七年级数学整式的加减4
- 格式:pdf
- 大小:1.01 MB
- 文档页数:9
3.4 整式的加减第4课时教学目标1、要求学生掌握添括号的法则;2、使学生能在题目能把添括号法则运用到题目的变形及在整式加减中的作用。
教学重难点【教学重点】能把握住添括号法则。
【教学难点】如何在实际题目中灵活运用添括号法则。
课前准备无教学过程一、知识导向:本节课其实中去括号知识点的延续,而且本节的真正运用也要等到以后年级段的学习中,也就是说,在目前的情况下,对于学生的要求上主要是侧重于要求学生能首先对此知识有一个明确的印象。
在教学中,添括号法则的简单应用也是整个教学的中心。
二、新课拆析:1、知识引入:从去括号的运算中,我们知道:cb ac b a cb ac b a --=+-++=++)()( 根据等式的性质,我们有: )()(c b a c b a c b a c b a +-=--++=++2、知识形成:结合去括号法则,结合以上的引例,我们容易得到:概括:添括号法则:所添括号前面是“+”号,括到括号里的各项都不变符号;所添括号前面是“-”号,括到括号里的各项都改变符号;例8:用简便方法计算:(1) a a a 5347214++(2) a a a 6139214--例(补充):化简求值:22225342xy xy y x y x --+,其中 1=x ,1-=y 。
三、巩固训练:P109 练习1、2四、知识小结:本节是主要学习了添括号法则,关键是在实际题目中的应用的,在应用中当所添括号前的符号是“-”时,所括到括号内的所有的项都必须变号,这也本节最难,也是最容易错的知识点。
五、家庭作业:P112 习题3.4 A:9 B:10六、每日预题:如何结合已学的知识进行对复杂的整式的加减运算,如何合理运用各个步骤?。
1.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7B .﹣1C .5D .11A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.2.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B 解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.3.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36B .40C .44D .46A 解析:A【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵a+b=5,ab=4,∴原式=3ab+5a+8b+3a−4ab=8(a+b)−ab=40−4=36,故选A.【点睛】本题考查的是代数式的求值,熟练掌握先化简再求值是解题的关键.4.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( )A .21-B .12-C .36D .12B解析:B【分析】根据同类项定义得出m 3=,代入求解即可.【详解】解:∵322x y 和m 2x y -是同类项, ∴m 3=,∴4m 24432412-=⨯-=-,故选B .【点睛】本题考查了对同类项定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,叫同类项,常数也是同类项.5.一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( ) A .1 B .-1 C .2020 D .2020- A 解析:A【分析】首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===--43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 6.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .32A 解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值.【详解】 ∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a ==-故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.7.下列同类项合并正确的是( )A .x 3+x 2=x 5B .2x ﹣3x =﹣1C .﹣a 2﹣2a 2=﹣a 2D .﹣y 3x 2+2x 2y 3=x 2y 3D解析:D【分析】 根据合并同类项系数相加字母及指数不变,可得答案.【详解】解:A 、x 3与x 2不是同类项,不能合并,故A 错误;B 、合并同类项错误,正确的是2x ﹣3x =﹣x ,故B 错误;C 、合并同类项错误,正确的是﹣a 2﹣2a 2=﹣3a 2,故C 错误;D 、系数相加字母及指数不变,故D 正确;故选:D .【点睛】本题考查了合并同类项,熟记合并同类项的法则,并根据合并同类项的法则计算是解题关键.8.下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=-- C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误; 2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.9.式子5x x-是( ). A .一次二项式B .二次二项式C .代数式D .都不是C 解析:C【分析】根据代数式以及整式的定义即可作出判断.【详解】 式子5x x-分母中含有未知数,因而不是整式,故A 、B 错误,是代数式,故C 正确. 故选:C .【点睛】 本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.10.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ).A .0B .-2C .0或-2D .任意有理数A解析:A【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c ,d 互为倒数,∴cd =1,∵m 的绝对值等于1,∴m =±1,∴原式=0110-+=故选:A.【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.11.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个B .8个C .4个D .5个C 解析:C【分析】根据单项式的定义逐一判断即可.