6.5三角形内角和定理高品质版
- 格式:ppt
- 大小:459.00 KB
- 文档页数:2
6.5三角形内角和定理的证明课前准备重点:掌握三角形内角和定理的证明及简单运用。
难点;灵活运用三角形内角和定理解决相关问题。
学习准备1.三角形内角和是多少度?2.平行线的性质公理和定理是什么?课中导学阅读感知阅读课本237-239页,回答下列问题1.什么是三角形的内角和定理?2.△ABC中可以有3个锐角吗?三个直角呢?两个直角呢?若有1个直角另外两角有什么特点?注意:在解决几何问题时,当已有的条件解决问题较困难时,常常在图中添加线,构造新图形,形成新关系,搭建已知与未知的桥梁,把陌生问题转化为熟悉的问题,在图形中所添的线叫做辅助线,辅助线通常画为虚线。
合作探究探究1:在证明三角形内角和定理时,小明的想法是把三个角凑到A处,他过点A作直线PQ//BC(如图1)(1)他的想法可行吗?如果可行,写出证明过程。
(2)你还有证明三角形内角和的其它证明方法吗?(3)证明三角形内角和定理的基本思路是什么?探究2:如图2,在△ABC中∠A=75°,∠B=70°,将∠C折起,点C落在△ABC内部,∠1=20°,求∠2的度数。
小组讨论1.说一说你的思考过程2.你认为解决问题的策略与方法是什么?巩固练习1.在△ABC中,如果∠A=∠B-∠C,那么这个三角形是()A锐角三角形 B 等边三角形 C 直角三角形D钝角三角形2.已知如图3,在△ABC中,∠B=40°,则∠1+∠2+∠3+∠4=()A 140°B 180°C 360°D2. 如图4,在△ABC 中,∠B 、∠C 的角平分线交于点P ,若∠A=70°,则∠BPC 的度数等于( )A 145°B 135°C 125°D 110° 3.小丽在证明三角形内角和定理时,想到把三角形的三个角凑到BC 边上一点P (如图5),已知PQ//AC ,PR//AB ,证明:∠A+∠B+∠C=180°反思感悟通过本节课的学习,我们知道了:1. 证明三角形内角和定理的基本思路是设法将三个内角合并成一个平角,利用平移角,利用延长或作直线构造平角;2. 2.证明角度之间的关系或求某些角度时,常常找到这些角所在的三角形,利用三角形内角和定理来解;如果找不到它们所在的三角形,可以通过作辅助线构造三角形。
三角形的内角和定理三角形是初中数学中非常重要的一个概念,它由三条边和三个内角组成。
在研究三角形的性质时,内角和定理是一个非常基础且重要的定理。
接下来,本文将对三角形的内角和定理进行详细的介绍和论述。
1. 内角和定理的数学表述内角和定理是指:任意一个三角形的三个内角之和等于180度。
数学表达式为:∠A + ∠B + ∠C = 180°其中,∠A、∠B、∠C分别表示三角形的三个内角。
2. 内角和定理的证明要证明内角和定理,可以使用几何推理和数学推导。
这里以几何推理为例进行证明。
假设有一个三角形ABC,作三角形的高AD,将三角形分成两个直角三角形ABD和ACD。
由于直角三角形ABD的内角和为90度,直角三角形ACD的内角和也为90度。
而三角形ABC的内角和等于直角三角形ABD和ACD的内角和之和,即∠A + ∠B + ∠C = 90° + 90° = 180°。
因此可以得出结论,任意一个三角形的三个内角之和等于180度。
3. 内角和定理的应用内角和定理是解决三角形相关问题的基础。
它常常被用于以下几个方面:3.1 判断三角形类型根据内角和定理,可以判断三角形的类型。
例如,如果一个三角形的三个内角之和为180度,则可以确定这是一个普通三角形。
如果三个内角之和小于180度,则是一个锐角三角形;如果三个内角之和大于180度,则是一个钝角三角形。
3.2 计算已知内角求未知内角当已知两个内角的度数时,可以利用内角和定理求出第三个内角的度数。
例如,已知一个三角形的两个内角分别为60度和80度,可以通过内角和定理计算出第三个内角的度数为180° - 60° - 80° = 40°。
3.3 解决平行线与三角形的问题在研究平行线与三角形的关系时,内角和定理也是一个重要工具。
例如,当一条直线与两条平行线相交时,所形成的两个内角和为180度。
4. 总结三角形的内角和定理是初中数学中的基础概念之一,它在解决三角形相关问题时起着重要的作用。
