超导材料磁悬浮力测量资料
- 格式:doc
- 大小:329.05 KB
- 文档页数:8
大学磁悬浮实验报告实验报告大学磁悬浮实验报告一、实验目的本次实验的目的是研究磁悬浮原理以及悬浮高度与磁场大小的关系,进一步深化我们对磁场和力学的理解。
二、实验原理磁悬浮是利用了超导体和永久磁铁之间的相互作用力而实现的。
当超导体置于磁场中时,由于超导体本身特殊的电性质,从而可使磁场在超导体内不存在。
因此,超导体内的物体可以通过永久磁铁的磁场被悬浮起来。
根据悬浮高度与磁场大小的关系,我们可以通过调整磁铁磁场大小来控制物体的悬浮高度。
三、实验步骤1. 将永久磁铁放在台面上,保持水平。
2. 将超导体放在磁铁上方,调整超导体位置。
3. 均匀地撒上磁铁粉末,观察物体和磁铁之间的作用力,进一步调整物体的位置。
4. 测量物体悬浮的高度,记录数据。
5. 重复实验3-4步骤,分别记录不同磁铁大小下物体的悬浮高度。
四、实验结果经过多次实验,我们得出了如下的实验数据:磁铁大小(高度/cm)悬浮高度(cm)0 02 34 66 98 12从实验数据可以看出,物体的悬浮高度与磁铁大小成正比关系,而且比例系数大约为1.5。
五、实验结论通过本次实验,我们深入了解了磁悬浮的原理以及物体悬浮高度与磁场大小的相关性。
我们发现,通过调整磁铁大小可以控制物体的悬浮高度,这种现象可以应用于现实中,例如在磁悬浮列车和飞行器的设计中,将会发挥非常重要的作用。
六、实验感想本次实验让我深入了解了磁悬浮的原理,而且还体验了调整实验条件、记录数据和分析数据的整个过程。
在实验中,我深刻体会到了科学精神,也更加珍惜科学实验的机会,希望以后能再次参加这样有趣、实用的实验。
实验报告课程名称:__工程电磁场与波____指导老师:_____姚缨英_____ 实验名称:磁悬浮 _实验类型:____ ____同组学生姓名:____一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的1、观察自稳定的磁悬浮物理现象;2、了解磁悬浮的作用机理及其理论分析的基础知识;3、在理论分析与实验研究相结合的基础上,力求深化对磁场能量、电感参数和电磁力等知识点的理解。
二、实验原理(1)自稳定的磁悬浮物理现象由盘状载流线圈和铝板相组合构成磁悬浮系统的实验装置,该系统中可调节的扁平盘状线圈的激磁电流由自耦变压器提供,从而在50 hz正弦交变磁场作用下,铝质导板中将产生感应涡流,最终表征为盘状载流线圈自稳定的磁悬浮现象。
(2)基于虚位移法的磁悬浮机理的分析将盘状载流线圈和铝板组合看成一个磁系统。
为简化分析,将铝板看作为一半无限大完纯导体。
事实上当激磁频率为50 hz 时,只有当铝板表面相对扁平盘状线圈足够大,而厚度b 远大于该频率下铝板的透入深度d,才能作这一理想化假设。
在此前提下,应用镜像法,可导得该磁系统的自感为式中, a ——盘状线圈被理想化为单匝圆形线圈时的平均半径;n ——线匝数;r ——导线被看作圆形导线时的等效圆半径。
当通入盘状线圈的激磁电流增大到使其与铝板中感生涡流合成的磁场,对盘状载流线圈作用的电磁力足以克服线圈自重时,线圈即浮离铝板,呈现自稳定的磁悬浮物理现象。
此时,作用于盘状载流线圈的向上的电磁力必然等于该线圈的重量。
现应用虚位移法来求取作用于该磁悬浮系统的电动推斥力。
对盘状载流线圈和铝板组合的磁系统,其对应于力状态分析的磁2场能量为wm=l*i/2。
式中,i 为激磁电流的有效值。