【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式,-2是单项式,3b -是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式,∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C.【点睛】 本题考查单项式的定义,熟练掌握定义是解题关键.12.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误; 235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.13.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( )A .16a ﹣8bB .7a ﹣5bC .4a ﹣4bD .7a ﹣7b B解析:B【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数.【详解】由题意可得:(10a ﹣6b )﹣[(6a ﹣2b )﹣(3a ﹣b )]=10a ﹣6b ﹣6a +2b +3a ﹣b=7a ﹣5b .故选B .【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键.14.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C 解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.15.下列说法错误的是( )A .23-2x y 的系数是32- B .数字0也是单项式 C .-x π是二次单项式D .23xy π的系数是23πC 解析:C【分析】根据单项式的有关定义逐个进行判断即可.【详解】 A. 23-2x y 的系数是32-,故不符合题意; B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D. 23xy π的系数是23π,故不符合题意. 故选C .【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键.1.观察下列顺序排列的等式:9×0+1 = 1,9×1+2 = 11,9×2+3=21, 9×3+4=31,9×4+5=41,……,猜想:第n 个等式(n 为正整数)用n 表示,可表示成_________.【分析】根据数据所显示的规律可知:第一数列都是9第2数列开始有顺序且都是所对序号的数减去1加号后的数据有顺序且与所在的序号项吻合等号右端是的规律所以第n 个等式(n 为正整数)应为【详解】根据分析:即第解析:109n -【分析】根据数据所显示的规律可知:第一数列都是9,第2数列开始有顺序且都是所对序号的数减去1,加号后的数据有顺序且与所在的序号项吻合,等号右端是()10?11n -+的规律,所以第n 个等式(n 为正整数)应为()()9110?11n n n -+=-+.【详解】根据分析:即第n 个式子是()()9110?11109n n n n -+=-+=-.故答案为:109n -.【点睛】本题主要考查了数字类规律探索题.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解. 2.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n -个交点. 【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n - 个交点.即()12n n m -= 故答案为:()12n n -.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.3.已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则 99a =________.【解析】试题解析:1009999. 【解析】试题 等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是1×3=3;等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是2×4=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是4,结果的分子是4,分母是3×5=15.所以a 99=991100991019999+=⨯. 考点:规律型:数字的变化类.4.如图,图1是“杨辉三角”数阵;图2是(a+b )n 的展开式(按b 的升幂排列).若(1+x )45的展开式按x 的升幂排列得:(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=_____.990【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和计算得到结论【详解】解:由图2知:(a+b )1的第三项系数为0(a+b )2的第三项的系数为:1(a+b )3的解析:990【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b )1的第三项系数为0,(a+b )2的第三项的系数为:1,(a+b )3的第三项的系数为:3=1+2,(a+b )4的第三项的系数为:6=1+2+3,…∴发现(1+x )3的第三项系数为:3=1+2;(1+x )4的第三项系数为6=1+2+3;(1+x )5的第三项系数为10=1+2+3+4;不难发现(1+x )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(1+x )45=a 0+a 1x+a 2x 2+...+a 45x 45,则a 2=1+2+3+ (44)44(441)2⨯+=990; 故答案为:990.【点睛】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.5.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.0【解析】由题意m+n=0所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.6.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.