北师大版高中数学必修二1.7 简单几何体的再认识终稿
- 格式:ppt
- 大小:3.43 MB
- 文档页数:36
第1课时柱、锥、台的侧面展开与面积[核心必知]1.圆柱、圆锥、圆台的侧面展开图及侧面积公式几何体侧面展开图的形状侧面积公式圆柱矩形S圆柱侧=2πrl圆锥扇形S圆锥侧=πrl圆台扇环S圆台侧=π(r1+r2)l其中r为底面半径,l为侧面母线长,r1,r2分别为圆台的上,下底面半径.2.直棱柱、正棱锥、正棱台的侧面积几何体侧面积公式直棱柱S直棱柱侧=c·h正棱锥S正棱锥侧=12c·h′正棱台S正棱台侧=12(c+c′)·h′其中c′,c分别表示上,下底面周长,h表示高,h′表示斜高.[问题思考]1.一个几何体的平面展开图一定相同吗?其表面积是否确定?提示:不同的展开方式,几何体的展开图不一定相同.表面积是各个面的面积和,几何体的侧面展开方法可能不同,但其表面积唯一确定.2.柱体、锥体、台体之间有如下关系:那么台体、锥体、柱体的侧面积公式有什么联系?提示:根据以上关系,在台体的侧面积公式中,令c′=c,可以得到柱体的侧面积公式,令c′=0,可得到锥体的侧面积公式,其关系如下所示:S 柱侧=ch ′c =c ′,S 台侧=12(c +c ′)h ′――→c ′=0S 锥侧=12ch ′.3.棱柱的侧面积一定等于底面周长与侧棱长的乘积吗?提示:不一定.由棱柱的概念与性质可知棱柱的侧面展开图是一个平行四边形,此平行四边形的一边为棱柱的底面周长,另一边长为棱柱的侧棱长,但此平行四边形若不是矩形,则它的面积并不等于这两边长的乘积,所以棱柱的侧面积并不一定等于底面周长与侧棱长的乘积,只有直棱柱的侧面积才等于底面周长与侧棱长的乘积.讲一讲1.(1)圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为( ) A .6π(4π+3) B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)(2)圆锥的中截面把圆锥侧面分成两部分,则这两部分侧面积的比为( ) A .1∶1 B .1∶2 C .1∶3 D .1∶4[尝试解答] (1)选C 圆柱的侧面积S 侧=6π×4π=24π2.①以边长为6π的边为轴时,4π为圆柱底面周长,则2πr =4π,即r =2,∴S 底=4π,S 全=S 侧+2S 底=24π2+8π=8π(3π+1).②以边长为4π的边为轴时,6π为圆柱底面周长,则2πr =6π,即r =3,∴S 底=9π,∴S 全=S侧+2S 底=24π2+18π=6π(4π+3).(2)选C 如图所示,PB 为圆锥的母线,O 1,O 2分别为截面与底面的圆心.∵O 1为PO 2的中点,∴PO 1PO 2=P A PB =O 1A O 2B =12, ∴P A =AB ,O 2B =2O 1A .∵S 圆锥侧=12×2π·O 1A ·P A ,S 圆台侧=12×2π·(O 1A +O 2B )·AB ,∴S 圆锥侧S 圆台侧=O 1A ·P A (O 1A +O 2B )·AB =13.1.求柱、锥、台的表面积(或全面积)就是求它们的侧面积和(上、下)底面积之和. 2.求几何体的表面积问题,通常将所给几何体分成基本的柱、锥、台,再通过这些基本柱、锥、台的表面积,进行求和或作差,从而获得几何体的表面积.练一练1.圆台的上、下底面半径分别是10 cm 和20 cm ,它的侧面展开图的扇环的圆心角是180°,那么圆台的表面积是多少?解:如图所示,设圆台的上底面周长为c ,因为扇环的圆心角是180°,故c =π·SA =2π×10, 所以SA =20(cm), 同理可得SB =40(cm), 所以AB =SB -SA =20(cm), 所以S 表面积=S 侧+S 上+S 下=π(r 1+r 2)·AB +πr 21+πr 22=π(10+20)×20+π×102+π×202=1 100π(cm 2).故圆台的表面积为1 100π cm 2.讲一讲2.五棱台的上、下底面均是正五边形,边长分别是8 cm 和18 cm ,侧面是全等的等腰梯形,侧棱长是13 cm ,求它的侧面积.[尝试解答] 如图是五棱台的其中一个侧面,它是一个上底、下底分别为8 cm 和18 cm ,腰长为13 cm 的等腰梯形,由点A 向BC 作垂线,设垂足为E ,由点D 向BC 作垂线,设垂足为F ,易知BE =CF .∵BE +EF +FC =2BF -AD =BC ,∴BF =BC +AD 2=18+82=13.∴BE =BF -AD =13-8=5.又AB =13,∴AE =12.∴S 四边形ABCD =12(AD +BC )·AE =12×(18+8)×12=156(cm 2).故其侧面积为156×5=780(cm 2).要求锥体、柱体、台体的侧面积及表面积,需根据题目中的已知条件寻求锥体、柱体、台体的侧面积及表面积公式所需条件,然后应用公式进行解答.练一练2.已知正三棱锥V -ABC 的主视图,俯视图如图所示,其中VA =4,AC =23,求该三棱锥的表面积.解:由主视图与俯视图可得正三棱锥的直观图如图,且VA =VB =VC =4, AB =BC =AC =23, 取BC 的中点D ,连接VD ,则VD =VB 2-BD 2=42-(3)2=13, ∴S △VBC =12×VD ×BC =12×13×23=39,S △ABC =12×(23)2×32=33,∴三棱锥V -ABC 的表面积为3S △VBC +S △ABC =339+33=3(39+3).讲一讲3.已知一个圆锥的底面半径为R ,高为H ,在其内部有一个高为x 的内接圆柱. (1)求圆柱的侧面积;(2)x 为何值时,圆柱的侧面积最大?[尝试解答] 如图是圆锥及内接圆柱的轴截面图.(1)设所求圆柱的底面半径为r , 则r R =H -x H ,∴ r =R -R H x , ∴S 圆柱侧=2πrx =2πRx -2πR H ·x 2.(2)∵S 圆柱侧是关于x 的二次函数,∴当x =-2πR 2×(-2πR H )=H2时,S 圆柱侧有最大值,即当圆柱的高是圆锥的高的一半时,它的侧面积最大.解决组合体的表面积问题,要充分考虑组合体各部分的量之间的关系,将其转化为简单多面体与旋转体的表面积问题进行求解.练一练3.已知底面半径为 3 cm ,母线长为 6 cm 的圆柱,挖去一个以圆柱上底面圆心为顶点,下底面为底面的圆锥,求所得几何体的表面积.解:如图,由题意易知圆锥的母线长为3 cm.则S =S 底+S 柱侧+S 圆锥侧=π×(3)2+2π×3×6+π×3×3 =(3+62+33)π(cm 2).如图所示,圆柱OO ′的底面半径为2 cm ,高为4 cm ,点P 为母线B ′B 的中点,∠AOB =23π,试求一蚂蚁从A 点沿圆柱表面爬到P 点的最短路程.[巧思] 将圆柱的侧面展开,将A 、P 两点转化到同一个平面上解决.