超导磁流体潜艇
- 格式:doc
- 大小:28.50 KB
- 文档页数:3
潜艇科普知识点潜艇是一种具有水下航行能力的舰艇,它能够在水下进行隐蔽的作战行动。
潜艇的发展经历了几个世纪,如今已经成为现代海军中不可或缺的重要组成部分。
本文将逐步介绍潜艇的起源、发展历程以及其特点和作用。
1.潜艇的起源潜艇的起源可以追溯到古代。
最早的潜艇可以追溯到公元前4世纪的古希腊。
当时,古希腊人发明了一种称为“沉水船”的船只,可以通过在船体上注入水来使船只下沉。
这种船只可以在水下进行一些短暂的作战行动,但并不像现代潜艇那样具有长时间的水下航行能力。
2.潜艇的发展历程现代潜艇的发展历程可以追溯到18世纪。
在这个时期,潜艇的设计开始变得更加复杂和先进。
著名的美国发明家罗伯特·富尔顿在1800年设计了一艘名为“纳齐姆”号的潜艇,它是世界上第一艘真正的潜艇。
这艘潜艇可以在水下进行航行,并携带炸药攻击敌舰。
自那时起,潜艇的设计和技术逐渐改进,成为现代潜艇的雏形。
3.潜艇的特点现代潜艇具有许多特点,使其成为一种强大的战争工具。
首先,潜艇具有水下航行能力,可以在水下潜行而不被敌人察觉。
其次,潜艇拥有强大的武器系统,包括导弹、鱼雷和炸弹,可以对敌人进行打击。
此外,潜艇还可以携带特种部队,执行特殊任务,如侦察、侦听和破坏敌方通信等。
4.潜艇的作用潜艇在现代战争中发挥着重要的作用。
首先,潜艇可以对敌方舰队和港口进行袭击,有效地破坏敌人的军事力量。
其次,潜艇可以进行侦察和侦听工作,收集情报并保持对敌人的监视。
此外,潜艇还可以执行救援任务,例如在海难中搜救幸存者。
潜艇的作用不仅限于军事领域,还可以用于科学研究、探险和海洋保护等领域。
5.潜艇的未来发展随着科技的不断进步,潜艇的设计和技术也在不断发展和创新。
未来的潜艇可能会采用更加先进的材料和动力系统,提高其水下航行能力和隐蔽性。
此外,潜艇可能还会应用更多的自动化和人工智能技术,提高其作战效能和自主性。
总结:潜艇作为一种具有水下航行能力的舰艇,发展经历了几个世纪的演变。
新型船舶动力装置基本情况和发展趋势船舶动力装置是船舶的核心设备,船舶动力装置只有正常运行,才能够为船舶的正常运行以及船员的日常生活提供保障。
船舶动力装置由主动力装置、辅助动力装置和辅机及其设备共同组成,三大部分的相互协调共同为船舶提供源源不断的动力。
在船舶动力装置中,主动力装置是提供推进动力的装置,其主要有蒸汽轮机、柴油机、燃气轮机、电动机和混合动力机几种主要类型,但新型船舶动力装置包括燃气轮机推进,喷水推进,吊舱推进,表面浆推进,超导磁推进,AIP 系统等。
一、柴油机动力装置柴油机动力装置是以柴油为燃料的内燃机,其优点在于启动速度快、运行状态可靠和功率大等。
柴油机动力装置是目前应用最为普遍的船舶动力装置,因此其技术成熟度也相对更高。
柴油机动力装置在上世纪60年代开始全面取代了蒸汽轮机,成为最主流的船舶动力装置。
柴油机动力装置分为四冲程柴油机和两冲程柴油机,其中二冲程柴油机的特点是转速相对较低,可以直接驱动螺旋机进行工作,主要应用于大中型远洋运输船舶上。
而四冲程柴油机转速较高,一般主要应用于小型运输船、客船、军舰和豪华游艇上。