【解析】根据题意要求写一个关于字母x 的二次三项式其中二次项是x2一次项是-x 常数项是1所以再相加可得此二次三项式为 解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 7.关于x 的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x 的次数逐渐减小排列,这个二次三项式为____.-3x2+5x -4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x 的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x2+5x-4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x的二次三项式,二次项系数是-3,∴二次项是-3x2,∵一次项系数是,∴一次项是5x,∵常数项是-4,∴这个二次三项式为:-3x2+5x-4.故答案为:-3x2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.8.礼堂第一排有a个座位,后面每排都比第一排多1个座位,则第n排座位有________________.【分析】有第1排的座位数看第n排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n排座位有(a+n-1)个故答案为:(a+n解析:a n1+-【分析】有第1排的座位数,看第n排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有a个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n排座位有(a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n排的座位数与第1排座位数的关系式的规律是解决本题的关键.9.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a,b的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子 解析:a b -a a b +=a b ×a a b+ 【分析】 从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a ,b ,分子用a ,b 表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积. 设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.10.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.【分析】根据题意可知单项式与是同类项从而可求出m 的值【详解】解:∵若单项式与的差仍是单项式∴这两个单项式是同类项∴m-2=1解得:m=3故答案为:3【点睛】本题考查合并同类项和单项式解题关键是能根据解析:3【分析】根据题意可知单项式322m x y-与3-x y 是同类项,从而可求出m 的值. 【详解】解:∵若单项式322m x y -与3-x y 的差仍是单项式, ∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3.11.列式表示:(1)三个连续整数的中间一个是n ,用代数式表示它们三个数的和为______;(2)三个连续奇数的中间一个是n ,其他两个数用代数式表示为______;(3)设n 表示任意一个整数,试用含n 的式子表示不能被3整除的数为______.(1)或;(2)和;(3)和【分析】(1)易得最小的整数为n-1最大的整数为n+1把这3个数相加即可;(2)易得最小的奇数为n-2最大的奇数为n+2;(3)余数为1或2的数都不能被3整除从而列出代数解析:(1)()()11n n n -+++或3n ; (2)2n -和2n +; (3)31n +和32n +.【分析】(1)易得最小的整数为n-1,最大的整数为n+1,把这3个数相加即可;(2)易得最小的奇数为n-2,最大的奇数为n+2;(3)余数为1或2的数都不能被3整除,从而列出代数式.【详解】解: (1)由题意可知,最小的整数为n-1,最大的整数为n+1,∴它们的和为()()11n n n -+++=3n ;(2) 三个连续奇数的中间一个是n ,其他两个数用代数式表示为2n -和2n +;(3)3n 能被3整除,余数为1或2的数都不能被3整除,∴不能被3整除的数为31n +和32n +.【点睛】本题考查了列代数式及代数式化简的知识,;用到的知识点为:连续整数之间间隔1,连续奇数之间相隔2,余数为1或2的数都不能被3整除.1.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(______ )2= ______ .根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2.(2)猜想:113+123+133+143+153= ______ .解析:1+2+3+4+5;225;1+2+…+n ;()n n 12+;11375 【解析】分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2n 个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[n 2+(n-n 2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()n n 12+]2;(2)、113+123+133+143+153=13+23+33+...+153-(13+23+33+ (103)=(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.2.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案. 【详解】 解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++- 0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.3.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题. 解析:(1)见解析;(2)3n =,1m =.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论x 取任何值,多项式值不变”进一步求解即可.