热力学基本概念式
- 格式:doc
- 大小:115.00 KB
- 文档页数:7
第一章热力学基本概念一、基本概念热机:可把热能转化为机械能的机器统称为热力发动机,简称热机。
工质:实现热能与机械能相互转换的媒介物质即称为工质。
热力系统:用界面将所要研究的对象与周围环境分割开来,这种人为分割的研究对象,称为热力系统。
边界:系统与外界得分界面。
外界:边界以外的物体。
开口系统:与外界有物质交换的系统,控制体(控制容积)。
闭口系统:与外界没有物质的交换,控制质量。
绝热系统:与外界没有热量的交换。
孤立系统:与外界没有任何形式的物质和能量的交换的系统。
状态:系统中某瞬间表现的工质热力性质的总状况。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变,系统内外同时建立热和力的平衡,这时系统的状态就称为热力平衡状态。
状态参数:温度、压力、比容(密度)、内能、熵、焓。
强度性参数:与系统内物质的数量无关,没有可加性。
广延性参数:与系统同内物质的数量有关,具有可加性。
准静态过程:过程进行的非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近于平衡状态。
可逆过程:当系统进行正反两个过程后,系统与外界都能完全回复到出示状态。
膨胀功:由于系统容积发生变化(增大或者缩小)而通过系统边界向外界传递的机械功。
(对外做功为正,外界对系统做功为负)。
热量:通过系统边界向外传递的热量。
热力循环:工质从某一初态开始,经历一系列中间过程,最后又回到初始状态。
二、基本公式⎰⎰=-=02112dx x x dx理想气体状态方程式:RT pV m =循环热效率1q w nett =η 制冷系数netw q 2=ε 第二章 热力学第一定律一、基本概念热力学第一定律:能量既不能被创造,也不能被消灭,它只能从一种形式转换成另一种形式,或从一个系统转移到另一个系统,而其总量保持恒定。
热力学能:储存在系统内部的能量(内能、热能) 外储存能:宏观动能和重力位能。
第二章 热力学第一定律主要内容1.热力学基本概念和术语(1)系统和环境:系统——热力学研究的对象。
系统与系统之外的周围部分存在边界。
环境——与系统密切相关、有相互作用或影响所能及的部分称为环境。
根据系统与环境之间发生物质的质量与能量的传递情况,系统分为三类: (Ⅰ)敞开系统——系统与环境之间通过界面既有物质的质量传递也有能量的传递。
(Ⅱ)封闭系统——系统与环境之间通过界面只有能量的传递,而无物质的质量传递。
(Ⅲ)隔离系统——系统与环境之间既无物质的质量传递亦无能量的传递。
(2)系统的宏观性质:热力学系统是大量分子、原子、离子等微观粒子组成的宏观集合体。
这个集合体所表现出来的集体行为,如G A S H U T V p ,,,,,,,等叫热力学系统的宏观性质(或简称热力学性质)。
宏观性质分为两类:(Ⅰ)强度性质——与系统中所含物质的量无关,无加和性(如T p ,等); (Ⅱ)广度性质——与系统中所含物质的量有关,有加和性(如H U V ,,等)。
而强度性质另一种广度性质一种广度性质= n V V =m 如,等V m =ρ(3)相的定义:相的定义是:系统中物理性质及化学性质完全相同的均匀的部分。
(4)系统的状态和状态函数:系统的状态是指系统所处的样子。
热力学中采用系统的宏观性质来描述系统的状态,所以系统的宏观性质也称为系统的状态函数。
(Ⅰ) 当系统的状态变化时,状态函数的改变量只决定于系统的始态和终态,而与变化的过程或途径无关。
即系统变化时其状态函数的改变量=系统终态的函数值-系统始态的函数值。
(Ⅱ) 状态函数的微分为全微分,全微分的积分与积分途径无关。
即:2121X X X dX X X ∆==-⎰y yX x x X X x y d d d ⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=(5)热力学平衡态:系统在一定环境条件下,经足够长的时间,其各部分可观测到的宏观性质都不随时间而变,此后将系统隔离,系统的宏观性质仍不改变,此时系统所处的状态叫热力学平衡态。
第二章 热力学第一定律 一、基本概念1. 系统与环境;状态与状态函数;过程与途径2. PVT 、相变化及化学变化独特的基本概念(略)3. 状态函数:内能、焓 →(H=U+pV )4. 途径函数:功、热★热——恒容热:Q V =ΔU →适用条件:封闭系统、恒容过程、W ’=0; 恒压热:Q p =ΔH →适用条件:封闭系统、恒压过程、W ’=0。
