煤气化原理
- 格式:pptx
- 大小:4.06 MB
- 文档页数:9
煤气化技术的基本原理煤气化是一种将煤转化为合成气(Syngas)的技术,合成气是由氢气(H2)、一氧化碳(CO)和少量的甲烷(CH4)、二氧化碳(CO2)组成的气体混合物。
煤气化技术的基本原理是通过高温和压力将煤与氧气(或水蒸气)反应转化为可燃气体。
1.干煤气化:干煤气化是指在缺乏水蒸气的条件下,将煤转化为合成气。
在干煤气化过程中,煤被分解成固体炭和气体产物。
首先,煤被加热至高温,煤中的有机物质开始分解。
然后,产生的气体与煤中残留的炭反应,生成合成气。
2.水煤气化:水煤气化是指在存在水蒸气的条件下,将煤转化为合成气。
在水煤气化过程中,水蒸气与煤反应,生成氢气和一氧化碳。
水煤气化通常在高温和高压下进行,以提高反应效率和产气质量。
3.煤热解:煤热解是将煤在缺乏氧气的条件下加热,使其发生裂解反应,产生可燃气体。
煤热解可以通过煤干馏或焦化过程实现。
在煤热解过程中,煤中的有机物质被分解为固体炭、液体烃和气体产物。
液体烃和气体产物可以进一步加工提炼为石油产品或作为燃料使用。
1.碳气化反应:C+H2O->CO+H2煤中的碳与水蒸气反应,生成一氧化碳和氢气。
这个反应是煤气化过程中生成合成气的主要途径之一2.碳气化反应:C+2H2->CH4煤中的碳与氢气反应,生成甲烷。
这个反应也可以在煤气化过程中生成合成气。
3.热解反应:C->C+C煤中的高分子有机物质在高温下发生裂解反应,生成固体炭。
煤气化技术的应用广泛,可用于生产合成气、液体燃料、化学品和氢气等。
合成气可用于发电、制造合成燃料、合成化学品和进行化学反应。
煤气化技术在能源转型和减少对化石燃料的依赖方面具有重要地位。
然而,煤气化技术也面临一些挑战,如高能耗、环境污染和废弃物处理等问题。
因此,在推广和应用煤气化技术时,需要综合考虑技术、经济和环境等方面的因素。
煤气化的基本原理
1煤气化技术
煤气化技术是利用煤碳气化反应,将煤碳与氧气通过煤气炉加热分解,生成煤气作为资源的一种技术。
煤气化技术是一种“一步到位”、即高效利用煤碳源,一次性获取煤气(CO+H2)的技术。
此外,煤气化技术所得到的煤气可直接用于高效照明、车用燃料、加热烹饪和工业用途。
2煤气化的基本原理
煤气化的基本原理是将煤碳气化反应物(C)和氧气(O2)加入煤气炉中,将煤碳、氧气分解为较小的分子碳氢化物。
这种反应可以生成氢气和二氧化碳,并释放大量的热量。
C+O2=CO2+H2+Heat
煤气化反应的起始温度为750~850℃,当反应温度达到了
1500~1700℃时,大量的氢气和二氧化碳就会生成,就会产生大量的热量,使煤气化反应更加有效率。
3应用
煤气化的应用范围广泛,开发了许多应用方案,被广泛应用于房屋建筑、化工行业、煤炭电厂等领域。
例如,它被广泛应用于汽车行业,生产汽油类燃料;用于工业烧窑中,分解成气体,生产低温灰光火;用于电厂,生产热水用于温度控制;在医院用于消毒,清洗等等。
4发展
煤气化技术作为一种可再生资源,具有资源可持续利用的特点,可有效降低利用化石能源的负担,以及降低对环境的污染。
煤气化技术的使用也可以减少很多二氧化碳的排放、改善空气环境,促进人类可持续发展。