[妙解] 将圆柱侧面沿母线AA ′剪开展平为平面图,如图,则易知最短路径为平面图中线段AP .在Rt △ABP 中,AB =23π×2=43π(cm),PB =2(cm),∴AP =AB 2+BP 2=234π2+9(cm). 故蚂蚁爬的最短路程为234π2+9 cm.1.矩形的边长分别为1和2,分别以这两边为轴旋转,所形成的几何体的侧面积之比为( )A .1∶2B .1∶1C .1∶4D .4∶1解析:选B 以边长为1的边为轴旋转得到的圆柱的侧面积 S 1=2π×2×1=4π,以边长为2的边为轴旋转得到的圆柱的侧面积S 2=2π×1×2=4π, ∴S 1∶S 2=4π∶4π=1∶1.2.一个圆台的母线长等于上、下底面半径和的一半,且侧面积是32π,则母线长为( ) A .2 B .2 2 C .4 D .8解析:选C 设圆台的母线长为l ,上、下底面半径分别为r ,R , 则l =12(r +R ).又32π=π(r +R )l =2πl 2, ∴l 2=16, ∴l =4.3.(北京高考)某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+6 5B .30+6 5C .56+12 5D .60+12 5解析:选B 由题中的三视图知,该三棱锥的立体图形如图所示.由题中所给条件,可求得S △ABD =12×4×5=10,S △ACD =S △BCD =12×4×5=10,AC =BC =41,AB =25,可求得△ABC 中AB 边上的高为41-5=6,所以S △ABC =12×6×25=6 5.综上可知,该三棱锥的表面积为S △ABD +S △ACD +S △BCD +S △ABC =30+6 5.4.圆锥的侧面展开图是半径为R 的半圆,则圆锥的高是________. 解析:设底面半径是r ,则2πr =πR , ∴r =R 2,∴圆锥的高h =R 2-r 2=32R .答案:32R 5.若一个底面是正三角形的三棱柱的主视图如图所示,则其表面积等于________.解析:根据题意可知,该棱柱的底面边长为2,高为1,侧棱和底面垂直,故其表面积S =34×22×2+2×1×3=6+2 3. 答案:6+2 36.一个几何体的三视图如图所示.已知主视图是底边长为1的平行四边形,左视图是一个长为3,宽为1的矩形,俯视图为两个边长为2的正方形拼成的矩形.求该几何体的表面积S .解:由三视图可知,该平行六面体中,A 1D ⊥平面ABCD ,CD ⊥平面BCC 1B 1, 所以AA 1=2,侧面ABB 1A 1,CDD 1C 1均为矩形, 所以S =2×(1×1+1×3+1×2) =6+2 3.一、选择题1.圆台的母线长扩大为原来的n 倍,两底面半径都缩小为原来的1n 倍,那么它的侧面积变为原来的( )A .1倍B .n 倍C .n 2倍 D.1n倍解析:选A 由S 侧=π(r ′+r )l .当r ,r ′缩小1n 倍,l 扩大n 倍时,S 侧不变.2.已知正四棱锥底面边长为6,侧棱长为5,则此棱锥的侧面积为( ) A .12 B .36 C .24 D .48解析:选D 正四棱锥的斜高h ′=52-32=4, S 侧=4×12×6×4=48.3.长方体的对角线长为214,长、宽、高的比为3∶2∶1,那么它的表面积为( ) A .44 B .88 C .64 D .48解析:选B 设长,宽,高分别为3x,2x ,x ,则对角线长为9x 2+4x 2+x 2=14x =214,∴x =2.∴表面积S =2(6x 2+3x 2+2x 2)=88.4.圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是( ) A .4πS B .2πS C .πS D.233πS解析:选A 设圆柱的底面半径为R ,则S =πR 2, ∴R =S π, 则圆柱的母线长l =2πR =2S π. S 侧面积=(2πR )2=4π2R 2=4π2×Sπ=4πS .5.(重庆高考)某几何体的三视图如下图所示,则该几何体的表面积为( )A .180B .200C .220D .240解析:选D 几何体为直四棱柱,其高为10,底面是上底为2,下底为8,高为4,腰为5的等腰梯形,故两个底面面积的和为12×(2+8)×4×2=40,四个侧面面积的和为(2+8+5×2)×10=200,所以直四棱柱的表面积为S =40+200=240,故选D.二、填空题6.已知圆台的上、下底面半径和高的比为1∶4∶4,母线长为10,则圆台的侧面积为________.解析:设上底面半径为r ,则下底面半径为4r ,高为4r ,如图.∵母线长为10,∴有102=(4r )2+(4r -r )2,解得r =2. ∴S 圆台侧=π(r +4r )×10=100π. 答案:100π7.已知棱长为1,各面都是正三角形的四面体,则它的表面积是________. 解析:由条件可知,四面体的斜高为32, 所以其表面积为S 表=4×12×1×32= 3.答案: 38.如图,直三棱柱的主视图面积为2a 2,则左视图的面积为________.解析:此直三棱柱的底面是边长为a 的正三角形,该三角形的高为32a .左视图是一矩形,一边为32a ,另一边为2a ,故左视图的面积为32a ×2a =3a 2. 答案:3a 2 三、解答题9.如图所示是一建筑物的三视图,现需将其外壁用油漆刷一遍,已知每平方米用漆0.2 kg ,问需要多少油漆?(尺寸如图,单位:m ,π取3.14,结果精确到0.01 kg)解:由三视图知建筑物为一组合体,自上而下分别是圆锥和四棱柱,并且圆锥的底面半径为3 m ,母线长为5 m ,四棱柱的高为4 m ,底面是边长为3 m 的正方形.圆锥的表面积为πr 2+πrl =3.14×32+3.14×3×5=28.26+47.1=75.36(m 2); 四棱柱的一个底面积为32=9(m 2);四棱柱的侧面积为4×4×3=48(m 2). 所以外壁面积=75.36-9+48=114.36(m 2), 需油漆114.36×0.2=22.872≈22.87(kg), 答:共需油漆约22.87 kg.10.正四棱台两底面边长分别为a 和b (a <b ).(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,求棱台的侧面积; (2)若棱台的侧面积等于两底面面积之和,求它的高.解:(1)如图,设O 1,O 分别为上,下底面的中心,过C 1作C 1E ⊥AC 于E ,过E 作EF ⊥BC 于F ,连接C 1F ,则C 1F 为正四棱台的斜高.由题意知∠C 1CO =45°, CE =CO -EO =CO -C 1O 1=22(b -a ). 