二、燃气轮机动力装置燃气轮机动力装置是以油气作为燃料的动力装置,燃气轮机动力装置其突出的特点在于装置体积较少、重量轻、加速性能强,且燃气轮机动力装置运行过程中所产生的污染物远远少于柴油机动力装置。
但是,燃气轮机动力装置也存在着较多的缺点和不足,如燃气轮机的燃料一一蒸馏油价格非常昂贵、燃气轮机油耗较高、经济性不高等,因此很难在船舶当中得到普及。
目前,只有少部分的高速客船和军用舰艇上配备了燃气轮机动力装置。
三、电力推进装置顾名思义是以电动机做功来推动船舶运行的动力装置,当前在船舶动力装置中被广泛使用的推进装置主要由电动机、原动机、变频器还有就是推进变压器以及控制调节器等构成。
对于操纵性能要求不是特别高的船舰来说,经常使用的轴桨推进装置如可调桨以及定距桨等,对于操作性能要求相对高一点的船舶来说,通常采用的全回转推进器。
船舶推进器的发展与展望作者:马震宇来源:《硅谷》2013年第09期摘要本文总结概括了船舶推进器的演变历史,分析了各时期推进器的发展状况,简单介绍了几种新型推进器,展望了推进器的前景。
关键词船舶;推进器;展望中图分类号:U664.3 文献标识码:A 文章编号:1671—7597(2013)051-006-02推进器是船艇的关键部件,是能量转化的设备,是将主机发出的能量转化成船艇推动力的设备。
提高推进器性能,开发高性能推进器一直是船艇推进器研究领域的主要方向。
自从19世纪初期螺旋桨作为一种实用推进器被应用于船艇,一直到现在人们以螺旋桨为核心发展了各种推进器形式:如吊舱推进器、导管桨、泵喷推进器、对转桨、泵喷推进器,同时也产生了替代螺旋桨的推进方式的推进器:如喷水推进和超导磁流体推进等。
1 船艇推进器的演变从推进器的诞生到现在,经过人们的探索与研究,船艇推进器的发展已经逐渐向高性能的方向靠近,从古到今,推进器的形式逐渐增多。
1.1 原始推进原始推进主要包括人力、畜力和风力推进。
这种推进技术应用于独木舟和木板船的时代,其效率低、稳定性差、降低了船舶的总体性能。
自19世纪末第一艘钢船诞生后,原始推进技术也逐渐被机器推进所取代,船舶行业开始进入以钢船为主的时代。
1.2 螺旋桨推进器螺旋桨推进器可分为普通螺旋桨、导管螺旋桨、可调距螺旋桨、串列螺旋桨和对转螺旋桨。
1)普通螺旋桨的结构最为简单,船舶在低速航行下效率较高。
因此普通螺旋桨的制造工艺较为简单、安装方便,但其在推进过程中会存在相当多的能量损失:①轴向诱导速度的损失。
②周向诱导速度的损失,也可以称为水流扭转损失。
③剖面阻力损失,即运转时水与桨叶的粘性摩擦作用而产生的损失。
2)导管螺旋桨也叫做套筒螺旋桨,它是将一个环形的套筒加在螺旋桨的外围,分为加速型导管(收缩管)和减速型导管(扩张管)。
优点:①船舶的螺旋桨载荷较大时,效率比较高。
②船舶在航行时,导管螺旋桨受外界情况变化影响较小。
超导磁流体推进器我国代号为“洛神”的“超导磁流体推进器”潜艇研制已经取得了重大突破,开始进入试车定型阶段。
我国是个海洋大国,随着大洋经济的到来,我们越来越意识到海洋的重要性。
但是由于我国的海军建设一直以来都是以近岸防御为主,而对保护稍远的海上利益却显得有些力不从心。
于是大力发展远洋海军,对中国来说是势在必行。
可是,一味追赶,一味模仿外国海军的模式,总令中国头头脑脑们陷入极大的被动。
于是在90年代初期,由中国科学院电工所与中国舰船研究院负责,一个称为“剑鱼”(99工程)的计划实施了,其实质便是超导技术在海军舰艇方面的应用研究。