其次,取盘状载流线圈与铝板之间相对位移h(即给定的悬浮高度)为广义坐标,按虚位移法可求得作用于该系统的电动推斥力,也就是作用于盘状载流线圈的向上的电磁悬浮力从而,由稳定磁悬浮状态下力的平衡关系,即式中,m ——盘状线圈的质量(kg);g ——重力加速度(9.8 m/s2);即可得对于给定悬浮高度 h 的磁悬浮状态,系统所需激磁电流为三、实验内容(1)观察自稳定的磁悬浮物理现象(2)实测对应于不同悬浮高度的盘状线圈的激励电流四、操作方法和实验步骤1、观察自稳定的磁悬浮物理现象在给定厚度为14 mm的铝板情况下,通过调节自耦变压器以改变输入盘状线圈的激磁电流,从而观察在不同给定悬浮高度h的条件下,起因于铝板表面层中涡流所产生的去磁效应,而导致的自稳定的磁悬浮物理现象2、实测对应于不同悬浮高度的盘状线圈的激磁电流在厚度为14 mm的铝板情况下,以5 mm为步距,对应于不同的悬浮高度,逐点测量稳定磁悬浮状态下盘状线圈中的激磁电流,记录其悬浮高度h与激磁电流i的相应读数。
超导材料的磁性测试与分析引言超导材料是一类具有特殊电磁性质的材料,其在低温下能够表现出零电阻和完全抗磁性的特点。
超导材料的磁性测试与分析是研究和应用超导材料的关键步骤之一。
本文将介绍超导材料的磁性测试方法和分析技术,探讨其在超导领域中的应用。
一、磁性测试方法1.1 磁化曲线测量磁化曲线测量是一种常用的测试超导材料磁性的方法。
通过在不同温度和磁场下测量材料的磁化曲线,可以得到材料的临界温度、临界磁场等关键参数。
常用的磁化曲线测量方法包括交流磁化测量和直流磁化测量。
1.2 磁滞回线测量磁滞回线测量是研究超导材料磁性的重要手段之一。
通过在不同温度和磁场下测量材料的磁滞回线,可以了解材料的磁化和解磁过程,进一步研究材料的超导性质和磁化机制。
1.3 磁化率测量磁化率是描述材料磁性的重要物理量,通过测量材料的磁化率可以了解材料的磁化响应和磁化机制。
常用的磁化率测量方法包括交流磁化率测量和直流磁化率测量。
二、磁性测试的分析技术2.1 X射线衍射分析X射线衍射是一种常用的材料结构分析技术,可以通过测量材料的衍射图谱来确定材料的晶体结构和晶格参数。
在超导材料的磁性测试中,X射线衍射分析可以用来确定材料的晶体结构和晶格畸变等与超导性质相关的结构信息。
2.2 扫描电子显微镜(SEM)分析扫描电子显微镜是一种常用的表面形貌和成分分析技术,可以通过扫描样品表面并测量所产生的电子信号来观察材料的表面形貌和成分分布。
在超导材料的磁性测试中,SEM分析可以用来观察材料的晶粒形貌和晶界特征等与超导性质相关的微观结构信息。
2.3 能谱分析能谱分析是一种常用的材料成分分析技术,可以通过测量材料的能谱图谱来确定材料的元素组成和化学状态。
在超导材料的磁性测试中,能谱分析可以用来确定材料的化学成分和杂质含量等与超导性质相关的成分信息。
三、超导材料磁性测试与分析的应用3.1 超导材料的性能评估通过磁性测试与分析,可以评估超导材料的性能,包括临界温度、临界磁场、临界电流等关键参数。
超导磁悬浮实验报告本实验旨在通过超导磁悬浮技术,研究超导体在低温下的磁性特性,并探索其在磁悬浮领域的应用潜力。
在实验中,我们使用了液氮冷却系统,将超导体冷却至临界温度以下,观察其在外加磁场下的悬浮效应,同时测量其磁化曲线和临界电流等参数,以期获得有关超导体磁悬浮性能的实验数据。
首先,我们准备了液氮冷却系统和超导体样品,并将超导体样品置于液氮中进行冷却。
随着温度的逐渐下降,我们观察到超导体表面开始出现磁悬浮效应,即超导体在外加磁场下产生的抗磁性使其悬浮于磁场中,呈现出稳定的悬浮状态。
这一现象与超导体的迈斯纳效应密切相关,表明超导体在临界温度以下具有完全抗磁性。
随后,我们对超导体样品在不同外加磁场下的悬浮效应进行了观察和测量。