【详解】(1)3233233733631061a a b a a b a b a a b +++----=3332233731033661a a a a b a b a b a b +-+-+--=1-,∴该多项式的值与a 、b 的取值无关,∴1,22a b ==-是多余的条件. (2)2233x mx nx x -++-+=2233x nx mx x -++-+=2(3n)(1)3x m x -++-+∵无论x 取任何值,多项式值不变,∴30n -+=,10m -=,∴3n =,1m =.【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键. 4.已知一个多项式加上223x y xy -得222x y xy -,求这个多项式. 佳佳的解题过程如下:解:222223x y xy x y xy ---①224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程. 解析:是从第①步开始出错的,见解析【分析】根据多项式的加减运算法则进行运算即可求解.【详解】解:佳佳是从第①步开始出错的,正确的解题过程如下:根据题意,得:()()222223x y xy x y xy ---222223x y xy x y xy =--+222x y xy =+,∴这个多项式为222x y xy +.故答案为222x y xy +.【点睛】本题考查了多项式的加减混合运算,注意:只有同类项才能进行加减运算.。
3.6整式的加减分层练习考察题型一整式的加减运算1.下列各式计算正确的是()A .336x y xy +=B .22451xy xy -=-C .2(3)26x x --=-+D .223a a a +=【详解】解:A .3x ,3y 不是同类项,不能合并,选项错误,不合题意;B .22245xy xy xy -=-,选项错误,不合题意;C .2(3)26x x --=-+,选项正确,符合题意;D .23a a a +=,选项错误,不合题意.故本题选:C .2.一个多项式与2210x x --+的和是32x -,则这个多项式为.【详解】解:由题意得:232(210)x x x ----+232210x x x =-++-2512x x =+-.故本题答案为:2512x x +-.3.已知多项式222A x y =+,2243B x y =-+且0A B C ++=,则C 为.【详解】解:222A x y =+ ,2243B x y =-+,0A B C ++=,C A B ∴=--,2222(2)(43)x y x y =-+--+2222243x y x y =--+-2235x y =-.故本题答案为:2235x y -.4.已知22x xy +=,23xy y -=,则代数式2232x xy y +-=.【详解】解:当22x xy +=,23xy y -=时,222232()2()268x xy y x xy xy y +-=++-=+=.故本题答案为:8.5.已知22x xy +=-,239xy y +=-,则式子222104x xy y --的值是.【详解】解:当22x xy +=-,239xy y +=-时,222221042(52)x xy y x xy y --=--222[()2(3)]x xy xy y =+-+2[22(9)]=⨯--⨯-2(218)=⨯-+216=⨯32=.故本题答案为:32.6.化简:(1)22224823x y xy x y xy --+-;(2)223(32)2(4)a ab a ab ---.【详解】解:(1)原式2222(42)(83)x y x y xy xy =-++--22211x y xy =--;(2)原式229682a ab a ab=--+22(98)(62)a a ab ab =-+-+24a ab =-.7.佳佳做一道题“已知两个多项式A ,B ,计算A B -”.佳佳误将A B -看作A B +,求得结果是2927x x -+.若232B x x =+-,请解决下列问题:(1)求出A ;(2)求A B -的正确答案.【详解】解:(1)2927A B x x +=-+ ,232B x x =+-,22927(32)A x x x x ∴=-+-+-2292732x x x x =-+--+2859x x =-+;(2)22859(32)A B x x x x -=-+-+-2285932x x x x =-+--+27811x x =-+.8.(1)在数轴上有理数a ,b ,c 所对应的点位置如图,化简:|||2|2||a b a c b c +--++;(2)已知多项式22A x xy =-,26B x xy =+-.化简:43A B -.【详解】解:(1)由数轴可得:0a b c <<<,||||||b c a <<,0a b ∴+<,20a c -<,0b c +>,故原式222a b a c b c a b c =--+-++=++;(2)22A x xy =- ,26B x xy =+-,22434(2)3(6)A B x xy x xy ∴-=--+-22843318x xy x xy =---+25718x xy =-+.考察题型二借助整式的加减求参或求代数式的值1.将多项式2222(3)2(2)x xy y x mxy y ---++化简后不含xy 的项,则m 的值是.【详解】解:原式22223224x xy y x mxy y =-----22(32)5x m xy y =--+-,令320m +=,1.5m ∴=-.故本题答案为: 1.5-.2.已知226A x kx x =+-,21B x kx =-+-.若2A B +的值与x 的取值无关,则k =.【详解】解:226A x kx x =+- ,21B x kx =-+-,222262(1)A B x kx x x kx ∴+=+-+-+-2226222x kx x x kx =+--+-(36)2k x =--,2A B + 的值与x 的取值无关,360k ∴-=,解得:2k =.故本题答案为:2.3.如果整式A 与整式B 的和为一个常数a ,我们称A ,B 为常数a 的“和谐整式”,例如:6x -和7x -+为数1的“和谐整式”.若关于x 的整式296x mx -+与23(3)x x m --+为常数k 的“和谐整式”(其中m 为常数),则k 的值为()A .3B .3-C .5D .15【详解】解: 整式296x mx -+与23(3)x x m --+为常数k 的“和谐整式”,223(3)933x x m x x m --+=-+-,3m ∴-=-,解得:3m =,39m ∴-=-,6(9)3∴+-=-,即k 的值为3-.故本题选:B .考察题型三借助整式的加减解决几何问题1.