由于这些特性,煤气化技术的发展受到越来越重视,大量的科研如今正在付诸实施,有朝一日,它将发挥出更大的行业影响力。
简述煤的气化原理及其应用气化原理煤的气化是什么?煤的气化是将煤转化为气体燃料的过程。
这个过程涉及将煤暴露在高温和压力下,以生成可燃气体,如合成气、甲烷和一氧化碳。
煤的气化原理煤的气化基于化学反应,主要包括以下步骤: - 干馏:煤首先在低温下进行干馏,水和挥发性物质从煤中分离出来。
- 热解:在高温下,煤分子中的碳-碳键和碳-氢键断裂,生成一系列的气体和固体产物。
- 气化:煤在高温下与气体或氧气反应,生成一氧化碳和氢气。
气化反应类型煤的气化反应可以分为两种类型: 1. 干燥气化:在缺乏氧气的情况下进行,主要生成气体燃料。
2. 部分氧化气化:在氧气供应充足的条件下进行,同时生成气体燃料和燃烧产物。
煤气化的优势煤气化作为一种煤的加工技术,具有以下优势: - 煤气化产生的气体燃料可以替代传统石油和天然气,减少对有限石油资源的依赖。
- 煤气化可以生产醇、酮和醚等多种化学品,用于化工生产或作为原材料。
- 煤气化产生的一氧化碳可以用作合成气、合成醇和化肥等化学产品的原料。
- 煤气化可以减少污染物的排放,如二氧化碳和硫化物。
煤气化应用煤气化技术在不同领域有广泛的应用,包括以下几个方面:煤化工煤气化可以产生丰富的化学品,例如合成氨、合成甲醇、合成酮和合成醇等。
这些化学品被广泛应用于化肥、塑料、合成纤维、橡胶、染料等领域,推动了煤化工产业的发展。
煤燃气和城市煤气煤气化技术可以用来生产城市燃气,用于居民和工业领域的供热和燃料。
在过去,城市燃气主要来源于煤炭气化。
随着天然气的普及,煤燃气的应用逐渐减少。
电力和能源煤气化可以用于发电,特别是在没有天然气和石油资源的地区。
合成气可以用于燃烧,发电厂可以利用合成气发电。
此外,合成气还可以用于燃料电池,产生清洁的电能。
替代石油和天然气近年来,由于石油和天然气价格的不稳定和供应的限制,煤气化作为一种煤的转化技术,被认为是一种替代石油和天然气的重要手段。
通过煤气化,可以将煤转化为液体燃料,例如合成油和合成柴油。
煤的气化原理
煤的气化是指通过一系列化学反应将煤转化为气体燃料的过程。
煤气化的主要原理是在缺氧或限氧条件下,将煤与水蒸气或空气中的氧气反应,生成一氧化碳(CO)和氢气(H2)等可燃
气体。
煤气化过程中主要包括干馏、热解、气化和水煤气反应四个阶段。
干馏是将煤在600-900℃的高温下加热,使其迅速分解产生液
体烃类和气体。
煤中的固体组分分解成焦炭、挥发性物质(如煤油、煤气)和灰分。
热解是在干馏的基础上进一步加热,使煤中的高分子聚合物分解为低分子量物质。
这个阶段主要产生的产物有焦油、焦碳和挥发性物质(如煤气)。
气化是在高温(800-1400℃)和高压(1-50兆帕)条件下,将煤与水蒸气或空气中的氧气进行反应。
气化的主要产物是一氧化碳和氢气,同时也会生成一些氮气、二氧化碳、甲烷等其他气体。
水煤气反应是指将气化产生的一氧化碳和水蒸气继续反应,生成更高能值的合成气体。
水煤气反应主要是由水蒸气和一氧化碳在催化剂的作用下进行,产物主要是氢气和二氧化碳。
通过煤的气化,可以将固体煤转化为可燃气体,这些气体可以
用于供能、发电、化工等领域。
此外,煤气化还可以生产一些有机化学品,如合成油、合成醇等,具有重要的经济价值。