从开始研制到今天试车成功这十几年时间里,我们的科学家们可谓是创造了人类的一个奇迹。
下面我们就以下几个方面对我国的新型潜艇进行了解:中国“洛神”超导磁流体推进器潜艇90年代初期,由中国科学院电工所与中国舰船研究院负责,一个称为“剑鱼”(99工程)的计划实施了,其实质便是超导技术在海军舰艇方面的应用研究。
从开始研制到今天试车成功共花费这十几年时间.1、外型:当初分别参照了俄罗斯K级(“基洛”877-636)型艇,以及美国的“弗吉尼亚”级核潜艇,还有法国“红宝石”核潜艇作为新舰风洞模型。
然而这些在以前的动力装置下,被喻为世界顶尖的水滴型设计的外型,在以超导磁流体作为动力的风洞实验中,其钝型的舰首在高速行驶下会与海水形成一个酷似音障的水障,因此大大影响了航速。
于是,凝聚着中国的设计人员的智慧和力量的鱼形外型出现,并近乎完美的通过了风洞试验。
其首部与尾部各有一对升降舵,在使用中,首升降舵主要用于产生正、负升力,改变或稳定航行深度;而尾升降舵用于产生纵倾或保持已有的纵倾角。
两侧及围壳、舵内壳采用最新的高强度塑钢,它的承受力比目前的潜艇钢高出三倍以上,下潜最深深度可达800―1000米。
而船体则包裹着一层由特殊材料制成的弹性“皮”称为“无回声蒙皮”,这种皮使艇壳对于声纳波几乎无反射.2、动力:“超导磁流体推进”作为一个非常复杂的课题,它由几个部分构成:A、蓄电池舱:作为备用能源,磁流体推进器仍须装备一定数量的蓄电池,该舱*近艇的中部指挥舱下层空间。
潜艇磁悬浮主动隔振原理
潜艇是一种重要的水下作战平台,其稳定性和隔振性能对于保障潜艇舰员的生命安全和作战效能至关重要。
而磁悬浮主动隔振技术的应用,为潜艇的稳定性和隔振性能提供了全新的解决方案。
磁悬浮主动隔振技术是一种基于磁场原理的隔振技术,通过潜艇底部的磁悬浮装置,可以在水下环境中实现潜艇的主动隔振,有效地减小外部环境对潜艇的影响,提高潜艇的稳定性和航行性能。
磁悬浮主动隔振技术的原理是利用电磁原理,通过控制电流和磁场的变化,使得潜艇底部的磁悬浮装置可以在水下环境中实现潜艇的主动隔振。
当外部环境发生震动或者冲击时,磁悬浮装置可以根据传感器的反馈信号,及时调整磁场的强度和方向,以抵消外部环境的影响,从而实现潜艇的稳定性和隔振效果。
相比传统的被动隔振技术,磁悬浮主动隔振技术具有更高的隔振效果和稳定性,可以更好地保护潜艇舰员的生命安全,同时也提高了潜艇的作战效能。
此外,磁悬浮主动隔振技术还可以减小潜艇的噪音和振动,提高潜艇的隐蔽性和生存能力。
总的来说,潜艇磁悬浮主动隔振技术的应用,为潜艇的稳定性和隔振性能提供了全新的解决方案,将在未来的潜艇设计和建造中发挥越来越重要的作用。
磁流体推进器原理磁流体推进器是一种利用磁场和流体动力学原理来实现推进的新型推进技术。
其原理基于磁流体力学的基础理论,通过对流体施加磁场来产生推进力,从而实现航天器的推进和定位。
磁流体推进器的原理虽然复杂,但是其应用前景广阔,具有很高的推进效率和灵活性。
磁流体推进器的原理主要包括磁流体力学、磁流体动力学和磁流体控制三个方面。
首先,磁流体力学是研究磁场和流体相互作用的学科,通过对流体施加磁场可以改变流体的运动状态,产生推进力。