三角形的内角和定理三角形的内角和定理是数学中一个重要的定理,它描述了任意三角形内角的和。
三角形是由三条线段连接起来的图形,它有三个顶点和三条边。
我们可以把三角形的内角分为三个部分,分别称为三角形的内角A、内角B和内角C。
根据三角形的内角和定理,三角形的内角A、内角B和内角C的和等于180度。
证明这个定理可以使用几何方法或者代数方法。
接下来,我将用几何方法来证明这个定理。
我们先假设有一个任意三角形ABC。
我们可以通过辅助线BD将这个三角形分成两个小三角形,即三角形ABD和三角形CBD。
通过划分这些线段,我们可以得到以下几个角度:角BAD、角ADC、角BDC和角BCA。
根据三角形的性质,直角的两条边相互垂直。
因此,角BAD和角ADC是直角。
由于直角的度数为90度,我们可以得出角BAD和角ADC分别为90度。
接下来,我们继续观察三角形ABD和三角形CBD。
由于它们共用边BD,并且角BAD和角ADC都是直角,我们可以推断出这两个三角形是相似的。
根据相似三角形的性质,它们对应角的度数相等。
因此,我们可以得到角ABC和角BCD的度数相等。
最后,我们将所有角度的度数相加:90度(角BAD)+ 90度(角ADC)+ 角ABC + 角BCD + 角BCA = 180度。
因此,我们证明了三角形的内角和定理,即三角形的内角A、内角B和内角C的和等于180度。
三角形的内角和定理在解决与三角形相关的问题时非常有用。
无论是计算未知角度,还是研究三角形的性质,这个定理都能够帮助我们更好地理解和解决问题。
总结一下,三角形的内角和定理指出了三角形内角的和为180度。
这个定理通过几何方法证明,并在数学中起着重要的作用。
理解和掌握这个定理对于解决三角形相关的问题非常重要。
第五节三角形内角和定理的证明第六课时●课题§6.5 三角形内角和定理的证明●教学目标(一)教学知识点三角形的内角和定理的证明.(二)能力训练要求掌握三角形内角和定理,并初步学会利用辅助线证题,同时培养学生观察、猜想和论证能力.(三)情感与价值观要求通过新颖、有趣的实际问题,来激发学生的求知欲.●教学重点三角形内角和定理的证明.●教学难点三角形内角和定理的证明方法.●教学方法实验、讨论法.●教具准备三角形纸片数张.投影片三张第一张:问题(记作投影片§6.5 A)第二张:实验(记作投影片§6.5 B)第三张:小明的想法(记作投影片§6.5 C)●教学过程Ⅰ.巧设现实情境,引入新课[师]大家来看一机器零件(出示投影片§6.5 A)工人师傅将凹型零件(图6-34)加工成斜面EC与槽底CD成55°的燕尾槽(图6-35)的程序是:将垂直的铣刀倾斜偏转35°角(图6-5),就能得到55°的燕尾槽底角.图6-34图6-35图6-36 为什么铣刀偏转35°角,就能得到55°的燕尾槽底角呢?Ⅱ.讲授新课[师]为了回答这个问题,先观察如下的实验(电脑实验,或实物实验)用橡皮筋构成△ABC,其中顶点B、C为定点,A为动点(如图6-37),放松橡皮筋后,点A自动收缩于BC上,请同学们考察点A变化时所形成的一系列的三角形:△A1BC、△A2BC、△A3BC……其内角会产生怎样的变化呢?图6-37[生甲]当点A离BC越来越近时,∠A越来越接近180°,而其他两角越来越接近于0°.[生乙]三角形各内角的大小在变化过程中是相互影响的.[师]很好.在三角形中,最大的内角有没有等于或大于180°的?[生丙]三角形的最大内角不会大于或等于180°.[师]很好.看实验:当点A远离BC时,∠A越来越趋近于0°,而AB与AC逐渐趋向平行,这时,∠B、∠C逐渐接近为互补的同旁内角.即∠B+∠C→180°.请同学们猜一猜:三角形的内角和可能是多少?[生齐声]180°[师]180°,这一猜测是否准确呢?我们曾做过如下实验:(出示投影片§6.5 B)实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果.(1)(2)(3)(4)图6-38实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起.[师]由实验可知:我们猜对了!