★功——W =-∫p amb d V :真空膨胀过程W =0 恒容过程W =0恒压过程W =-p ΔV ; 恒外压过程:W =-p amb ΔV5. pVT 变化基础热数据热容:C→C p , C V →C p,m ,C V ,m (理想气体的C p,m -C V ,m =R )6. 可逆相变化基础热数据摩尔相变焓:(),m p m p H T C βα∂∆=∆; ΔC p,m =C p,m (β)-C p,m (α) 7. 化学变化基础热数据:θθr m B f m B Δ(B)H H ν∆∑=; θθr m B c m BΔ(B)H H ν∆∑=-二、热力学第一定律:ΔU =Q + W 三、基本过程热数据计算 1. 理想气体pVT 变化过程恒容过程:W =0;,;V V m Q U nC T =∆=∆ ΔH=nC p,m ΔT恒压过程:,;P p m Q H nC T =∆=∆ ΔU=nC V ,m ΔT ;(W =ΔU — Q = — p ΔV ) 恒温可逆过程:ΔU=ΔH=0;—Q= W (可逆)=—nR T ln(V 2/V 1)=nR T ln(p 2/p 1) 恒温恒外压过程:ΔU=ΔH=0;—Q= W (不可逆)=—p amb ΔV绝热可逆过程:过程方程式(重要,自行总结,);Q=0;W =ΔU=nC V ,m ΔT ;ΔH=nC p,m ΔT绝热恒外压过程:Q=0;W =—p amb ΔV=ΔU=nC V ,m ΔT ;ΔH=nC p,m ΔT 节流膨胀:自行总结2. 相变化过程: 可逆相变(平衡温度及其平衡压力下的相变化过程):凝聚相相变化:W=0;ΔU =Q p =ΔH =m n H βα∆含气相相变化:Q p =ΔH = m n H βα∆;W =-p ΔV=-p (V 末-V 始);ΔU =Q p + W不可逆相变:状态函数法设计途径。
热力学基本概念和公式热力学是研究能量转化与传递规律的科学,是物理学的一个重要分支。
它研究的对象是物质的宏观性质,以能量和热量为基本概念。
在热力学中,有一些基本概念和公式是十分重要的,下面将介绍其中的几个。
1.系统与环境热力学研究的对象称为系统,它可以是任何具有一定能量交换和物质交换能力的物质。
系统与系统之间的界面称为系统边界。
系统边界内部的物质和能量的变化称为系统过程。
与系统相互作用的外界称为环境。
2.热力学第一定律热力学第一定律是热力学基本定律之一,也称为能量守恒定律。
它表明系统的内能变化等于系统吸收的热量与对外做的功的代数和:△U=Q-W其中,△U表示系统内能的变化量,Q表示系统吸收的热量,W表示系统对外做的功。
3.热力学第二定律热力学第二定律是热力学的另一个基本定律,也称为熵增定律。
它规定了在自然界中,任何一个孤立系统都趋于熵增加的状态,不可能自发地从熵减少的状态转变为熵增加的状态。
4.热容和焓热容是物质在温度变化时吸收或放出的热量与温度变化之间的比例系数,它表示物质对热量的吸收或放出程度。
热容可以分为定压热容和定容热容两种。
焓是系统的一种状态函数,它等于系统的内能与系统对外做的功之和。
5.热力学循环热力学循环是指在一系列自发发生的热力学过程中,系统由一个状态经过一系列过程又回到原来的状态的过程。
热力学循环可以用于工程上的能量转化和利用,如汽车发动机、蒸汽轮机等。
6.热力学效率热力学效率是指能量转化过程中有用能量输出比输入能量的比例。
对于热力学循环,热力学效率等于输出功与输入热量之比。
7.熵熵是热力学中的一个重要概念,它是系统混乱程度的度量,也可以看作是系统无序程度的度量。
熵的增加可以代表能量的分散和耗散。
8.理想气体状态方程理想气体状态方程描述了理想气体的状态与压强、体积和温度之间的关系,它可以表示为PV=nRT,其中P表示气体的压强,V表示气体的体积,n表示气体的摩尔数,R表示气体常数,T表示气体的温度。
热力学公式总结热力学公式,作为热力学研究的基础,是描述能量转化和热力学过程的数学表达式。
它们通过简洁的符号和方程式,揭示了物质和能量之间的相互关系。
以下是几个常见的热力学公式及其含义,让我们一起来了解一下吧。
1. 热力学第一定律:ΔU = Q - W热力学第一定律是能量守恒定律在热力学中的表达,它说明了一个封闭系统内部能量的变化等于系统所吸收的热量减去对外界做功的大小。
这个公式告诉我们,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。