现有1张大长方形和3张相同的小长方形卡片,按如图所示两种方式摆放,则小长方形的长与宽的差是()A .a b -B .2a b -C .3a b -D .3a b +【详解】解:设小长方形的长为x 、宽为y ,大长方形的长为m ,则2a y x m +=+,2x b y m +=+,2x a y m ∴=+-,2y x b m =+-,(2)(2)x y a y m x b m ∴-=+--+-,即33x y a b -=-,3a bx y -∴-=,即小长方形的长与宽的差是3a b-.故本题选:C .2.如图,把两个边长不等的正方形放置在周长为m 的长方形ABCD 内,两个正方形的周长和为n ,则这两个正方形的重叠部分(图中阴影部分所示)的周长可用代数式表示为()A .2n m -B .n m -C .2m n -D .42n m-【详解】解:设较小的正方形边长为x ,较大的正方形边长为y ,阴影部分的长和宽分别为a 、b , 两个正方形的周长和为n ,44x y n ∴+=,14x y n ∴+=,BC x y b ∴=+-14n b =-,AB x y a =+-14n a =-,长方形ABCD 的周长为m ,12BC AB m ∴+=,11114422n b n a n a b m ∴-+-=--=,1()2a b n m ∴+=-,2()a b n m ∴+=-,∴阴影部分的周长为()n m -.故本题选:B .3.图1是长为a ,宽为()b a b >的小长方形纸片将6张如图1的纸片按图2的方式不重叠地放在长方形ABCD 内,已知CD 的长度固定不变,BC 的长度可以变化,图中阴影部分(即两个长方形)的面积分别表示为1S ,2S ,若12S S S =-,且S 为定值,则a ,b 满足的关系是()A .2a b =B .3a b =C .4a b =D .5a b=【详解】解:设BC n =,则1(4)S a n b =-,22()S b n a =-,12(4)2()(2)2S S S a n b b n a a b n ab ∴=-=---=--, 当BC 的长度变化时,S 的值不变,S ∴的取值与n 无关,20a b ∴-=,即2a b =.故本题选:A .考察题型四整式的加减——化简求值1.化简求值:2233[22()]2x y xy xy x y xy ---+,其中3x =,13y =-.【详解】解:2233[22()]2x y xy xy x y xy ---+223(223)x y xy xy x y xy =--++2.已知多项231A x x =-+,22(22)B kx x x =-+-.(1)当1x =-时,求A 的值;(2)小华认为无论k 取何值,A B -的值都无法确定.小明认为k 可以找到适当的数,使代数式A B -的值是常数.你认为谁的说法正确?请说明理由.【详解】解:(1)231A x x =-+ ,当1x =-时,∴原式23(1)(1)1=⨯---+3111=⨯++5=;(2)小明说法对;22231(22)A B x x kx x x -=-+-++-2223122x x kx x x =-+-++-2(5)1k x =--,当50k -=,即5k =时,1A B -=-.3.已知含字母x ,y 的多项式是:22223[2(2)]3(2)4(1)x y xy x y xy x ++--+---.(1)化简此多项式;(2)若x ,y 互为倒数,且恰好计算得多项式的值等于0,求x 的值.【详解】解:(1)原式222236(2)36444x y xy x y xy x =++----++22223661236444x y xy x y xy x =++----++248xy x =+-;(2)x ,y 互为倒数,1xy ∴=,则24824846xy x x x +-=+-=-,4.已知单项式123a x y -与312b xy ---是同类项.(1)填空:a =,b =;(2)在(1)的条件下,先化简,再求值:225()2(2)2a b b a b +-++.【详解】解:(1)由题意可得:11a -=,231b =--,解得:2a =,1b =-,故本题答案为:2,1-;(2)原式2255242a b b a b =+--+25a b =+,将2a =,1b =-代入,原式225(1)=+⨯-1=-.5.已知多项式222A x xy x =+++,2233B x xy y =-+-.(1)若2(2)|5|0x y -++=,求2A B -的值.(2)若2A B -的值与y 的值无关,求x 的值.6.已知关于x 的代数式221262x bx y --+和1751ax x y +--的值都与字母x 的取值无关.(1)求a ,b 的值.(2)若2244A a ab b =-+,2233B a ab b =-+,求4[(2)3()]A A B A B +--+的值.7.阅读材料:对于任何数,我们规定符号a b cd的意义是a b ad bc c d=-.例如:121423234=⨯-⨯=-.(1)按照这个规定,请你计算5628-的值;(2)按照这个规定,请你计算当2|3|(1)0m n ++-=时,223212m nm n+--的值.∴原式18927=--=.1.一个四位数100010010m a b c d =+++(其中1a ,b ,c ,9d ,且均为整数),若()a b k c d +=-,且k 为整数,则称m 为“k 型数”.例如:7241m =,因为()72341+=⨯-,则7241为“3型数”;4635m =,因为465(35)+=-⨯-,则4635为“5-型数”.若四位数m 是“3型数”,3m -是“1-型数”,将m 的百位数字与十位数字交换位置,得到一个新的四位数n ,n 也是“3型数”,则满足条件的最小四位数m 的值为.6a b ∴+=,又b c = ,666(2)4a b c d d ∴=-=-=-+=-,3d < ,∴当d 最大2=时,a 最小2=,此时24c d =+=,4b c ==,∴最小2442m =.故本题答案为:2442.2.材料:对于一个四位正整数m ,如果满足百位上数字的2倍等于千位与十位的数字之和,十位上数字的2倍等于百位与个位的数字之和,那么称这个数为“相邻数”.例如:3579 中,253710⨯=+=,725914⨯=+=,3579∴是“相邻数”.(1)判断7653,3210是否为“相邻数”,并说明理由;(2)若四位正整数100010010n a b c d =+++为“相邻数”,其中a ,b ,c ,d 为整数,且19a ,09b ,09c ,09d ,设()2F n c =,()2G n d a =-,若3()()2317F nG n -+为整数,求所有满足条件的n 值.综上,所有满足条件的n的值为1234,8642,9999.。