在Rt △C 1CE 中,C 1E =CE =22(b -a ), 又EF =CE ·sin 45°=12(b -a ),∴斜高C 1F =C 1E 2+EF 2 =⎣⎡⎦⎤22(b -a )2+⎣⎡⎦⎤12(b -a )2=32(b -a ).∴S 侧=12(4a +4b )×32(b -a )=3(b 2-a 2).(2)∵S 上底+S 下底=a 2+b 2, ∴12(4a +4b )·h 斜=a 2+b 2, ∴h 斜=a 2+b 22(a +b ).又EF =b -a 2,h =h 2斜-EF 2=ab a +b. 第2课时 柱、锥、台的体积[核心必知]柱、锥、台的体积公式几何体 公式 说明 柱体V 柱体=Sh S 为柱体的底面积 h 为柱体的高 锥体V 锥体=13ShS 为锥体的底面积 h 为锥体的高 台体V 台体=13(S 上+S 下+S 上·S 下)·hS 上,S 下分别为台体的上、下底面面积,h 为台体的高[问题思考]仿照侧面积公式,你能用底面半径和高来表示圆柱、圆锥和圆台的体积公式吗? 提示:(1)底面半径是r ,高是h 的圆柱的体积是:V 圆柱=πr 2h . (2)如果圆锥的底面半径是r ,高是h ,那么它的体积是:V 圆锥=13πr 2h .(3)如果圆台上、下底面半径分别是r ′、r ,高是h ,那么它的体积是:V 圆台=13πh (r 2+rr ′+r ′2).讲一讲1.已知直三棱柱ABC -A 1B 1C 1中,点C 到AB 的距离为3 cm ,侧面ABB 1A 1的面积为8 cm 2,求直三棱柱的体积.[尝试解答] 法一:如图,设点C 到AB 的距离为d ,侧面ABB 1A 1的面积为S 1,则△ABC 的面积S =12|AB |d .∴直三棱柱的体积V =Sh =S |AA 1| =12|AB |d |AA 1|=12|AB |·|AA 1|d =12S 1 d =12(cm 3). 法二:补上一个相同的直三棱柱可以得到一个直四棱柱ABCD -A 1B 1C 1D 1.可以看成以A 1ABB 1为底面的四棱柱D 1DCC 1-A 1ABB 1.则ABB 1A 1的面积就是底面积,C 到AB 的距离即为高. ∴四棱柱D 1DCC 1-A 1ABB 1的体积V =24(cm 3), 则直三棱柱的体积为12(cm 3).(1)直棱柱的侧面与对角面都是矩形,所以方法一利用侧面积与点到直线的距离的乘积求得体积.(2)四棱柱的底面与侧面是相对而言的,即任何一组对面都可以作为底面.所以方法二采用了“补形”求得四棱柱的体积(间接求解).练一练1.一个正方体的底面积和一个圆柱的底面积相等,且侧面积也相等,求正方体和圆柱的体积之比.解:设正方体边长为a ,圆柱高为h ,底面半径为r ,则有⎩⎪⎨⎪⎧a 2=πr 2, ①2πrh =4a 2, ②由①得r =ππa , 由②得πrh =2a 2, ∴V 圆柱=πr 2h =2ππa 3,∴V 正方体∶V 圆柱=a 3∶(2ππa 3)=π2∶1=π∶2.讲一讲2.如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高.若AB =6,∠APB =∠ADB =60°,求四棱锥P -ABCD 的体积.[尝试解答] 因为ABCD 为等腰梯形,AB ∥CD ,AC ⊥BD ,AB =6, 所以HA =HB = 3. 因为∠APB =∠ADB =60°,所以P A =PB =6,HD =HC =3tan 30°=1. 可得PH =P A 2-AH 2=3,等腰梯形ABCD 的面积为S =12AC ×BD =2+ 3.所以四棱锥的体积为V =13×(2+3)×3=3+233.求锥体的体积,要选择适当的底面和高,然后应用公式V =13Sh 进行计算即可,常用方法为割补法和等积变换法:(1)割补法:求一个几何体的体积可以将这个几何体分割成几个柱体、锥体,分别求出柱体和锥体的体积,从而得出几何体的体积.(2)等积变换法:利用三棱锥的任一个面可作为三棱锥的底面. ①求体积时,可选择容易计算的方式来计算; ②利用“等积性”可求“点到面的距离”. 练一练2.已知三角形ABC 的边长分别是AC =3,BC =4,AB =5,以AB 所在直线为轴,将此三角形旋转一周,求所得几何体的体积.∵△ABC 为直角三角形,且AB 为斜边,∴绕AB 边旋转一周,所得几何体为两个同底的圆锥,且圆锥的底面半径r =125.∴V 锥=13·AB ·πr 2=13×5×π×⎝⎛⎭⎫1252=485π.讲一讲3.圆台上底的面积为16π cm 2,下底半径为6 cm ,母线长为10 cm ,那么,圆台的侧面积和体积各是多少?[尝试解答] 首先,圆台的上底的半径为4 cm , 于是S 圆台侧=π(r +r ′)l =100π(cm 2). 其次,如图,圆台的高h =BC =BD 2-(OD -AB )2 =102-(6-4)2=46(cm), 所以V 圆台=13h (S +SS ′+S ′)=13×46×(16π+16π×36π+36π) =3046π3(cm 3).求台体的体积关键是求出上、下底面的面积和台体的高,要注意充分运用棱台内的直角梯形和圆台的轴截面(等腰梯形)等求相关量之间的关系.因为台体是由锥体用平行于底面的平面截得的几何体,所以它的体积也可以转化为两个锥体的体积之差.练一练3.正四棱台的上下底面边长分别为6 cm 和12 cm ,侧面积为180 cm 2,求棱台的体积. 解:如图,分别过正四棱台的底面中心O 1,O 作O 1E 1⊥B 1C 1,OE ⊥BC ,垂足分别为E 1,E ,则E 1E 为正四棱台的斜高.由于正四棱台的侧面积为180 cm 2, 所以12×4×(6+12)|E 1E |=180,解得|E 1E |=5.在直角梯形O 1OEE 1中,O 1E 1=3,OE =6,E 1E =5,解得O 1O =4.所以正四棱台的体积为V =13h (S +SS ′+S ′)=13×4×(62+6×12+122)=336(cm 3).如图所示,在长方体ABCD -A ′B ′C ′D ′中,用截面截下一个棱锥C -A ′DD ′,求棱锥C -A ′DD ′的体积与剩余部分的体积之比.[解] 法一:设AB =a ,AD =b ,DD ′=c , 则长方体ABCD -A ′B ′C ′D ′的体积V =abc , 又S △A ′DD ′=12bc ,且三棱锥C -A ′DD ′的高为CD =a , ∴V 三棱锥C -A ′DD ′=13S △A ′D ′D ·CD =16abc .则剩余部分的体积V 剩=abc -16abc =56abc .故V 三棱锥C -A ′D ′D ∶V 剩=16abc ∶56abc =1∶5.[尝试用另外一种方法解题]法二:已知长方体可以看成侧棱垂直于底面的四棱柱ADD ′A ′-BCC ′B ′,设它的底面ADD ′A ′的面积为S ,高为h ,则它的体积为V =Sh .而棱锥C -A ′DD ′的底面面积为12S ,高是h ,因此,棱锥C -A ′DD ′的体积V C -A ′DD ′=13×12Sh =16Sh .