三角形的内角之和正好为一个平角.但观察与实验得到的结论,并不一定正确、可靠,这样就需要通过数学证明.那么怎样证明呢?请同学们再来看实验.图6-39这里有两个全等的三角形,我把它们重叠固定在黑板上,然后把三角形ABC的上层∠B剥下来,沿BC的方向平移到∠ECD处固定,再剥下上层的∠A,把它倒置于∠C与∠ECD之间的空隙∠ACE的上方.这时,∠A与∠ACE能重合吗?[生齐声]能重合.[师]为什么能重合呢?[生齐声]因为同位角∠ECD=∠B.所以CE∥B A.[师]很好,这样我们就可以证明了:三角形的内角和等于180°.接下来同学们来证明:三角形的内角和等于180°这个真命题.这是一个文字命题,证明时需要先干什么呢?[生]需要先画出图形,根据命题的条件和结论,结合图形写出已知、求证.[师]对,下面大家来证明,哪位同学上黑板给大家板演呢?图6-40[生甲]已知,如图6-40,△AB C.求证:∠A+∠B+∠C=180°证明:作BC的延长线CD,过点C作射线CE∥AB.则∠ACE=∠A(两直线平行,内错角相等)∠ECD=∠B(两直线平行,同位角相等)∵∠ACB+∠ACE+∠ECD=180°(1平角=180°)∴∠A+∠B+∠ACB=180°(等量代换)即:∠A+∠B+∠C=180°.[生乙]老师,我的证明过程是这样的:证明:作BC的延长线CD,作∠ECD=∠B.则:EC∥AB(同位角相等,两直线平行)∴∠A=∠ACE(两直线平行,内错角相等)∵∠ACB+∠ACE+∠ECD=180°(1平角=180°)∴∠ACB+∠A+∠B=180°(等量代换)[师]同学们写得证明过程很好,在证明过程中,我们仅仅添画了一条射线CE,使处于原三角形中不同位置的三个角,巧妙地拼凑到一起来了.为了证明的需要,在原来的图形上添画的线叫做辅助线.在平面几何里,辅助线通常画成虚线.我们通过推理的过程,得证了命题:三角形的内角和等于180°是真命题,这时称它为定理.即:三角形的内角和定理.小明也在证明三角形的内角和定理,他是这样想的.大家来议一议,他的想法可行吗?(出示投影片§6.5 C)图6-41在证明三角形内角和定理时,小明的想法是把三个角“凑”到A处,他过点A作直线PQ∥BC.(如图6-41)他的想法可行吗?你有没有其他的证法.[生甲]小明的想法可行.因为:∵PQ∥BC(已作)∴∠P AB=∠B(两直线平行,内错角相等)∠QAC=∠C(两直线平行,内错角相等)∵∠P AB+∠BAC+∠QAC=180°(1平角=180°)∴∠B+∠BAC+∠C=180°(等量代换)图6-42[生乙]也可以这样作辅助线.即:作CA的延长线AD,过点A作∠DAE=∠C(如图6-42).[生丙]也可以在三角形的一边上任取一点,然后过这一点分别作另外两边的平行线,这样也可证出定理.图6-43即:如图6-43,在BC上任取一点D,过点D分别作DE∥AB交AC于E,DF∥AC 交AB于F.∴四边形AFDE是平行四边形(平行四边形的定义)∠BDF=∠C(两直线平行,同位角相等)∠EDC=∠B(两直线平行,同位角相等)∴∠EDF=∠A(平行四边形的对角相等)∵∠BDF+∠EDF+∠EDC=180°(1平角=180°)∴∠A+∠B+∠C=180°(等量代换)[师]同学们讨论得真棒.接下来我们做练习以巩固三角形内角和定理.Ⅲ.课堂练习(一)课本P196随堂练习1、2.图6-441.直角三角形的两锐角之和是多少度?等边三角形的一个内角是多少度?请证明你的结论.答案:90°60°如图6-44,在△ABC中,∠C=90°∵∠A+∠B+∠C=180°∴∠A+∠B=90°.图6-45如图6-45,△ABC是等边三角形,则:∠A=∠B=∠C.∵∠A+∠B+∠C=180°∴∠A=∠B=∠C=60°图6-462.如图6-46,已知,在△ABC中,DE∥BC,∠A=60°,∠C=70°,求证:∠ADE=50°.证明:∵DE∥BC(已知)∴∠AED=∠C(两直线平行,同位角相等)∵∠C=70°(已知)∴∠AED=70°(等量代换)∵∠A+∠AED+∠ADE=180°(三角形的内角和定理)∴∠ADE=180°-∠A-∠AED(等式的性质)∵∠A=60°(已知)∴∠ADE=180°-60°-70°=50°(等量代换)(二)读一读P197.