其次,磁流体动力学是研究磁场对流体动力学性质的影响,通过对流体施加磁场可以改变流体的密度、粘性和导电性,从而影响流体的运动状态。
最后,磁流体控制是研究如何通过对磁场的控制来实现对流体的操纵,从而实现推进器的精确控制和定位。
磁流体推进器的原理实际上是利用磁场对流体的影响来实现推进,其核心是通过对流体施加磁场来改变流体的运动状态,从而产生推进力。
在磁流体推进器中,通常会采用等离子体或离子化的气体作为推进剂,通过对推进剂施加磁场,可以改变推进剂的运动状态,从而产生推进力。
同时,磁流体推进器还可以通过对磁场的精确控制来实现推进器的定位和姿态控制,从而实现航天器的精确操纵。
磁流体推进器的原理不仅适用于航天器,还可以应用于地面交通工具和水下航行器。
在地面交通工具中,磁流体推进器可以通过对地面轨道施加磁场来实现磁悬浮列车的推进和定位;在水下航行器中,磁流体推进器可以通过对水流施加磁场来实现潜艇的推进和操纵。
因此,磁流体推进器的原理具有广泛的应用前景,可以为人类的交通工具和航天器提供高效、环保的推进技术。
总之,磁流体推进器是一种利用磁场和流体动力学原理来实现推进的新型推进技术,其原理基于磁流体力学、磁流体动力学和磁流体控制三个方面。
通过对流体施加磁场来改变流体的运动状态,从而产生推进力。
磁流体推进器的原理不仅适用于航天器,还可以应用于地面交通工具和水下航行器,具有广泛的应用前景。
希望通过本文的介绍,能够更加深入地了解磁流体推进器的原理和应用。
超导磁流体潜艇
概述
尽管人们在近百年的时间里,对潜艇进行了不断的改进和创新,但目前最有效的推进方式仍是螺旋桨_针对螺旋桨推进的效率问题、噪声问题,人们又进行了大量的改良,但要从根本上解决问题,寻找一种高效替代方式才是治本之法终于,数十年来电磁学的进展、十余年来超导材料科学的突破以及现代控制方式的引入催生了超导磁流体推进器这种全新的推进器方式。
[1]
与现役的常规潜艇或核潜艇相比,超导潜艇具有结构简单、推力大、航速高、无噪声、无污染、造价低等显著优点,被许多军事专家看好。
编辑本段研究背景
早在70年代,美、俄、英、日等国就己开展超导技术在海军舰艇方面的应用研究,随着新型超导材料的出现,实际应用成为可能。
与传统机械转动类推进器(譬如螺旋桨、水泵喷水推进器等)相比较,磁流体推进器的不同点在于:前者使用机械动力作为推力而后者使用电磁力。
正因为如此,磁流体推进器无须配备螺旋桨桨叶、齿轮传动机构和轴泵等,是一个完全静止的设备。
一旦现代潜艇使用了这种推进器,便从根本上消除了因机械转动而产生的振动、噪音、高速旋转的螺旋桨推进系统机械材料强度以及功率限制,而能在几乎绝对安静的状态下以极高的航速航行。
据理论计算其航速可达150节,而这是任何机械转动类推进器不可能实现的。
[1]
编辑本段工作原理
超导磁流体推进装置是根据电磁原理设计的。
在潜艇上安装电磁铁,通电后,海水中就会有磁力线,同时产生方向与磁力垂直的电流,在磁场和电流相互作用下,由于潜艇与海水之间产生大小相等方向相反的反作用力,潜艇将获得向前运动的推力,推力的大小与磁场强度和电流大小的乘积成正比。
磁流体推进技术已在一些国家获得应用,但目前它的磁场还不能满足潜艇的要求。
而超导技术正是解决这一问题的关键。
工作原理示意图
动力:“超导磁流体推进”作为一个非常复杂的课题,它由几个部分构成:A.蓄电池舱:作为备用能源,磁流体推进器仍须装备一定数量的蓄电池,该舱靠近艇的中部指挥舱下层空间。