故余下的体积是Sh -16Sh =56Sh .∴棱锥C -A ′DD ′的体积与剩余部分的体积之比为16Sh ∶56Sh =1∶5.1.正方体的表面积为96,则正方体的体积是( ) A .486 B .64 C .16 D .96解析:选B 设正方体的棱长为a ,则6a 2=96,解得a =4,则正方体的体积是a 3=64.2.(山东高考)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示,则该四棱锥侧面积和体积分别是( )A .45,8B .45,83C .4(5+1),83D .8,8解析:选B 由题意可知该四棱锥为正四棱锥,底面边长为2,高为2,侧面上的斜高为22+12=5,所以S 侧=4×⎝⎛⎭⎫12×2×5=45,V =13×22×2=83. 3.(重庆高考)某几何体的三视图如图所示,则该几何体的体积为( )A.13+πB.23+π C.13+2π D.23+2π 解析:选A 由三视图可知该几何体是由一个半圆柱和一个三棱锥组成的.由图中数据可得三棱锥的体积V 1=13×12×2×1×1=13,半圆柱的体积V 2=12×π×12×2=π,∴V =13+π.4.一个几何体的三视图如图所示,则这个几何体的体积为________.解析:该空间几何体是一个底面为梯形的四棱柱,其底面积是1+22×2=3,高为1,故其体积等于3.答案:35.圆台的上、下底面半径和高的比为1∶4∶4,母线长为10,则圆台的体积为________. 解析:设圆台的上底面半径为r , 则(3r )2+(4r )2=100,解之得r =2.∴S 上=πr 2=4π,S 下=π(4r )2=16πr 2=64π, h =4r =8.∴V =13(4π+64π+16π)×8=224π.答案:224π6.已知一个三棱台的两底面是边长分别为20 cm 和30 cm 的正三角形,侧面是全等的等腰梯形,且其侧面积等于两底面面积之和,求棱台的高和体积.解:如图,在三棱台ABC -A ′B ′C ′中,O ′、O 分别为上、下底面的中心,D 、D ′分别是BC 、B ′C ′的中点,则DD ′是梯形BCC ′B ′的高,所以S 侧=12(20+30)·DD ′·3=75DD ′.又A ′B ′=20 cm ,AB =30 cm ,则上、下底面面积之和为S 上+S 下=34(202+302)=3253(cm 2).由S 侧=S 上+S 下得,75DD ′=3253(cm 2),所以DD ′=1333(cm). 在直角梯形O ′ODD ′中,OD =5 3 cm ,O ′D ′=1033 cm ,O ′O =D ′D 2-(OD -O ′D ′)2= ⎝⎛⎭⎫13332-⎝⎛⎭⎫53-10332=43(cm),即棱台的高h =4 3 cm.由棱台的体积公式,可得棱台的体积为V =h3(S +S ′+SS ′)=433·⎝⎛⎭⎫34·302+34·202+34·20·30 =1 900(cm 3).一、选择题1.已知圆锥的母线长是8,底面周长为6π,则它的体积是( ) A .955π B .955C .355πD .355解析:选C 设圆锥底面圆的半径为r ,则2πr =6π,∴r =3. 设圆锥的高为h ,则h =82-32=55, ∴V 圆锥=13πr 2h =355π.2.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( )A.23B.76C.45D.56解析:选D 用过共顶点的三条棱中点的平面截该正方体,所得三棱锥的体积为13×⎝⎛⎭⎫124=148,故剩下的凸多面体的体积为1-8×148=56. 3.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .18解析:选B 由三视图可知该几何体为底面是斜边为6的等腰直角三角形,高为3的三棱锥,其体积为13×12×6×3×3=9.4.(浙江高考)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .108 cm 3B .100 cm 3C .92 cm 3D .84 cm 3解析:选B 根据几何体的三视图可知,所求几何体是一个长方体截去一个三棱锥,∴几何体的体积V =6×6×3-13×12×4×4×3=100 cm 3.5.分别以一个锐角为30°的直角三角形的最短直角边、较长直角边、斜边所在的直线为轴旋转一周,所形成的几何体的体积之比是( )A .1∶2∶ 3B .6∶23∶ 3C .6∶23∶3D .3∶23∶6 解析:选C 设如图所示的Rt △ABC 中,∠BAC =30°,BC =1,则AB =2,AC =3,求得斜边上的高CD =32,旋转所得几何体的体积分别为V 1=13π(3)2×1=π,V 2=13π×12×3=33π,V 3=13π(32)2×2=12π.V 1∶V 2∶V 3=1∶33∶12=6∶23∶3. 二、填空题6.如图已知底面半径为r 的圆柱被一个平面所截,剩下部分母线长的最大值为a ,最小值为b ,那么圆柱被截后剩下部分的体积是________.解析:采取补体方法,相当于一个母线长为a +b 的圆柱截成了两个体积相等的部分,所以剩下部分的体积V =πr 2(a +b )2.答案:πr 2(a +b )27.一个圆锥形容器和一个圆柱形容器的轴截面的尺寸如图所示,两容器盛有液体的体积正好相等,且液面高均为h ,则h =________.解析:锥体的底面半径和高都是h ,圆柱体的底面半径是a 2,高为h ,依题意得π3h 2·h =π·(a 2)2·h ,解得h =32a . 答案:32a 8.已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是________.解析:此几何体的直观图如图,ABCD 为正方形,边长为20 cm , S 在底面的射影为CD 中点E ,SE =20 cm ,V S -ABCD =13S ABCD ·SE =8 0003cm 3. 答案:8 0003 cm 3三、解答题9.如图所示,是一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的一个圆锥体铅锤,当铅锤从水中取出后,杯里的水将下降多少?(π=3.14)解:因为玻璃杯是圆柱形的,所以铅锤取出后,水面下降部分实际是一个小圆柱,这个圆柱的底面与玻璃的底面一样,是一直径为20 cm 的圆柱,它的体积正好等于圆锥体铅锤的体积,这个小圆柱的高就是水面下降的高度.因为圆锥形铅锤的体积为13×π×⎝⎛⎭⎫622×20=60π(cm 3), 设水面下降的高度为x ,则小圆柱的体积为π×(20÷2)2×x =100πx (cm 3),所以有方程60π=100πx ,解此方程得x =0.6(cm).