发生炉煤气是通过水蒸气和空气混合形成气化剂后流经炽热的固定燃烧床生成的。
空气中所含的氧气、水蒸气与燃料中的碳反应,生成了共含有CO、CO2、H2、CH4、N2 等成分的发生炉煤气。
与空气混合的蒸气提高了热效率,并降低了燃烧床的温度,从而控制了熔块的形成。
蒸气与碳反应是吸热反应:C+H2O=CO+H2-Q(Q为热量,下同)当氧气和碳反应时就放出热量:2C+O2=2CO+Q燃烧床的温度取决于气化剂的饱和温度,燃料的粒度、类型及发生炉的炉型。
燃烧床的温度是非常重要的,因为对于给定的燃料和炉型,它决定着发生炉煤气的成分:在温度高的情况下,可产生大量的可燃气体。
因此,重要的是既保持燃烧床高温而又不会形成熔块。
形成熔块的温度取决于燃料的渣融特性,在氧气充足的情况下,还会出现两种反应:2CO+O2=2CO2+Q C+O2=CO2+Q。
所以说,CO的产生并不一定意味着任何碳燃烧都能使煤气的热值降低。
另外,一些水蒸气还与CO反应,由于每体积CO 转化为CO2时,同时生成了相同体积的H2:CO+H2O=CO2+H2。
因此,不会有热损失。
在还原层,其温度低于1200℃时,还会出现下面的快速反应:CO2+C=2CO H2O+C =CO+H2当煤气通过还原带时,可燃气体含量迅速上升,而CO2和水蒸气含量下降。
通过还原带后,一些煤气被抽出,流经底部旋风除尘器和强制风冷器,这股煤气称为“底部煤气”,其温度约为400℃左右。
在干馏层,喂入发生炉的燃料,依次被干燥、预热和碳化,生成的蒸气、焦油雾和煤气一块从顶部离开发生炉,这一部分煤气称为“顶部煤气”,其温度保持120℃左右。
煤气气化原理常用基础知识1、常用化学名称(元素):名称化学符号原子量碳 C 12氢H 1氧O 16硫S 32氮N 142、气化层(着火层)煤气发生炉内的氧化层(着火层),是产生煤气的关键部位,其高度为150mm左右。
3、干燥干燥实际上就是烘干。
当煤气在一定的温度下(500℃)煤块外表的水份迅速变为水蒸汽混合在煤气中输出炉外。
煤如何制成气体的原理
煤的气化是将煤在高温和适量氧气或蒸汽的作用下转化为气体的过程。
煤气化的原理可以简单概括为以下几个步骤:
1. 干燥和热解:煤在高温下被分解,产生挥发分。
在干燥过程中,煤中的水分被蒸发掉;在热解过程中,煤中的有机物质被分解为挥发分和焦炭。
2. 气化反应:煤中的挥发分在高温和适量氧气或蒸汽的作用下发生气化反应,生成氢气(H2)、一氧化碳(CO)、二氧化碳(CO2)等气体。
气化反应的主要反应类型有水气变换反应(CO+H2O ↔CO2+H2)、碳气化反应(C+H2O ↔CO+H2)等。
3. 温度控制:气化过程的温度是非常关键的,不同温度下反应会产生不同的气体组成。
一般来说,较低温度时更容易生成较多的甲烷(CH4),较高温度时更容易生成一氧化碳和氢气。
4. 催化剂:在一些气化过程中,催化剂的使用可以促进反应的进行。
催化剂可以提高气化反应的速率和选择性,同时降低反应的温度和能量消耗。
通过煤气化过程,煤可以转化为可再生能源气体,如合成气、天然气等。
这些气体可以用于发电、供热、制造化学品等多种应用。
同时,煤气化过程也可以捕集
和处理煤的二氧化碳排放,降低温室气体排放量,减少对环境的影响。