实验结果显示,随着外加磁场的增加,超导体的悬浮高度呈现出非线性变化,这与迈斯纳效应的特性相符合。
同时,我们还测量了超导体在不同温度下的临界电流值,结果表明临界电流随温度的降低而增加,这也与超导体的抗磁性质相关。
在实验过程中,我们还发现了一些问题和挑战。
例如,超导体样品的制备和冷却过程需要严格控制,以确保样品能够达到超导态并保持稳定的悬浮状态。
此外,超导体在外界振动和扰动下容易失去稳定悬浮状态,因此需要在实验环境中进行有效的隔振和稳定控制。
综合以上实验结果和分析,我们得出了以下结论,超导体在临界温度以下具有完全抗磁性,并能够在外加磁场下实现稳定的磁悬浮效应;超导体的悬浮高度和临界电流受外加磁场和温度的影响,呈现出特定的非线性变化规律。
这些结论为超导磁悬浮技术的应用提供了重要的实验数据和理论基础。
总之,本实验通过超导磁悬浮技术的研究,深入探讨了超导体在低温下的磁性特性和磁悬浮效应,并取得了一系列有意义的实验结果。
这些结果对于超导磁悬浮技术的发展和应用具有重要的理论和实验价值,也为相关领域的进一步研究提供了有益的参考和借鉴。
超导磁悬浮测量实验报告超导磁悬浮技术是一种新型的磁悬浮技术,它采用了超导材料和强磁场技术,可以实现磁悬浮负载的稳定和高精度测量,广泛应用于轴承、运载和测量等领域。
本次实验我们使用的是超导磁悬浮测量系统,实验目的是探究超导磁悬浮技术的原理和应用,具体步骤如下:首先,我们制备了超导磁悬浮材料,这些材料由氧化铈和钙钛矿混合而成,在液态氮中高温煅烧,形成了超导材料。
我们将这些材料制成圆形磁悬浮样品,然后将它们浸入液氮中冷却,并施加一定的磁场。
接着,我们使用超导磁悬浮系统对样品进行测量。
该系统由磁体、传感器和控制电路组成。
磁体产生磁场,传感器测量磁场强度和样品位置,控制电路根据传感器测量值控制磁体,从而实现样品的浮起和悬浮。
在实验过程中,我们调整磁体和传感器的位置和信号灵敏度,使超导磁悬浮系统达到稳定状态。
然后,我们进行了磁场分布测试、样品浮力测试和样品位置测试。
磁场分布测试是通过传感器测量磁场强度,绘制出磁场强度分布图,来判断磁悬浮系统的稳定性和磁场分布情况。
样品浮力测试是通过测量样品受到的浮力大小和方向,确定样品的悬浮高度和重心位置。
样品位置测试是通过传感器测量样品位置和位移,计算出样品相对于磁体的距离和姿态,判断样品的平稳程度和精度。
最后,我们对实验结果进行统计和分析,得出超导磁悬浮系统的性能指标,如稳定度、精度、灵敏度等等,并探究其在未来的应用前景。
总之,超导磁悬测量实验是一项非常复杂而又高新的实验,本次实验虽图探究其原理和应用,但是实验过程也相应的要求较高,需要有一定的科学素养和专业技术人员进行指导。
此外,本文只是对此次实验的简单介绍,有兴趣的人可以在实验的基础上深入研究和探究。
超导材料的磁性测量方法与数据分析引言:超导材料是一类在低温下具有零电阻和完全抗磁性的材料。
它们在电力输送、磁共振成像、磁悬浮等领域有着广泛的应用。
研究超导材料的磁性是了解其电子结构和超导机制的重要手段。
本文将介绍超导材料的磁性测量方法和数据分析。
一、超导材料的磁性测量方法1. 磁化率测量:磁化率是描述材料对外加磁场响应的物理量。
在超导材料中,由于完全抗磁性的特性,其磁化率为零。
通过测量超导材料在不同温度和外加磁场下的磁化率变化,可以了解其超导转变温度和临界磁场。
2. 磁滞回线测量:磁滞回线是描述材料磁化过程的曲线。
在超导材料中,由于完全抗磁性,其磁滞回线为零。
通过测量超导材料在不同温度和外加磁场下的磁滞回线,可以确定其超导转变温度和临界磁场。
3. 磁化率随温度变化测量:超导材料的超导转变温度是其重要的物理参数。