答:铅锤取出后,杯中水面下降了0.6 cm.10.若E ,F 是三棱柱ABC -A 1B 1C 1侧棱BB 1和CC 1上的点,且B 1E =CF ,三棱柱的体积为m ,求四棱锥A -BEFC 的体积.解:如图所示,连接AB 1,AC 1.∵B 1E =CF ,∴梯形BEFC 的面积等于梯形B 1EFC 1的面积. 又四棱锥A -BEFC 的高与四棱锥A -B 1EFC 1的高相等, ∴V A -BEFC =VA -B 1EFC 1=12VA -BB 1C 1C . 又VA -A 1B 1C 1=13S △A 1B 1C 1·h ,VABC -A 1B 1C 1=m ,∴VA -A 1B 1C 1=m3,∴VA -BB 1C 1C =VABC -A 1B 1C 1-VA -A 1B 1C 1=23m ,∴V A -BEFC =12×23m =m 3,即四棱锥A -BEFC 的体积是m3. 第3课时 球[核心必知]1.球的表面积公式:S 球面=4πR 2. 2.球的体积公式:V 球=43πR 3.[问题思考]用一个平面去截球体,截面的形状是什么?该截面的几何量与球的半径之间有什么关系?提示:可以想象,用一个平面去截球体,截面是圆面,在球的轴截面图中,截面圆与球的轴截面的关系如图所示.若球的半径为R ,截面圆的半径为r ,OO ′=d . 在Rt △OO ′C 中,OC 2=OO ′2+O ′C 2, 即R 2=r 2+d 2.讲一讲1.已知过球面上三点A 、B 、C 的截面到球心的距离等于球半径的一半,且AC =BC =6,AB =4,求球面面积与球的体积.[尝试解答] 如图所示,设球心为O ,截面圆圆心O 1,球半径为R , 连接OO 1,则OO 1是球心到截面的距离.由于OA =OB =OC =R , 则O 1是△ABC 的外心.设M 是AB 的中点,由于AC =BC , 则O 1在CM 上.设O 1M =x ,易知O 1M ⊥AB ,则O 1A =22+x 2, O 1C =CM -O 1M =62-22-x . 又O 1A =O 1C ,∴22+x 2=62-22-x . 解得x =724.则O 1A =O 1B =O 1C =924.在Rt △OO 1A 中,O 1O =R2,∠OO 1A =90°,OA =R .由勾股定理,得⎝⎛⎭⎫R 22+⎝⎛⎭⎫9242=R 2.解得R =362.故S 球面=4πR 2=54π,V 球=43πR 3=276π.计算球的表面积和体积的关键是求出球的半径,这里就要充分利用球的截面的性质进行求解.已知条件中的等量关系,往往是建立方程的依据,这种解题的思想值得重视.练一练1.过球的半径的中点,作一垂直于这条半径的截面,已知此截面的面积为48π cm 2,试求此球的表面积和体积.解:如图,设截面圆的圆心为O 1, 则OO 1⊥O 1A ,O 1A 为截面圆的半径, OA 为球的半径.∵48π=π·O 1A 2,∴O 1A 2=48. 在Rt △AO 1O 中,OA 2=O 1O 2+O 1A 2, 即R 2=⎝⎛⎭⎫12R 2+48,∴R =8(cm),∴S 球=4πR 2=4π×64=256π(cm 2),V 球=43πR 3=20483π(cm 3).讲一讲2.轴截面是正三角形的圆锥内有一个内切球,若圆锥的底面半径为1 cm ,求球的体积. [尝试解答]如图所示,作出轴截面,O 是球心,与边BC 、AC 相切于点D 、E . 连接AD ,OE ,∵△ABC 是正三角形, ∴CD =12AC .∵CD =1 cm ,∴AC =2 cm ,AD = 3 cm ,∵Rt △AOE ∽Rt △ACD , ∴OE AO =CD AC. 设OE =r ,则AO =(3-r ), ∴r 3-r =12, ∴r =33cm , V 球=43π(33)3=4327π(cm 3),即球的体积等于4327π cm 3.解决与球有关的接、切问题时,一般作一个适当的截面,将问题转化为平面问题解决,这类截面通常是指圆锥的轴截面、球的大圆、多面体的对角面等,在这个截面中应包括每个几何体的主要元素,且这个截面包含体和体之间的主要位置关系和数量关系.练一练2.如图,半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方体棱长为6,求球的表面积和体积.解:作轴截面如图所示,CC ′=6,AC =2·6=23, 设球的半径为R ,则R 2=OC 2+CC ′2=(3)2+(6)2=9, ∴R =3,∴S 球=4πR 2=36π,V 球=43πR 3=36π.一个球内有相距9 cm 的两个平行截面,面积分别为49π cm 2和400π cm 2,求球的表面积.[错解] 如图所示,设OD =x ,由题知π·CA2=49π,∴CA=7 cm.π·BD2=400π,∴BD=20 cm.设球半径为R,则有(CD+DO)2+CA2=R2=OD2+DB2,即(9+x)2+72=x2+202,∴x=15,R=25.∴S球=4πR2=2 500π cm2.[错因]本题错解的原因在于考虑不周,由于球心可能在两个截面之间,也可能在两个截面的同一侧,因此解决此题要分类讨论.[正解](1)当球心在两个截面的同侧时,解法同错解.(2)当球心在两个截面之间时,如图所示,设OD=x,则OC=9-x,设球半径为R,可得x2+202=(9-x)2+72=R2,此方程无正数解,即此种情况不可能.综上可知,球的表面积是2 500π cm2.1.球的表面积扩大2倍,球的体积扩大()A.2倍 B. 2 倍C.2 2 倍D.3 2 倍解析:选C球的表面积扩大2倍,半径扩大2倍,从而体积扩大(2)3=22倍.2.两个球的半径之比为1∶3,那么两个球的表面积之比为()A .1∶9B .1∶27C .1∶3D .1∶1解析:选A 设两球的半径分别为R 1,R 2. ∵R 1∶R 2=1∶3,∴两个球的表面积之比为S 1∶S 2=4πR 21∶4πR 22=R 21∶R 22=1∶9.3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是( )A .202πB .252πC .50πD .200π解析:选C 设球的半径为R ,则2R =33+42+52=5 2. ∴S 球=4πR 2=π·(2R )2=50π.4.(福州高一检测)已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.解析:过O 作底面ABCD 的垂线段OE ,则E 为正方形ABCD 的中心.由题意可知13×(3)2×OE =323,所以OE =322,故球的半径R =OA =OE 2+EA 2=6,则球的表面积S =4πR 2=24π.答案:24π5.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.