(三)看课本P195~196,然后小结.Ⅳ.课时小结这堂课,我们证明了一个很有用的三角形内角和定理.证明的基本思想是:运用辅助线将原三角形中处于不同位置的三个内角集中在一起,拼成一个平角.辅助线是联系命题的条件和结论的桥梁,今后我们还要学习它.Ⅴ.课后作业(一)课本P198习题6.6 1、2(二)1.预习内容P199~2002.预习提纲(1)三角形内角和定理的推论是什么?(2)三角形内角和定理的推论的应用.Ⅵ.活动与探究1.证明三角形内角和定理时,是否可以把三角形的三个角“凑”到BC边上的一点P?(如图6-47(1)),如果把这三个角“凑”到三角形内一点呢?(如图6-47(2))“凑”到三角形外一点呢?(如图6-47(3)),你还能想出其他证法吗?(1)(2)(3)图6-47[过程]让学生在证明这个题的过程中,进一步了解三角形内角和定理的证明思路,并且了解一题的多种证法,从而拓宽学生的思路.[结果]证明三角形内角和定理时,既可以把三角形的三个角“凑”到BC边上的一点P,也可以把三个角“凑”到三角形内一点;还可以把这三个角“凑”到三角形外一点.证明略.●板书设计§6.5 三角形内角和定理的证明一、三角形内角和定理三角形三个内角的和等于180°图6-48已知,如图6-48,△ABC.求证:∠A+∠B+∠C=180°证明:作BC的延长线CD,过点C作射线CE∥BA,则:∠A=∠ACE()∠ECD=∠B()∵∠ECD+∠ACE+∠ACB=180°()∴∠A+∠B+∠ACB=180°()二、议一议三、课堂练习四、课时小结五、课后作业巧添平行线-6.5 三角形内角和定理的证明证三角形内角和定理贵州省剑河二中杨通刚课本给出了三角形内角和定理的一种证明方法,其证明思路是作∠ECA=∠A,然后利用平行线的判定与性质证明∠ECD=∠B.这样就将三个内角转移成平角∠BCD使定理获证.其实,巧添平行线转移角度也能很快地得到证明.图6-49证法一:如图6-49,延长BC至D,过C点作CE∥A B.∵CE∥AB,∴∠1=∠B(两直线平行,同位角相等)∠2=∠A(两直线平行,内错角相等)∵∠ACB+∠2+∠1=180°(平角定义)∴∠A+∠B+∠ACB=180°.图6-50证法二:如图6-50,过点A作EF∥BC,则∠1=∠B,∠2=∠C.∵∠1+∠BAC+∠2=180°,∴∠BAC+∠B+∠C=180°.图6-51证法三:如图6-51,在BC边上任取一点D,过D作DE∥AB交AC于E,作DF∥AC交AB于F.∵DE∥AB,∴∠1=∠B,∠2=∠4,∵DF∥AC,∴∠3=∠C,∠A=∠4,∴∠2=∠A,又∠1+∠2+∠3=180°∴∠A+∠B+∠C=180°.图6-52证法四:过点A作AD∥BC(如图6-52)∵AD∥BC∴∠1=∠C,∠DAB+∠ABC=180°∴∠BAC+∠B+∠C=∠DAB+∠ABC=180°.图6-53证法五:如图6-53,过点A任作一条射线AD,再作BE∥AD,CF∥AD.∵BE∥AD∥CF∴∠1=∠3,∠2=∠4,∠EBC+∠BCF=180°∴∠BAC+∠ABC+∠ACB=∠EBC+∠BCF=180°.参考练习-6.5 三角形内角和定理的证明图6-541.已知,△ABC中,AD是高,E是AC边上一点,BE与AD交于点F(如图6-54),∠ABC=45°,∠BAC=75°,∠AFB=120°.求证:BE ⊥AC .证明:∵AD 是高(已知) ∴∠ADB =90°(垂直的定义)∵∠ABC +∠ADB +∠BAD =180°(三角形内角和定理) ∠ABC =45°(已知)∴∠BAD =45°(等式的性质) ∵∠BAC =75°(已知)∴∠DAC =30°(等式的性质)∵∠AFB +∠AFE =180°(1平角=180°) ∠AFB =120°(已知)∴∠AFE =60°(等式性质)∵∠AFE +∠AEF +∠DAC =180°(三角形内角和定理) ∴∠AEF =90°(等式性质) ∴AC ⊥AE (垂直的定义)2.如图6-55,△ABC 中,∠B =∠ACB ,CD 是高,求证:∠BCD =21∠A.