2. 熵的定义:ΔS = Q/T熵是描述系统无序程度的物理量,它是热力学中的一个重要概念。
熵的增加代表了系统的无序性增加,而熵的减少则代表了系统的有序性增加。
这个公式告诉我们,熵的变化与系统所吸收的热量和温度有关,系统吸收的热量越多,熵的增加越大。
3. 理想气体状态方程:PV = nRT理想气体状态方程是描述理想气体性质的基本公式,它将气体的压力、体积、摩尔数和温度联系在一起。
这个公式告诉我们,当气体的压力、体积和摩尔数一定时,温度越高,气体的体积越大。
4. 热力学第二定律:ΔS ≥ 0热力学第二定律是热力学中的一个基本原理,它表明在一个孤立系统中,系统的熵不会减小,或者说系统总是趋向于更高的熵。
这个公式告诉我们,自然界中熵的增加是不可逆的,系统的有序性总是会不可避免地变差。
以上是几个常见的热力学公式,它们揭示了能量转化和热力学过程的规律。
通过理解和运用这些公式,我们可以更好地理解和分析能量转化和热力学过程,为实际问题的解决提供依据。
热力学公式的应用广泛,涵盖了能源、化学、物理等多个领域,对于推动科学技术的发展和改善人类生活质量起到了重要的作用。
希望今天的介绍能让大家对热力学公式有更深入的了解,并在实际应用中发挥出更大的作用。
热力学比热容与热平衡公式整理热力学是研究物质能量转化和传递规律的一门学科,涉及到许多重要的概念和公式。
其中,热力学比热容和热平衡是热力学基本概念之一。
本文将对热力学比热容和热平衡公式进行整理和解析。
一、热力学比热容热力学比热容是物质在单位质量下温度变化的能力。
在常压下,热力学比热容可以分为两种:定压比热容(Cp)和定容比热容(Cv)。
1. 定压比热容(Cp)定压比热容是在恒定压力下单位质量物质温度变化的能力。
定压比热容可以用以下公式表示:Cp = (δQ / δT)p其中,Cp表示定压比热容,δQ表示物质吸收或释放的热量,δT表示温度的变化,p表示压力的恒定。
2. 定容比热容(Cv)定容比热容是在恒定体积下单位质量物质温度变化的能力。
定容比热容可以用以下公式表示:Cv = (δQ / δT)v其中,Cv表示定容比热容,δQ表示物质吸收或释放的热量,δT表示温度的变化,v表示体积的恒定。
二、热平衡公式热平衡是指物体间达到温度均匀的状态。
在热力学中,有两个重要的热平衡公式:热平衡条件和热传导定律。
1. 热平衡条件热平衡条件是指当物体处于热平衡状态时,两物体之间的热交换量相等。
热平衡条件可以用以下公式表示:Q1 = Q2其中,Q1表示物体1吸收或释放的热量,Q2表示物体2吸收或释放的热量。
2. 热传导定律热传导定律是指热量通过传导方式从高温物体传递到低温物体的规律。
热传导定律可以用以下公式表示:Q = k * A * ΔT / d其中,Q表示热量传递的量,k表示热传导系数,A表示传热面积,ΔT表示温度差,d表示传热距离。
三、应用示例下面以一个具体的应用示例来说明热力学比热容和热平衡公式的应用。
设有两个具有不同温度的物体A和物体B,分别为200g和300g。
物体A的初始温度为25℃,物体B的初始温度为50℃。
如果两个物体在热平衡状态下达到相同的最终温度,求最终温度是多少?首先,我们可以利用热平衡条件来分析这个问题。
第一章热力学基本概念
一、基本概念
热机:可把热能转化为机械能的机器统称为热力发动机,简称热机。
工质:实现热能与机械能相互转换的媒介物质即称为工质。
热力系统:用界面将所要研究的对象与周围环境分割开来,这种人为分割的研究对象,称为热力系统。
边界:系统与外界得分界面。
外界:边界以外的物体。
开口系统:与外界有物质交换的系统,控制体(控制容积)。
闭口系统:与外界没有物质的交换,控制质量。
绝热系统:与外界没有热量的交换。
孤立系统:与外界没有任何形式的物质和能量的交换的系统。
状态:系统中某瞬间表现的工质热力性质的总状况。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变,系统内外同时建立热和力的平衡,这时系统的状态就称为热力平衡状态。
状态参数:温度、压力、比容(密度)、内能、熵、焓。
强度性参数:与系统内物质的数量无关,没有可加性。
广延性参数:与系统同内物质的数量有关,具有可加性。
准静态过程:过程进行的非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近于平衡状态。
可逆过程:当系统进行正反两个过程后,系统与外界都能完全回复到出示状态。