解析:设球的半径为r cm ,则有8πr 2+3×43πr 3=πr 2×6r ,由此解得r =4.答案:46.某个几何体的三视图如图所示(单位:m):(1)求该几何体的表面积(结果保留π); (2)求该几何体的体积(结果保留π).解:由三视图可知,该几何体是一个四棱柱和一个半球构成的组合体,且半球的直径为2,该四棱柱为棱长为2的正方体.(1)该几何体的表面积为S =2πR 2+6×2×2-π×R 2=π+24 (m 2). (2)该几何体的体积为V =12×43πR 3+23=23π+8 (m 3).一、选择题1.用与球心距离为1的平面去截球,所得截面面积为π,则球的体积为( ) A.323π B.8π3 C .82π D.823π解析:选D 所得截面圆的半径为r =1,因此球的半径R =12+12=2,球的体积为 43πR 3=823π. 2.若三个球的表面积之比是1∶2∶3,则它们的体积之比是( ) A .1∶2∶3 B .1∶2∶ 3 C .1∶22∶3 3 D .1∶4∶7解析:选C ∵三个球的表面积之比是1∶2∶3,即r 21∶r 22∶r 23=1∶2∶3.∴r 1∶r 2∶r 3=1∶2∶3, ∴V 1∶V 2∶V 3=1∶22∶3 3.3.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A.6π B .43π C .46π D .63π解析:选B 设球的半径为R ,由球的截面性质得R =(2)2+12=3,所以球的体积V =43πR 3=43π.4.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2C.113πa 2 D .5πa 2 解析:选B 正三棱柱内接于球,则球心在正三棱柱两底面中心连线的中点处,在直角三角形中可得R =⎝⎛⎭⎫a 22+⎝⎛⎭⎫33a 2=712a , ∴S =4πR 2=4π×7a 212=7π3a 2. 5.(新课标全国卷Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A.500π3 cm 3B.866π3 cm 3C.1 372π3 cm 3D.2 048π3cm 3解析:选A 解题时,先根据已知条件分析出正方体的上底面到球心的距离为(R -2) cm(其中R 为球半径),再利用球半径、球心距、和截面圆半径构成的直角三角形求出球半径,进而计算出球的体积.设球半径为R cm ,根据已知条件知正方体的上底面与球相交所得截面圆的半径为4 cm ,球心到截面的距离为(R -2) cm ,所以由42+(R -2)2=R 2,得R =5,所以球的体积V =43πR 3=43π×53=500π3cm 3,选择A.二、填空题6.一个平面截一球得到直径为6 cm 的圆面,球心到这个平面的距离为4 cm ,则球的体积为________ cm 3.解析:如图所示,。
必修1第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算交集与并集全集与补集第二章函数§1 生活中的变量关系§2 对函数的进一步认识函数概念函数的表示法映射§3 函数的单调性§4 二次函数性质的再研究二次函数的图像二次函数的性质§5 简单的幂函数课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数扩充及其运算性质指数概念的扩充指数运算的性质§3指数函数指数函数的概念指数函数和的图像和性质指数函数的图像和性质§4 对数对数及其运算换底公式§5 对数函数对数函数的概念y=log2x的图像和性质对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章函数应用§1 函数与方程利用函数性质判定方程解的存在利用二分法求方程的近似解§2 实际问题的函数建模实际问题的函数刻画用函数模型解决实际问题函数建模案例必修2第一章立体几何初步§1 简单几何体简单旋转体简单多面体§2 直观图§3 三视图简单组合体的三视图由三视图还原成实物图§4 空间图形的基本关系与公理空间图形基本关系的认识空间图形的公理§5 平行关系平型关系的判定平行关系的性质§6 垂直关系垂直关系的判定垂直关系的性质§7 简单几何体的面积和体积简单几何体的侧面积棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积课题学习正方体截面的形状第二章解析几何初步§1 直线与直线的方程直线的倾斜角和斜率直线的方程两条直线的位置关系两条直线的交点平面直角坐标系中的距离公式§2 圆与圆的方程圆的标准方程圆的一般方程直线与圆、圆与圆的位置关系§3 空间直角坐标系空间直角坐标系的建立空间直角坐标系中点的坐标空间两点间的距离公式必修3第一章统计§1 从普查到抽样§2 抽样方法简单随机抽样分层抽样与系统抽样§3 统计图表§4 数据的数字特征平均数、中位数、众数、极差、方差标准差§5 用样本估计总体估计总体的分布估计总体的数字特征§6 统计活动:结婚年龄的变化§7 相关性§8 最小二乘估计第二章算法初步§1 算法的基本思想算法案例分析排序问题与算法的多样性§2 算法框图的基本结构及设计顺序结构与选择结构变量与赋值循环结构§3 几种基本语句条件语句循环语句第三章概率§1 随机事件的概率频率与概率生活中的概率§2 古典概型古典概型的特征和概率计算公式建立概率模型互斥事件§3 模拟方法—概率的应用必修4第一章三角函数§1 周期现象§2 角的概念的推广§3 弧度制§4 正弦函数和余弦函数的定义与诱导公式任意角的正弦函数、余弦函数的定义单位圆与周期性单位圆与诱导公式§5 正弦函数的性质与图像从单位圆看正弦函数的性质正弦函数的图像正弦函数的性质§6 余弦函数的性质与图像正弦函数的图像正弦函数的性质§7 正切函数正切函数的定义正切函数的图像与性质正切函数的诱导公式§8 函数y=Asin 的图像§9 三角函数的简单应用第二章平面向量§1 从位移、速度、力到向量位移、速度、和力向量的概念§2 从位移的合成到向量的加法向量的加法向量的减法§3 从速度的倍数到数乘向量数乘向量平面向量基本定理§4 平面向量的坐标平面向量的坐标表示平面向量线性运算的坐标表示向量平行的坐标表示§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例点到直线的距离公式向量的应用举例第三章三角恒等变形§1 同角三角函数的基本关系§2 两角和与差的三角函数两角差的余弦函数两角和与差的正弦、余弦函数两角和与差的正切函数§3 二倍角的三角函数必修5第一章数列§1 数列数列的概念数列的函数特征§2 等差数列等差数列等差数列的前n项和§3 等比数列等比数列等比数列的前n项和§4 