图6-55证明:∵∠A +∠B +∠ACB =180°(三角形内角和定理) ∠B =∠ACB (已知)∴∠B =2180A ∠-︒=90°-21∠A∵CD 是△ABC 的高(已知) ∴∠BDC =90°∵∠BDC +∠B +∠DCB =180°(三角形内角和定理) ∴∠BCD =180°-∠BDC -∠B=180°-90°-(90°-21∠A )=21∠A (等式的性质)§6.5 三角形内角和定理的证明班级:_______ 姓名:_______一、填空请你填一填(1)如果三角形的三个内角都相等,那么每一个角的度数等于_______.(2)在△ABC中,若∠A=65°,∠B=∠C,则∠B=_______.(3)在△ABC中,若∠C=90°,∠A=30°,则∠B=_______.(4)在△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则∠A=_______,∠B=_______,∠C=_______.(5)在图6—5—1和6—5—2中,∠1、∠2与∠B、∠C的关系是_______(6)已知,如图6—5—3,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC,垂足为D,则∠DBC的度数为_______.图6—5—1 图6—5—2 图6—5—3二、选择题认真选一选(1)在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于()A.65°B.115°C.80°D.50°(2)两条平行线被第三条直线所截,那么一组同旁内角的平分线()A.相互重合B.互相平行C.相互垂直D.无法确定相互关系图6—5—4(3)如图6—5—4,AB∥CD,∠A=35°,∠C=80°,那么∠E等于()A.35°B.45°C.55°D.75°三、数学眼光看世界图6—5—5(1)一块大型模板如图6—5—5,设计要求BA与CD相交成30°角,DA与CB相交成20°的角,怎样通过测量∠A,∠B,∠C,∠D的度数,来检查模板是否合格?(2)小芳和小白在一起温习三角形内角和定理,小芳灵机一动,想考考小白对知识掌握的程度,她给小白出了一道这样的题目:图6—5—6如图6—5—6,证明五边形的内角和等于540°.即:∠A+∠B+∠C+∠D+∠E=540°.参考答案一、(1)60°(2)57.5°(3)60°(4)30°60°90°(5)∠1+∠2=∠B+∠C(6)18°二、(1)B (2)C (3)B三、(1)测量∠B+∠C是否等于150°,∠C+∠D是否等于160°,若是则合格,否则不合格.(2)分析:连结对角线将五边形分割成三个三角形.如连结BD、BE,则五边形ABCDE 被分割成三个三角形:△BCD、△BDE、△ABE,这三个三角形的所有内角和等于180°×3=540°,即为∠A+∠B+∠C+∠D+∠E=540°。
三角形的内角和定理三角形是几何学中最基本的图形之一,具有许多有趣的性质和定理。
其中,最为著名的定理之一就是三角形的内角和定理。
这个定理告诉我们,任意一个三角形的三个内角的和等于180度。
三角形的内角和定理是欧几里得几何学的基石之一,它是许多几何推理和证明的基础。
这个定理的证明可以通过多种方法,其中一种常见的方法是利用平行线的性质和角的对应关系。
首先,让我们来看一个简单的等腰三角形。
在等腰三角形中,两个底角相等。
假设这个等腰三角形的两个底角的度数都是x度,那么根据三角形的内角和定理,顶角的度数就是180度减去两个底角的度数,即180度-2x度。
由于两个底角相等,所以顶角的度数也是2x度。
接下来,我们来看一个不等边三角形。
假设这个不等边三角形的三个内角的度数分别是x度、y度和z度。
根据三角形的内角和定理,这三个内角的和等于180度,即x度+y度+z度=180度。
在几何学中,我们还可以通过其他方法来证明三角形的内角和定理。
例如,我们可以利用三角形的外角和定理来证明。
三角形的外角和定理告诉我们,三角形的一个外角等于它对应的两个内角的和。
因此,如果我们将三角形的三个外角的度数相加,得到的和应该等于360度。
由于三角形的外角和等于360度,所以三角形的内角和就等于180度。
三角形的内角和定理不仅仅是几何学中的一个基本定理,它也具有广泛的应用。
