要特性之一是具有高熔点,例如TiC的熔点为3460℃、WC的熔点为2720℃、ZrC的熔点为3540℃。
碳化物陶瓷材料均具有较高的硬度,例如碳化硼在室温下是仅次于金刚石和立方氮化硼的最硬材料,显微硬度可以达到48.5 GPa,碳化钛的显微硬度为31.4 GPa,碳化硅的显微硬度为29.4 GPa。
碳化物陶瓷材料也具有良好的导电性、导热性及化学稳定性。
大多数碳化物陶瓷材料在常温下不与酸反应,少数碳化物陶瓷材料即使加热也不与酸起反应,最稳定的碳化物陶瓷材料甚至不会受到硝酸与氢氟酸混合酸的腐蚀。
因此,碳化物陶瓷材料可以作为耐热材料、超硬材料、耐磨材料,在国民经济中获得了广泛应用,是极为重要的高技术陶瓷材料之一。
3.1 碳化硅陶瓷材料碳化硅(SiC)俗称金刚砂,又称碳硅石,是一种典型的共价键结合化合物,自然界几乎不存在。
SiC的最初应用是由于其超硬性能,可制备成各种磨削用的砂轮、砂布、砂纸以及各类磨料,广泛应用于机械加工行业。
第二次世界大战中又发现它还可以作为炼钢时的还原剂以及加热元件,从而促进了SiC的快速发展。
第三节玻璃、陶瓷和水泥常见硅酸盐产品的比较aCO3SiO21.为什么碱性试剂如NaOH溶液、Na2CO3溶液不能用带玻璃塞的试剂瓶存放?提示:因为碱性试剂能与玻璃塞的主要成分SiO2反应:2NaOH+SiO2===Na2SiO3+H2O,Na2SiO3具有黏合性,将瓶塞和试剂瓶黏结在一起。
2.玻璃为什么可以被人工吹制成形状不同的制品?提示:普通玻璃是Na2SiO3、CaSiO3、SiO2熔化在一起所得到的物质。
这种物质不是晶体,称作玻璃态物质。
玻璃没有一定的熔点,而是在某个温度范围内逐渐软化,在软化状态时,可以被吹制成任何形状的制品。
3.水泥在储存和运输过程中应注意什么?提示:由于水泥具有很强的吸水能力,能吸收空气中的水分并与之发生化学反应,故储存和运输水泥的过程中要注意防水、防潮。
►综合拓展一、几种玻璃的特性和用途二、水泥1.石膏的作用:调节水泥硬化时间。
2.用途。
(1)制成水泥砂浆:水泥、沙子和水的混合物。
(2)制混凝土:水泥、沙子和碎石的混合物。
3.水泥易被酸腐蚀。
由于水泥的主要成分是硅酸盐和铝酸盐,水泥中还含有少量的碳酸盐,所以水泥和水泥制品易被酸(如HCl、HNO3、H2SO4、CH3COOH等)腐蚀。
因此,水泥制品也要防止酸的腐蚀。
4.水泥的质量指标:我国的三个强度等级(42.5、52.5和62.5)表示常用硅酸盐水泥的性能。
等级越高,水泥的性能越好。
►尝试应用1.在面盆、痰盂等铁制品表面烧制搪瓷的目的是(A)A.防止铁生锈且美观B.增大厚度防止磨损C.增大硬度防止撞坏D.美观和杀菌消毒作用解析:在脸盆等铁制品表面烧制搪瓷,能够隔绝空气和水,不但能防止铁生锈,而且美观,A项正确;在茶缸和脸盆等铁制品表面烧制搪瓷的目的不是为了增大硬度,不能防止磨损,也不能杀菌消毒,B、C、D三项错误。
玻璃和陶瓷的新发展1.光导纤维:简称光纤。
(1)成分:SiO2(石英玻璃)。
(2)用途:制作光缆,还用于医疗、信息处理、传能传像、遥测遥控和照明等方面。