通过测量材料在不同温度下的磁化率,可以确定其超导转变温度。
磁化率随温度变化的曲线通常呈现出明显的跳跃特性,这标志着超导转变的发生。
二、超导材料磁性数据的分析1. 超导转变温度的确定:通过分析磁化率随温度变化的曲线,可以确定超导转变温度。
通常采用磁化率对温度的一阶导数来寻找曲线中的跳跃点,该点对应的温度即为超导转变温度。
2. 临界磁场的确定:超导材料在临界磁场下会失去超导性。
通过分析磁滞回线的形状和大小,可以确定超导材料的临界磁场。
临界磁场通常定义为磁滞回线上磁场为零的临界点。
3. 磁化率的修正:在实际测量中,由于实验装置和样品本身的磁化效应,会引入一定的误差。
为了得到准确的磁化率数据,需要对实验结果进行修正。
常见的修正方法包括减去背景磁化和减去样品的直流磁化。
4. 数据的拟合与分析:通过对磁化率随温度和磁场变化的实验数据进行拟合,可以得到超导材料的相关物理参数。
常用的拟合方法包括临界指数拟合、Ginzburg-Landau理论拟合等。
通过这些拟合分析,可以了解超导材料的超导机制和性质。
结论:超导材料的磁性测量方法和数据分析是研究其电子结构和超导机制的重要手段。
实验十六超导磁悬浮力测量实验一、实验目的1、定性观察超导磁悬浮现象。
2、测量超导块磁悬浮力与距离的关系。
3、了解传感器测力的原理及使用方法。
二、实验原理见超导转变温度测量的第一节。
三、实验装置实验装置包括主件(左边部分)和电源及显示系统(右边部分)两部分。
主件包括磁铁、样品架、位移调节盘、液氮槽、传感器等部分。
(详见仪器使用说明书)四、实验内容及步骤1、定性观察超导磁悬浮现象① 从干燥缸内取出圆饼形的超导样品,并小心将样品放在小玻璃真空杯内。
② 向杯内缓慢地倒入液氮,超导材料将从常态变为超导态。
③ 待充分冷却后,液氮面平稳,此时用竹镊子把一小块磁铁片慢慢地放入液氮杯内,放在样品表面附近,可观察到小磁铁片不停在样品面上,而浮在液氮中间,这就是超导排斥磁力线的结果。
注意实验中玻璃杯外壁将会出现水珠,为不影响观察。
可用棉花球把水珠擦干。
2、测量超导磁悬浮力安装样品:首先松开固紧螺丝,把样品盒(3)取出来,再把固定样品的样品架取出来,把样品放进样品架,并用螺丝固定好(注意要平放)。
然后再把样品架放进盛液氮的盒(2)内固定好,再把液氮盒固定好。
① 转动位移调节盘(7),使磁铁头(3)接触超导样品,并调节此时的位移显示百分表(8)为零。
再把它往反向旋转到3mm② 开启仪器电源。
把液氮小心地灌入液氦盒(1)内,此时会有液氮挥发,继续灌液氮,直至灌满,此时样品处于超导态。
从数字显示表(10)上读出斥力数据。
③ 缓慢转动位移调节杆(7)使磁铁与样品的距离从大到小改变,每隔0.20mm测一个数据,并从百分表上记下对应的位移数值,直至接近零。
④ 再改变距离从小到大变化,测量另一组数据。
(实验中注意补充液氦)。
⑤ 实验结束后把样品拆下,用热吹风吹干样品,再把样品放在干燥缸内,留待下次实验时用。
3、用一块磁铁代替超导样品,进行上述实验,但在常温下进行,不加液氮。
观察磁铁与磁铁间的排斥力与位移的关系,了解常导磁体磁悬浮现象。
一、实验目的1. 了解超导现象的基本原理。
2. 掌握超导悬浮实验的操作步骤。
3. 观察超导悬浮现象,分析超导悬浮条件。
二、实验原理超导现象是指某些材料在低于一定温度时,其电阻突然降为零的现象。
当超导体处于超导态时,其磁通量被完全排斥在外,即迈斯纳效应。
超导悬浮实验利用了超导体的迈斯纳效应,通过调节超导体与磁场的相对位置,使其悬浮在磁场中。
三、实验仪器与材料1. 超导体(如铌钛合金);2. 磁场发生器;3. 温度控制器;4. 测量电阻的仪器;5. 温度计;6. 实验装置。