在计算几何学中,我们常常需要计算三角形的各个内角的度数,以便进行其他相关计算。
在建筑学和工程学中,三角形的内角和定理也被广泛应用于测量和设计中。
除了三角形的内角和定理,还有许多与三角形相关的定理和性质。
例如,三角形的外角和定理、三角形的角平分线定理、三角形的中位线定理等等。
这些定理和性质都为我们理解和应用三角形提供了重要的工具和方法。
总之,三角形的内角和定理是几何学中最基本的定理之一。
它告诉我们,任意一个三角形的三个内角的和等于180度。
这个定理不仅仅是几何学的基础,还具有广泛的应用。
三角形的内角和定理三角形的内角和定理是几何学中的一个重要定理,它描述了一个三角形内的三个角度之和总是180度。
这个定理在解决各种几何问题和计算三角形的角度时非常有用。
本文将对三角形的内角和定理进行详细阐述,并给出证明。
首先,让我们来了解一下三角形的定义。
三角形是由三条边和三个顶点组成的一个平面几何图形。
根据边的不同关系,三角形可以分为等边三角形、等腰三角形和普通三角形。
对于任意一个三角形ABC,我们可以标记出它的三个内角,分别为∠A、∠B和∠C。
现在我们来研究一下这三个角的和是否总是180度。
首先,我们可以将三角形ABC的两条边AB和AC延长,分别延长到点D和点E。
由于延长线与初始线段上的点不重合,所以我们可以得到两个新的角,分别为∠BAD和∠CAE。
接下来,我们来研究四边形ABED。
由于四边形ABED是一个平面图形,所以它的内角之和总是360度。
我们可以将这个四边形分割成两个三角形,即三角形ABD和三角形AEC。
根据四边形ABED的角度和为360度,我们可以得到如下等式:∠BAD + ∠DAE + ∠CAE + ∠EAB = 360度由于三角形ABC和三角形ABD分别共享两个角A和B,所以我们可以使用这个等式来计算三角形ABC的内角之和:∠A + ∠B + ∠C + ∠EAB = 360度现在我们来考虑三角形ABC的外角∠EAB。
根据角度理论,一个三角形的外角等于其相对的内角之和。
所以我们可以将∠EAB写成∠EAB = ∠A + ∠B。
将这个等式代入前面的等式中,可以得到:∠A + ∠B + ∠C + (∠A + ∠B) = 360度通过整理等式,我们可以得到:2∠A + 2∠B + ∠C = 360度然后,我们可以将等式两边同时除以2,得到:∠A + ∠B + ∠C = 180度这就证明了三角形的内角和定理:三角形的内角之和总是180度。
这个定理在解决各种几何问题和计算三角形的内角时非常有用。
三角形的内角和定理与外角性质三角形是几何学中最基本的图形之一,其内角和定理与外角性质是我们在学习三角形时必须了解和掌握的重要概念。
本文将详细介绍三角形的内角和定理以及外角性质,帮助读者建立对三角形性质的深入理解。
一、三角形的内角和定理在讨论三角形的内角和定理之前,首先需要了解一个基本概念,即内角。
三角形的内角是指三条边所夹的角,分别记为角A、角B和角C,对应三条边分别为边a、边b和边c。
根据三角形的定义,三个内角的和总是等于180度,即有以下内角和定理:角A + 角B + 角C = 180度这一定理是三角形性质的基础,通过它我们可以推导出其他三角形性质和定理。
二、三角形的外角性质除了内角和定理,三角形还具有一些重要的外角性质。
三角形的外角是指一个三角形的一个内角的补角,即与之相邻的两个内角的和等于180度。
下面我们将介绍三角形外角性质的几个重要定理:1. 外角定理三角形的任一外角等于其不相邻的两个内角的和。
设三角形的一个外角为角D,则有以下等式成立:角D = 角A + 角B 或角D = 角A + 角C 或角D = 角B + 角C通过外角定理,我们可以通过已知的内角信息推导出三角形的外角。
2. 外角和定理三角形的三个外角的和等于360度。
设三角形的外角分别为角D、角E和角F,则有以下等式成立:角D + 角E + 角F = 360度外角和定理是三角形外角性质的一个重要推论,通过它我们可以验证一个三角形是否是合理的。
三、应用举例为了更好地理解三角形的内角和定理与外角性质,下面我们来应用这些概念解决一个具体问题。
假设有一个三角形ABC,其角A为90度,角B为30度,我们需要求解角C和角D的度数。