第八章陶瓷材料第1节陶瓷材料概述第4讲陶瓷材料的性能特点先进陶瓷分类(按其性能和功能)结构陶瓷:作为工程结构材料使用的陶瓷功能陶瓷:具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷力学性能特点1硬度高510152025几种典型陶瓷材料的维氏硬度与不锈钢材料的对比图维氏硬度/G P a结构陶瓷的力学性能陶瓷材料硬度高→陶瓷材料耐磨性好→陶瓷材料可以制作刀具50100150200250300350400450几种典型陶瓷材料的弹性模量与不锈钢材料的对比图弹性模量/G P a力学性能特点2高弹性模量陶瓷材料高弹性模量陶瓷材料硬度弹性模量熔点变化规律具有一致性是其主晶相结合键能高低的外在反映弹性模量高→零件/构件的刚度好氧化铝机械加工精度高加工前加工中加工后不锈钢加工过程后发生挠曲变形,精度无法保证金属材料与陶瓷材料的应力-应变曲线(示意图)应力应变陶瓷金属力学性能特点3无塑性变形,断裂强度低陶瓷材料室温下拉伸时没有塑性变形→脆断人们常说的陶瓷强度,主要指它的断裂强度陶瓷材料的实际断裂强度和理论断裂强度对比材料理论值/MPa实测值/MPa理论/实测强度比值Al2O3(蓝宝石)4900063077.0Si3N4(热压)3770098038.5SiC(热压)4800093051.5 Si3N4(反应烧结)37700290130.5奥氏体型钢200003240 6.4陶瓷材料的实际断裂强度比理论强度低很多陶瓷材料实际断裂强度低的原因•存在不规则形状的气孔,相当于裂纹•内部组织结构复杂、和不均匀性2004006008001000120014001600几种典型陶瓷材料的抗弯强度抗弯强度/M P a陶瓷材料的强度,一般采用抗弯强度(弯曲强度)和抗压强度(压缩强度)表示采用三点弯曲测试抗弯强度示意图力学性能特点4低抗压强度高,抗弯强度低几种典型陶瓷材料的抗压强度抗压强度/M P a碳钢铸铁高速钢氧化铝(A479)单晶蓝宝石(SA100)金属陶瓷(TC30)01000200030004000•陶瓷材料抗压强度高,为抗拉强度的10~40倍•陶瓷材料承受压应力的能力大大超过拉应力的能力抗压强度测试示意图•陶瓷材料抗压强度比金属(碳钢)高力学性能特点5冲击韧性、断裂韧性低陶瓷材料是脆性材料冲击韧性~10kJ/m2几种材料的断裂韧性材料K IC/MPa∙m1/2不锈钢(SUS304)21045钢90球墨铸铁20~40氮化硅陶瓷 3.5~5氧化锆7-8氧化铝(99%)3-4K IC约为金属的1/60~1/100物理与化学性能1 较低的密度12345678密度/g ∙c m -3几种典型陶瓷材料的密度与钢的对比图2 熔点高一般在2000℃以上,陶瓷高温强度和高温蠕变抗力优于金属3化学稳定性高•抗氧化性优良,在1000℃高温下不会氧化•对酸、碱、盐有良好的抗蚀性4 热胀系数小24681012141618几种典型陶瓷材料的热膨胀系数与钢的对比图膨胀系数X 10-6/K40~400℃•随气孔率增加,陶瓷的热胀系数、热导率降低•多孔或泡沫陶瓷可作绝热材料20406080100120140160几种典型陶瓷材料的热导率与钢的对比图导热率W /m ∙K5 热导率受材质和气孔影响大6具有特殊性能光学,电学,声学和磁学性能结构陶瓷→功能陶瓷高硬度、耐高温、耐磨损、抗热震、耐腐蚀、抗氧化密度小弹性模量大陶瓷材料性能优势脆性大,韧性差,难加工安全可靠性低陶瓷材料性能短板避免服役过程中工况:冲击载荷、大的拉应力分析服役环境,取长补短可发挥优势工况条件:高温、高压、强腐蚀、强磨损。