2018中考专题复习 隐圆在几何最值问题中的应用 课件(共11张PPT)
- 格式:pptx
- 大小:391.53 KB
- 文档页数:2
3、应用隐圆解决实际问题;最值问题之“隐圆再现”的问题【知识要点】点到圆的最小距离和最大距离总结:(圆外一点到圆上最短距离是与圆心的连线;最长距离是与圆心连线的延长线。
)圆内一点P到圆上的最短距离为PA,最长距离为PB;(P、A、0、B四点在同一条直线上,即P,A,B三点过圆心O) .二、圆的存在条件(常见的类型,还有定半径长度类)类型1、圆的定义:(定长)在一个平面内,线段 AB 绕它固定的一个端点 A 旋转一周,另一个端点 B 所形成的图形叫做圆;类型2、定直角:直径所对的圆周角为90°;应用几何性质:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连接直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长.【例题精讲】知识点一、翻折定点定长--隐圆现。
例1.如图,在Rt△ABC中,∠C=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.2.如图,在矩形ABCD中,AC=6,BC=8,点F是边AC的中点,点E为边BC上的动点,将△CEF 沿直线EF翻折,点C落在点P处,则点P到点D的距离的最小值是.3.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是.5.如图,菱形ABCD边长为4,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN 所在的直线翻折得到△A1MN,连接A1C,则A1C的最小值是.知识点二、动点定直角---隐圆现1.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为.2.如图,在Rt△ABC中,BC=AC=2,点M是AC边上一动点,连接BM,以CM为直径的⊙O 交BM于N,则线段AN的最小值为.3.如图,Rt△ABC中,∠ACB=90°,AC=BC=4,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为.4.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE 的最小值为.6.如图,正方形ABCD中,AB=2,动点E从点A出发向点D运动,同时动点F从点D出发向点C运动,点E、F运动的速度相同,当它们到达各自终点时停止运动,运动过程中线段AF、BE相交于点P,M是线段BC上任意一点,则MD+MP的最小值为.4、(湖北武汉3分)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF 交BD于G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.知识点三、动点定长隐圆现1.如图,⊙O的半径为2,AB.CD是互相垂直的两条直径,点P是⊙O上任意一点,过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P从点A运动到点D时,点Q所经过的路径长为().2.如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A⇒B⇒C⇒D⇒A滑动到A止,同时点R从点B 出发,沿图中所示方向按B⇒C⇒D⇒A⇒B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为()A.2B.4﹣πC.πD.π﹣13.如图,矩形ABCD中,AB=2,AD=3,点E、F分别为AD、DC边上的点,且EF=2,点G 为EF的中点,点P为BC上一动点,则P A+PG的最小值为()A.3B.4C.2D.5【立马试试】2.如图,在矩形ABCD中,AB=4,AD=2,M是AD边的中点,N是AB边上的一动点,将△AMN 沿MN所在直线翻折得到△A'MN,连接A'C.在MN上存在一动点P.连接A'P、CP,问△A'PC 周长是否存在最小值是,若存在,请计算出这个最小值;若不存在,请说明理由.7.如图,一块∠BAC为30°的直角三角板ABC的斜边AB与量角器的直径恰好重合,点E在量角器的圆弧边缘处从A到B运动,连接CE,交直径AB于点D.(1)当点E在量角器上对应的刻度是90°时,则∠ADE的度数为多少?(2)若AB=8,P为CE的中点,当点E从A到B的运动过程中,点P也随着运动,则点P所走过的路线长为多少?类型四、三条相等线段造成的隐形圆1.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为()A.68°B.88°C.90°D.112°2.如图,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD2的值为()A.14B.15C.18D.12【课堂总结】隐形圆的几种存在情况1.2.3.4.【2019锦江1诊真题再现】(武侯二诊)24.(4分)如图,点O是矩形ABCD的对角线的交点,AB=15,BC=8,直线EF 经过点O,分别与边CD,AB相交于点E,F(其中0<DE<).