根据内角和定理,我们知道角A + 角B + 角C = 180度,可以得出:90度 + 30度 + 角C = 180度,进一步计算可得角C = 60度。
接下来,我们根据外角和定理计算角D的度数。
由于三角形的三个外角的和等于360度,我们可以得出:角D + 90度 + 30度 = 360度,进一步计算可得角D = 240度。
三角形的内角和定理三角形是几何学中最基本的图形之一,它由三条边和三个内角组成。
在研究三角形的性质时,内角和定理是一个重要的概念。
本文将为您详细介绍三角形的内角和定理。
内角和定理,又称为三角形内角和公式,是指三角形的三个内角之和等于180度。
这个定理被广泛地运用于解决各种与三角形相关的问题。
在了解内角和定理之前,我们首先来看一下三角形的基本概念。
三角形有几个重要的要素,包括三条边和三个内角。
三角形的内角用字母A、B、C来表示,对应的边分别为a、b、c。
下面,我们将通过具体的例子来说明内角和定理的应用。
例一:假设已知一个三角形的两个内角分别为60度和80度,求第三个内角。
解:根据内角和定理,三角形的三个内角之和等于180度。
已知两个内角为60度和80度,将它们相加得到140度。
将140度代入内角和定理的公式,可以得到第三个内角的度数为180度减去140度,即第三个内角为40度。
在解决具体问题时,我们可以根据内角和定理列出方程,将已知的内角代入方程,然后求解未知的内角。
除了用内角和定理来求解未知的内角,我们也可以用它来判断一个图形是否是三角形。
如果一个图形的三个内角之和等于180度,那么它就是一个三角形。
否则,它就不是一个三角形。
例二:假设一个图形的三个内角分别为70度、60度和50度,判断它是否是一个三角形。
解:根据内角和定理,将三个内角相加得到70度+60度+50度=180度。
因此,这个图形的三个内角之和等于180度,所以它是一个三角形。
除了了解内角和定理的基本概念和应用,我们还可以通过内角和定理来推导其他的三角形性质。
比如,我们可以利用内角和定理证明等腰三角形的两个底角相等,或者利用内角和定理证明等边三角形的三个内角相等等。
总结起来,三角形的内角和定理是指三角形的三个内角之和等于180度。
它是几何学中的一个重要概念,被广泛地应用于解决各种与三角形相关的问题。
我们可以通过内角和定理来求解未知的内角,判断一个图形是否是三角形,以及推导其他的三角形性质。
三角形的内角和与外角和关系(基础)知识讲解【学习目标】1理解三角形内角和定理的证明方法;2•掌握三角形内角和定理及三角形的外角性质;3•能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题【要点梳理】要点一、三角形的内角和1. 三角形内角和定理:三角形的内角和为180° •2. 结论:直角三角形的两个锐角互余.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.要点二、三角形的外角1 •定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角•如图,/ ACD是△ ABC的一个外角.L L)要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2 )三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2. 性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理、证明经常使用的理论依据•另外,在证明角的不等关系时也常想到外角的性质.3. 三角形的外角和:三角形的外角和等于360° .要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180° ,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1 .证明:三角形的内角和为180° .【答案与解析】解:已知:如图,已知△ ABC求证:/ A+Z B+Z C= 180° .••• AB // CD (已作),••• /仁/A (两直线平行,内错角相等)/ B=/ 2 (两直线平行,同位角相等) 又•••/ ACB+/ 1 + / 2=180°(平角定义), •••/ ACB+/ A+/ B=180。