数列在日常经济生活中的应用第二章解三角形§1 正弦定理与余弦定理正弦定理余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式§1 不等关系不等关系比较大小§2 一元二次不等式一元二次不等式的解法一元二次不等式的应用§3 基本不等式基本不等式基本不等式与最大(小)值§4 简单线性规划二元一次不等式(组)与平面区域简单线性规划简单线性规划的应用选修1-1第一章常用逻辑用语§1 命题§2 充分条件与必要条件充分条件必要条件充要条件§3 全称量词与存在量词全称量词与全称命题存在量词与特称命题全称命题与特称命题的否定§4 逻辑联结词“且”或“非” 逻辑联结词“且” 逻辑联结词“或” 逻辑联结词“非”第二章圆锥曲线与方程§1 椭圆椭圆及其标准方程椭圆的简单性质§2 抛物线抛物线及其标准方程抛物线的简单性质§3 双曲线双曲线及其标准方程双曲线的简单性质第三章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义导数的概念导数的几何意义§3 计算导数§4 导数的四则运算法则导数的加法与减法法则导数的乘法与除法法则第四章导数应用§1 函数的单调性与极值导数与函数的单调性函数的极值§2 导数在实际问题中的应用实际问题中的导数的意义最大值、最小值问题选修1-2第一章统计案例§1 回归分析回归分析相关系数可线性化的回归分析§2 独立性检验条件概率与独立事件独立性检验独立性检验的基本思想独立性检验的应用第二章框图§1 流程图§2 结构图第三章推理与证明§1 归纳与类比归纳推理类比推理§2 数学证明§3 综合法与分析法综合法分析法§4 反证法第四章数系的扩充与复数的引入§1 数系的扩充与复数的引入数的概念的扩展复数的有关概念§2 复数的四则运算复数的加法与减法复数的乘法与除法选修2-1第一章常用逻辑用语§1 命题§2 充分条件与必要条件充分条件必要条件充要条件§3 全称量词与存在量词全称量词与全称命题存在量词与特称命题全称命题与特称命题的否定§4 逻辑联结词“且”“或”“非” 逻辑联结词“且” 逻辑联结词“或” 逻辑联结词“非”第二章空间向量与立体几何§1 从平面向量到空间向量§2 空间向量的运算§3 向量的坐标表示和空间向量基本定理空间向量的标准正交分解与坐标表示空间向量基本定理空间向量运算的坐标表示§4 用向量讨论垂直与平行§5 夹角的计算直线间的夹角平面间的夹角直线与平面的夹角§6 距离的计算第三章圆锥曲线与方程§1 椭圆椭圆及其标准方程椭圆的简单性质§2 抛物线抛物线及其标准方程抛物线的简单性质§3 双曲线双曲线及其标准方程双曲线的简单性质§4 曲线与方程曲线与方程圆锥曲线的共同性质直线与圆锥曲线的交点选修2-2第一章推理与证明§1 归纳与类比归纳推理类比推理§2综合法与分析法综合法分析法§3 反证法§4 数学归纳法第二章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义导数的概念导数的几何意义§3 计算导数§4 导数的四则运算法则导数的加法与减法法则导数的乘法与除法法则§5 简单复合函数的求导法则第三章导数应用§1 函数的单调性与极值导数与函数的单调性函数的极值§2 导数在实际问题中的应用实际问题中的导数的意义最大值、最小值问题第四章定积分§1 定积分的概念定积分的背景—面积和路程问题定积分§2 微积分基本定理§3 定积分的简单应用平面图形的面积简单几何体的体积第五章数系的扩充与复数的引入§1 数系的扩充与复数的引入数的概念的扩展复数的有关概念§2 复数的四则运算复数的加法与减法复数的乘法与除法选修2-3第一章计数原理§1 分类加法计数原理与分步乘法计数原理分类加法计数原理分步乘法计数原理§2 排列§3 组合§4 简单计数问题§5 二项式定理二项式定理二项式系数的性质第二章概率§1 离散型随机变量及其分布列§2 超几何分布§3 条件概率与独立事件§4 二项分布§5 离散型随机变量的均值与方差§6 正态分布连续型随机变量正态分布第三章统计案例§1 回归分析回归分析相关系数可线性化的回归分析§2 独立性检验独立性检验独立性检验的基本思想独立性检验的应用选修3-1数学史选讲第一章数学发展概述§1 从数学的起源、早期发展到初等数学形成§2 从变量数学到现代数学第二章数与符号§1 数的表示与十进制§2 数的扩充§3 数学符号第三章几何学发展史§1 从经验几何到演绎几何§2 投影画与射影几何§3 解析几何第四章数学史上的丰碑——微积分§1 积分思想的渊源§2 圆周率§3 微积分第五章无限§1 初识无限§2 实数集的基数第六章明题赏析§1 费马大定理§2 哥尼斯堡七桥问题§3 高次方程§4 中国剩余定理§5 哥德巴赫猜想选修3-3 球面上的几何2007年5月第2版2009年5月第5次印刷第一章球面的基本性质§1 直线、平面与球面的位置关系§2 球面直线与球面距离第二章球面上的三角形§1 球面三角形球面上两直线的交角球面上的对称性球面三角形球面三角形的基本性质球面极三角形§2 球面三角形的全等§3 球面三角形的边角关系平面三角形的余弦定理和正弦定理球面三角形边的余弦定理球面三角形角的余弦定理和正弦定理§4 球面三角形的面积球面二角形球面三角形的面积第三章欧拉公式与非欧几何§1 球面上的欧拉公式球面三角部分球面上的欧拉公式球面上欧拉公式证明§2 简单多面体的欧拉公式凸多面体和简单多面体简单多面体的欧拉公式的证明§3 欧氏几何与球面几何的比较欧氏几何与球面几何的区别与联系另一种非欧几何选修4-1几何证明选讲2008年5月第3版2009年5月第3次印刷第一章直线、多边形、圆§1 全等与相似图形变化的不变形平移、旋转、反射相似与位似平行线分线段成比例定理直角三角形的射影定理§2 圆与直线圆周角定理圆的切线的判定和性质弦切角定理切割线定理相交弦定理§3 圆与四边形圆内接四边形托勒密定理第二章圆锥曲线§1 截面欣赏§2 直线与球、平面与球的位置关系直线与球的位置关系平面与球的关系§3 柱面与平面的截面柱面、旋转面垂直截面一般截面§4 平面截圆锥面圆锥面垂直截面一般截面§5 圆锥曲线的几何性质选修4-22008年6月第3版2009年5月第3次印刷第一章平面向量与二阶方阵§1 平面向量及向量的运算§2 向量的坐标表示及直线的向量方程§3 二阶方阵与平面向量的乘法第二章几何变换与矩阵§1 几种特殊的矩阵变换§2 矩阵变换的性质第三章变换的合成与矩阵乘法§1变换的合成与矩阵乘法§2 矩阵乘法的性质第四章逆变换与逆矩阵§1 逆变换与逆矩阵§2 初等变换与逆矩阵§3 二阶行列式与逆矩阵§4 可逆矩阵与线性方程组第五章矩阵的特征值与特征向量§1 矩阵变换的特征值与特征向量§2 特征向量在生态模型中的简单应用选修4-4坐标系与参数方程2007年5月第2版2009年5月第5次印刷第一章坐标系§1 平面直角坐标系平面直角坐标系与曲线方程平面直角坐标轴中的伸缩变换§2 极坐标系极坐标系的概念点的极坐标与直角坐标的互化直线与圆的极坐标方程曲线的极坐标方程与直角坐标方程的互化圆锥曲线统一的极坐标方程§3 柱坐标系和球坐标系第二章参数方程§1 参数方程的概念§2 直线和圆锥曲线的参数方程直线的参数方程圆的参数方程椭圆的参数方程双曲线的参数方程§3 参数方程化成普通方程§4 平摆线和渐开线平摆线渐开线选修4-5【不等式选讲】2007年5月第2版2009年5月第5次印刷第一章不等关系与基本不等式§1 不等式的性质§2 含有绝对值的等式§3 平均值不等式§4 不等式的证明§5 不等式的应用第二章几个重要的不等式§1 柯西不等式§2 排序不等式§3 数学归纳法与贝努利等式。