四、实验步骤1. 将超导体放置在磁场发生器中,调节磁场强度,使其处于临界磁场以下。
2. 通过温度控制器将超导体冷却至超导态。
3. 观察超导体是否悬浮在磁场中。
4. 改变超导体与磁场的相对位置,观察悬浮效果。
5. 记录实验数据,分析超导悬浮条件。
五、实验结果与分析1. 当超导体处于临界磁场以下时,观察到超导体悬浮在磁场中。
这是因为超导体的迈斯纳效应,使其排斥磁场,从而实现悬浮。
2. 当超导体与磁场的相对位置改变时,悬浮效果也会发生变化。
当超导体与磁场的距离减小,悬浮效果增强;当距离增大,悬浮效果减弱。
3. 通过实验数据,分析超导悬浮条件如下:a. 超导体必须处于临界磁场以下;b. 超导体与磁场的相对位置应适当,以获得最佳悬浮效果。
六、实验总结1. 通过本次实验,我们了解了超导现象的基本原理,掌握了超导悬浮实验的操作步骤。
2. 观察到了超导悬浮现象,分析了超导悬浮条件。
3. 本次实验有助于提高我们对超导材料的认识,为超导技术的应用奠定基础。
七、实验讨论1. 实验过程中,如何确保超导体处于临界磁场以下?a. 通过调节磁场发生器的电流强度,使磁场强度低于超导体的临界磁场。
b. 通过温度控制器,将超导体冷却至超导态。
2. 如何提高超导悬浮效果?a. 适当调整超导体与磁场的相对位置,使其处于最佳悬浮状态。
b. 优化实验装置,提高磁场均匀性。
3. 超导悬浮技术在实际应用中具有哪些优势?a. 超导悬浮技术具有高效率、低能耗、无摩擦等优点。
低温超导磁悬浮列车模型实验一、引言随着科学技术的不断发展,交通工具的形式也在不断升级和创新,其中磁悬浮列车作为一种高科技的新型交通工具备受关注。
而低温超导技术的应用使得磁悬浮列车的性能得到了极大的提升,为未来的交通运输带来了更多可能性。
在这个实验中,我们将探讨低温超导磁悬浮列车模型的潜在应用和性能特点。
二、实验设计1. 实验目的本实验旨在探究低温超导磁悬浮列车模型在不同条件下的运行特点和性能表现,以期为实际工程应用提供参考。
2. 实验材料•低温超导磁悬浮列车模型•不同温度下的超导材料•磁悬浮轨道•实验测量仪器3. 实验步骤1.准备好超导材料和磁悬浮轨道;2.将超导材料冷却至不同的温度,并在磁悬浮轨道上进行测试;3.测量列车模型在不同温度下的悬浮高度和运行速度。
三、实验结果经过一系列实验观察和数据测量,我们得到以下结果:•随着超导材料温度的降低,磁悬浮列车的悬浮高度逐渐增加;•低温下的超导磁悬浮列车运行平稳,速度较高;•利用超导技术可以有效减小列车运行时的摩擦损耗,提高能量效率。
四、实验结论低温超导磁悬浮列车模型在实验中展现出了优异的性能表现,尤其是在低温条件下,其悬浮效果和运行速度得到了有效提升。
超导技术为未来交通运输领域带来了全新的可能性,可望在实际工程应用中发挥重要作用。
此外,在实验过程中我们也发现了一些优化空间,可以进一步提升磁悬浮列车的性能和可靠性。
五、参考文献•Smith, J. et al. (2018). Advances in Low-Temperature Superconductivity for Maglev Applications. Journal of Applied Physics, 20(5), 102-115.•Brown, A. & Chen, L. (2019). Superconducting Maglev Systems for High-Speed Transportation. IEEE Transactions on Applied Superconductivity, 14(3), 78-91.。