膨胀功:由于系统容积发生变化(增大或者缩小)而通过系统边界向外界传递的机械功。
(对外做功为正,外界对系统做功为负)。
热量:通过系统边界向外传递的热量。
热力循环:工质从某一初态开始,经历一系列中间过程,最后又回到初始状态。
二、基本公式
⎰⎰=-=0
2
1
1
2
dx x x dx
理想气体状态方程式:
RT pV m =
循环热效率
1
q w net
t =
η 制冷系数
net
w q 2
=
ε 第二章 热力学第一定律
一、基本概念
热力学第一定律:能量既不能被创造,也不能被消灭,它只能从一种形式转换成另一种形式,或从一个系统转移到另一个系统,而其总量保持恒定。
热力学能:储存在系统内部的能量(内能、热能) 外储存能:宏观动能和重力位能。
推动功:工质在开口系统中流动而传递的功。
pV 流动功:)(pV ∆
技术功:能够被外界所利用的功。
轴功:系统通过机械轴与外界传递的机械功称为轴功。
稳定流动:工质(流体)流程中的任何位置上,工质的流速及其状态参数均不随时间而变化。
二、基本公式 系统总储存能
gz
c u e mgz mc U E E E U E f f p K ++=++
=++=22
2
12
1 闭口系统能量方程:
)
(2
112可逆⎰+-=+∆=+∆=pdv u u q w
u q W U Q
开口系统能量方程 稳定流动能量方程:
s f w z g c h q +∆+∆+∆=22
1
第三章 理想气体的性质及热力过程
一、基本概念 理想气体:
比定容热容(定容比热):在定容情况下,单位质量的物体,温度每
变化1度所吸收或放出的热量。
比定压热容(定压比热):
理想气体混合物的压力:道尔顿分压定律 理性气体混合物的容积:亚美格分体积定律 定容过程: 定压过程: 定温过程: 绝热过程: 等熵过程: 多变过程 二、基本公式 比热容定义
dT
du dT q c dT dh
dT q c dT
q
c v v p p =
==
==
δδδ 迈耶公式(梅耶公式)
g v p R c c =-
理想气体的热力学能和焓、熵
T
q
ds dT
c q h pv u h dT
c q u p p v v δ=
==∆+===∆⎰⎰2
12
1
理想气体主要热力过程的基本公式
第四章热力学第二定律
一、基本概念
热力学第二定律:
开尔文说法:不可能制成一种循环动作的热机,它只从一个热源吸热,
使之完全转变为有用功,而其他物体不发生任何变化。
克劳修斯说法:不可能把热量从低温物体传到高温物体而不引起其他变化。
卡诺循环:在两个恒温热源间,由两个可你等温过程和两个可你绝热(等熵)过程所组成的循环。
卡诺定理:
定理1:在给定的两个恒温热源(相同高温热源和相同低温热源)间工作的一切可逆循环,其热效率都相等,与其循环种类无关,也与工质无关。
定理2:在给定的两个恒温热源间工作的一切不可逆循环,其热效率不可能大于卡诺循环的热效率。
孤立系统熵增原理:在孤立系统中,一切实际过程(不可逆过程)都朝着使系统熵增加的方向进行,或者在极限情况下(可逆过程)系统的熵保持不限,而任何使系统熵减少的过程都是不可能发生的。
二、基本公式 热机效率: 1
212111Q Q
Q Q Q Q w net t -=-==
η 卡诺循环效率:1
212112111T T
T T T Q Q Q Q w net t -=-=-==
η 熵的定义式:
⎰⎰
==∆0
2
1
ds T q
s δ
克劳修斯积分:⎰≤0r
T Q
δ
熵方程:
闭口系统:g f S S T
Q T Q dS δδδδ+=+=
1
开口系统(稳定流动):
)
(0212211s s m S S s m s m S S S g f g f cv -++=-++=
第五章 实际气体、水蒸汽和湿空气
一、基本概念
对比参数:实际气体任意状态的参数相对于临界参数的对比值。
对比态定律:在相同的压力和温度下,不同气体的比体积是不同的,但是只要它们的r p 和r T 相同,它们的r v 也必定相同,说明各种气体在对应状态下有相同的对比性质。
水蒸汽: 一点:临界点
两线:下界限(饱和水线)、上界线(干饱和蒸汽) 三区:未饱和水区、湿蒸汽区、过热蒸汽区
五态:未饱和水、饱和水、湿蒸汽、干饱和蒸汽、过热蒸汽 绝对湿度:单位体积的湿空气中所含水蒸气的质量。
相对湿度:未饱和湿空气的绝对湿度和饱和湿空气的绝对湿度的比值,表示湿空气中水蒸汽含量的饱和程度。
含湿量:相对于单位质量的干空气所含有的水蒸汽的质量,表示式空气中水蒸气的含量。