高中数学北师大版目录北师大版《数学 (必修 1)》§ 5 平行关系全书目录:§ 6 垂直关系第一章集合§ 7 简单几何体的面积和体积§ 1 集合的含义与表示§ 8 面积公式和体积公式的简单应用§ 2 集合的基本关系阅读材料蜜蜂是对的§ 3 集合的基本运算课题学习正方体截面的形状阅读材料康托与集合论第二章解析几何初步第二章函数§ 1 直线与直线的方程§ 1 生活中的变量关系§ 2 圆与圆的方程§ 2 对函数的进一步认识§ 3 空间直角坐标系§ 3 函数的单调性阅读材料笛卡儿与解析几何§ 4 二次函数性质的再研究探究活动 1 打包问题§ 5 简单的幂函数探究活动 2 追及问题阅读材料函数概念的发展课题学习个人所得税的计算必修 3全书目录第三章指数函数和对数函数第一章统计§ 1 正整数指数函数§ 1 统计活动:随机选取数字§ 2 指数概念的扩充§ 2 从普查到抽样§ 3 指数函数§ 3 抽样方法§ 4 对数§ 4 统计图表§ 5 对数函数§ 5 数据的数字特征§ 6 指数函数、幂函数、对数函数增长§ 6 用样本估计总体的比较§ 7 统计活动:结婚年龄的变化阅读材料历史上数学计算方面的三大§ 8 相关性发明§ 9 最小二乘法阅读材料统计小史第四章函数应用课题学习调查通俗歌曲的流行趋势§ 1 函数与方程§ 2 实际问题的函数建模第二章算法初步阅读材料函数与中学数学§ 1 算法的基本思想探究活动同种商品不同型号的价格问§ 2 算法的基本结构及设计题§ 3 排序问题§ 4 几种基本语句必修 2 课题学习确定线段 n 等分点的算法全书目录:第一章立体几何初步第三章概率§ 1 简单几何体§ 1 随机事件的概率§ 2 三视图§ 2 古典概型§ 3 直观图§ 3 模拟方法――概率的应用§ 4 空间图形的基本关系与公理探究活动用模拟方法估计圆周率∏的值 1.2 数列的函数特性§ 2 等差数列必修 4 全书目录: 2.1 等差数列2.2 等差数列的前n项和第一章三角函数§ 3 等比数列§ 1 周期现象与周期函数 3.1 等比数列§ 2 角的概念的推广 3.2 等比数列的前n项和§ 3 弧度制§ 4 书雷在日常经济生活中的应§ 4 正弦函数用§ 5 余弦函数本章小节建议§ 6 正切函数复习题一§ 7 函数的图像课题学习教育储蓄§ 8 同角三角函数的基本关系阅读材料数学与音乐第二章解三角形课题学习利用现代信息技术探究的图§ 1 正弦定理与余弦定理像 1.1 正弦定理1.2 余弦定理第二章平面向量§ 2 三角形中的几何计算§ 1 从位移、速度、力到向量§ 3 解三角形的实际应用举例§ 2 从位移的合成到向量的加法本章小结建议§ 3 从速度的倍数到数乘向量复习题二§ 4 平面向量的坐标§ 5 从力做的功到向量的数量积第三章不等式§ 6 平面向量数量积的坐标表示§ 1 不等关系§ 7 向量应用举例 1.1 不等关系阅读材料向量与中学数学 1.2 比较大小§ 2 一元二次不等式第三章三角恒等变形 2.1 一元二次不等式的解法§ 1 两角和与差的三角函数 2.2 一元二次不等式的应用§ 2 二倍角的正弦、余弦和正切§ 3 基本不等式§ 3 半角的三角函数 3.1 基本不等式§ 4 三角函数的和差化积与积化和差 3.2 基本不等式与最大(小)§ 5 三角函数的简单应用值课题学习摩天轮中的数学问题§ 4 简单线性规划探究活动升旗中的数学问题 4.1 二元一次不等式(组)与平面区域4.2 简单线性规划必修 5 4.3 简单线性规划的应用全书共三章:数列、解三角形、不等式。
北师大版高中数学必修2第一章《立体几何初步》全部教案1.1简单几何体第一课时 1.1.1简单旋转体一、教学目标:1.知识与技能:(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述圆柱、圆锥、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法:(1)让学生通过直观感受空间物体,从实物中概括出圆柱、圆锥、圆台、球的结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观:(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出圆柱、圆锥、圆台、球的结构特征。
难点:圆柱、圆锥、圆台、球的结构特征的概括。
三、教学方法(1)学法:观察、思考、交流、讨论、概括。
(2)教法:探析讨论法。
四、教学过程:(一)、新课导入:1. 讨论:经典的建筑给人以美的享受,其中奥秘为何?世间万物,为何千姿百态?2. 提问:小学与初中在平面上研究过哪些几何图形?在空间范围上研究过哪些?3. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.(二)、研探新知:(Ⅰ)、空间几何体的类型问题提出:1.在平面几何中,我们认识了三角形,正方形,矩形,菱形,梯形,圆,扇形等平面图形.那么对空间中各种各样的几何体,我们如何认识它们的结构特征?2.对空间中不同形状、大小的几何体我们如何理解它们的联系和区别?探究:空间几何体的类型思考1:在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些抽象出来的空间图形就叫做空间几何体.你能列举那些空间几何体的实例?思考2:观察下列图片,你知道这图片在几何中分别叫什么名称吗?思考3:如果将这些几何体进行适当分类,你认为可以分成那几种类型?思考4:图(2)(5)(7)(9)(13)(14)(15)(16)有何共同特点?这些几何体可以统一叫什么名称?多面体思考5:图(1)(3)(4)(6)(8)(10)(11)(12)有何共同特点?这些几何体可以统一叫什么名称?旋转体思考6:一般地,怎样定义多面体?围成多面体的各个多边形,相邻两个多边形的公共边,以及这些公共边的公共顶点分别叫什么名称?由若干个平面多边形围成的几何体叫做多面体 .思考7:一般地,怎样定义旋转体? 面 定点棱轴由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体。