B.核反应堆舱:要求输出功率高,安静性能好,持久力长的特点。
使用热离子反应堆,它能转换电能,简化舱内结构,热离子反应堆不会产生高温、高压、而且节约材料和能源。
C.发电机舱:该舱设置在核反应堆舱之后。
装2台给磁流体推进器供电的主发电机和2台供设备及照明用的辅助发电机;在机舱后部设有消音器、甲板下设燃料油、润滑油箱、冷却海水泵以及压载水舱。
D.操控舱与磁流体推进器舱:操控舱内主要装有液氦制冷装置,推进器的直接或备用操纵装置,测量仪表台、柜等。
在磁流体推进器舱内,安装1台六连环直流螺旋型超导磁流体推进器。
磁流体通道前后端分别设有海水吸入导流管和喷出导流管,吸入口呈卵圆形在艇体外壳上“开凿”,喷管出口则穿出艇尾壳体。
它的运行原理是:在强大的电磁力作用下,海水旋转着向后高速运动,再经出口导流器变为平行水流后通过喷口向艇尾喷射,推动潜艇前进。
由于数个螺旋型磁流体推进器相互之间是独立的,因此任意改变其中某几个推进器的推力大小,即可改变潜艇航行状态、实现左转、右转、上浮、下沉等运动姿态。
[1]
编辑本段相关优势
超导磁流体潜艇的推进系统和电池舱位于艇身两侧,且充分利用舱室空间,布局灵活。
动力系统大幅瘦身,意味着火力系统可以扩容,可以搭载更多威力强大的鱼雷和潜艇导弹,使潜艇的水下攻击力更强。
最重要的一点是,超导磁流体推进器用吸入导流管和喷出导流管替代螺旋桨。
在强大的电磁作用下,海水高速进入吸入导流管,经加速后由喷出导流管射出,推动潜艇前进。
没有螺旋桨拍打水流,轴承、齿轮系统的减化减少摩擦,这些都使潜艇航行时的噪音降至极低,几乎实现“零噪音”。
由于磁流体推进技术取代了传统的螺旋浆推动,超导潜艇的噪声显著降低,普通的反潜声纳对它束手无策,这将大大提高潜艇的隐蔽性和生存能力。
这种潜艇可以潜得更深,且极为灵活,可在水下“跳舞”。
其艇身外壳由新型高强度
塑钢制成,抗压力是普通潜艇的3倍。
一艘超导磁流体潜艇将配备6个以上的磁流体推进器,它们相互之间是独立的,任意改变其中某几个推进器的电流方向和强度,即可改变潜艇的航行状态,实现快速左转、右转、上浮和下沉,比传统潜艇灵活得多。
超导磁流体推进器的磁体、电极都是相对静止的固定装置,可以通过增强电压提供超大输出功率,从而提高潜艇的航行速度。
独特的推进原理和极高的能量利用率将使潜艇具有更好的动力性能。
随着超导技术的不断完善,动力先进、隐身性好、攻击力强的小型高速超导潜艇将成为未来海战兵器中一颗耀眼的新星。
[1]
编辑本段我国突破
我国代号为"洛神" 的"超导磁流体推进器"潜艇研制已经取得了重大突破,开始进入试车定型阶段。
我国是个海洋大国,随着大洋经济的到来,我们越来越意识到海洋的重要性。
但是由于我国的海军建设一直以来都是以近岸防御为主,而对保护稍远的海上利益却显得有些力不从心。
于是大力发展远洋海军,对中国来说是势在必行。
可是,一味追赶,一味模仿外国海军的模式,总令中国头头脑脑们陷入极大的被动。
于是在90年代初期,由中国科学院电工所与中国舰船研究院负责,一个称为"剑鱼"(99工程)的计划实施了,其实质便是超导技术在海军舰艇方面的应用研究。
从开始研制到今天试车成功这十几年时间里,我们的科学家们可谓是创造了人类的一个奇迹。
[2]。