三角形的内角和定理三角形是几何学中最基本的图形之一,它由三条线段组成,而三角形的内角和定理是描述三角形内角和的数学定律。
本文将介绍三角形的内角和定理,并探讨其相关性质和证明方法。
一、三角形的内角和定理概述三角形的内角和定理是数学中一个基本且重要的定理,它表明三角形的三个内角之和等于180度(或π弧度)。
这个定理适用于任何类型的三角形,包括等边三角形、等腰三角形和普通三角形。
二、三角形的内角和定理证明方法证明三角形的内角和定理有多种方法,其中一种常用的方法是利用平行线、相似三角形或三角形的外角来推导。
下面我们将介绍其中一种证明方法。
假设有一个三角形ABC,我们可以通过以下步骤证明其内角和为180度:1. 延长边BC,假设延长线与AB的延长线交于点D。
2. 利用同位角、内错角的性质可得∠DAB是三角形ABC的外角。
3. 根据三角形外角和定理可知,三角形ABC的三个外角之和等于360度,即∠CBA + ∠BAC + ∠DAB = 360度。
4. 由于∠DAB是三角形ABC的外角,所以∠CBA + ∠BAC +∠DAB = 180度。
5. 化简得到∠CBA + ∠BAC = 180度 - ∠DAB。
通过以上证明,我们可以得出结论:三角形的内角和等于180度。
三、三角形的内角和定理相关性质三角形的内角和定理还具有一些相关的性质,对于解题和推导其他几何定理有一定的帮助。
下面我们将介绍其中几个常见的性质。
1. 三角形内角和的关系:对于任意三角形ABC,设∠A、∠B、∠C分别为三角形的内角,则有∠A + ∠B + ∠C = 180度。
2. 等边三角形的内角:对于等边三角形来说,三个内角均相等,即∠A = ∠B = ∠C = 60度。
3. 等腰三角形的内角:对于等腰三角形来说,两个底角相等,即∠A = ∠B,而顶角∠C 则可以通过补角关系求得。
4. 直角三角形的内角:对于直角三角形来说,其中一个内角是直角(90度),而其他两个内角之和为90度。
三角形的内角和定理一个三角形是由三个角组成的多边形,它是几何学中最基本的形状之一。
我们将探讨三角形的内角和定理,它可以帮助我们计算三角形内角的总和。
三角形的内角和定理表明,一个三角形的内角的总和是180度。
这是一个简单而又重要的数学原理,为解决与三角形相关的问题提供了基础。
为了理解三角形的内角和定理,让我们先来了解三角形的基本概念。
一个三角形有三个顶点,用大写字母A、B、C表示,每个顶点对应一个内角,用小写字母a、b、c表示。
根据三角形的内角和定理,我们可以得到以下等式:a +b +c = 180度这个等式适用于所有类型的三角形,无论是等边三角形、等腰三角形还是一般的三角形。
它提供了一个简便的方法来计算三角形的内角和。
例如,假设我们有一个等边三角形,其中所有的边都等长。
根据等边三角形的性质,每个内角都是60度。
通过三角形的内角和定理,我们可以验证这一点:60度 + 60度 + 60度 = 180度同样地,对于一个等腰三角形,其中两个边的长度相等,两个内角也相等。
我们可以使用内角和定理来验证这一点。
假设等腰三角形的两个内角分别是x度,那么根据内角和定理:x度 + x度 + y度 = 180度这里的y度表示等腰三角形的顶角。
根据等腰三角形的性质,顶角和底角相等,因此y度也等于x度。
将等式简化,我们得到:2x度 + x度 = 180度3x度 = 180度解得x度 = 60度所以,等腰三角形的两个内角都是60度。
三角形的内角和定理不仅适用于特殊类型的三角形,也适用于一般的三角形。
我们可以通过测量或计算一个三角形的两个内角,来求出第三个内角的大小。
例如,假设一个三角形的两个内角分别是30度和70度,我们可以使用内角和定理来计算第三个内角的大小。
30度 + 70度 + c度 = 180度c度 = 180度 - 30度 - 70度c度 = 80度所以,这个三角形的第三个内角的大小是80度。
三角形的内角和定理在解决各种三角形相关问题时非常有用。