现将四边形ADEF沿直线EF折叠得到四边形A′D′EF,点A,D的对应点分别为A′,D′,过D′作D′G⊥CD于点G,则线段D′G的长的最大值是,此时折痕EF的长为.(2018•锦江区模拟)如图,在矩形ABCD中,AB=4,BC=43,对角线AC、BD相交于点O,现将一个直角三角板OEF的直角顶点与O重合,再绕着O点转动三角板,并过点D作DH⊥OF 于点H,连接AH.在转动的过程中,AH的最小值为.【课后练习】3.如图,在△OAB中,OA=OB,∠AOB=15°,在△OCD中,OC=OD,∠COD=45°,且点C在边OA上,连接CB,将线段OB绕点O逆时针旋转一定角度得到线段OE,使得DE=CB,则∠BOE的度数为()A.15°B.15°或45°C.45°D.45°或60°4.直线y=x+4分别与x轴、y轴相交于点M,N,边长为2的正方形OABC一个顶点O在坐标系的原点,直线AN与MC相交于点P,若正方形绕着点O旋转一周,则点P到点(0,2)长度的最小值是()A.2﹣2B.3﹣2C.D.1二.填空题(共5小题)5.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是.三.解答题(共2小题)7.(阿氏圆)问题背景如图1,在△ABC中,BC=4,AB=2AC.问题初探请写出任意一对满足条件的AB与AC的值:AB=,AC=.问题再探如图2,在AC右侧作∠CAD=∠B,交BC的延长线于点D,求CD的长.问题解决求△ABC的面积的最大值.8.已知A(2,0),B(6,0),CB⊥x轴于点B,连接AC画图操作:(1)在y正半轴上求作点P,使得∠APB=∠ACB(尺规作图,保留作图痕迹)理解应用:(2)在(1)的条件下,①若tan∠APB=,求点P的坐标;②当点P的坐标为时,∠APB最大拓展延伸:(3)若在直线y=x+4上存在点P,使得∠APB最大,求点P的坐标.9.如图,边长为2的正方形ABCD的顶点A,B在一个半径为2的圆上,顶点C,D在该圆内,将正方形ABCD绕点A逆时针旋转,当点D第一次落在圆上时,点C运动的路线长为______.。
第二节隐圆在范围、最值中的应用圆(或圆的方程)是高考数学的C 级知识点,是高中数学中数形结合思想的典型体现.近年来,高考对直线与圆,圆与圆的命题,既充分体现自身知识结构体系的命题形式多样化,又保持与函数或不等式或轨迹相结合的命题思路,呈现出“综合应用,融会贯通”的特色,充分彰显直线与圆的交汇价值.然而,在很多情况下,条件中没有给出圆的有关信息,而是隐藏在题目中,要通过分析和转化,发现圆(或圆的方程),从而最终可以利用圆的知识来求解。
一、典例赏析:例1.(1)如果圆4(y-a-3)(x-2a)22=+上总存在两个点到原点的距离为 1,则实数 a 的取值范围是________.(2)(2016 年南京二模)已知圆 O :221x y +=,圆 M :22()(4)1x a y a -+-+=.若圆 M 上存在点 P ,过点 P 作圆 O 的两条切线,切点为 A ,B ,使得∠APB=60°,则 a 的取值范围为_________.例 2.(2014 年北京卷)已知圆22:(3)(4)1C x y -+-= 和两点(,0),(,A m B m -, 若圆上存在点 P ,使得090APB ∠=,则m 的取值范围是________.例3.(1)(2017 年南通密卷 3)已知点 A (2,3) ,点,点 P 在直线3430x y -+=上,若满足等式20AP BP λ⋅+=的点P 有两个,则实数λ的取值范围是________.(2)在平面直角坐标系 xOy 中,已知圆 22:()(2)1C x a y a -+-+=,点A(0,2),若圆C 上存在点 M ,满足2210MA MO +=,则实数 a 的取值范围是________.例4. (1)(2008 年高考江苏卷)若2AB =,AC = ,则ABC ∆面积的最大值是________.(2) (2016 年南通一模)在平面直角坐标xOy 中,已知点(1,0),(4,0)A B ,若直线0x y m -+=上存在点 P 使得12PA PB =,则实数m 的取值范围是________. 二、题组巩固1.(2017 年苏北四市一模)已知 A 、B 是圆221:1C x y +=上的动点,AB =,P 是圆222:(3)(4)1C x y -+-=上的动点,则PA PB +的取值范围是________.2.(2017 年南京二模)在平面直角坐标系 xOy 中,直线 1:l kx -y +2=0 与 直线 2:l x +ky -2=0 相交于点 P ,则当实数 k 变化时,点 P 到直线 x -y -4=0 的距离的最大值为________.3.(2016 届常州一模)在平面直角坐标系xOy 中,,已知圆22:1O x y +=, O 1:(x -4)2+y 2=4,动点P 在直线x +3y -b =0上,过P 分别作圆O ,O 1的切线,切点分别为A ,B ,若满足PB =2PA 的点P 有且只有两个,则实数b 的取值范围是____________.4.在平面直角坐标系xOy 中,已知圆O 1,圆O 2均与x 轴相切且圆心O 1,O 2与原点O 共线,O 1,O 2两点的横坐标之积为6,设圆O 1与圆O 2相交于P ,Q 两点,直线l :2x -y -8=0,则点P 与直线l 上任意一点M 之间的距离的最小值为____________.。