21.1.1 认识一元二次方程
- 格式:ppt
- 大小:7.20 MB
- 文档页数:9
课题:21.1一元二次方程一、教学目标1.经历一元二次方程概念的形成过程,知道什么是一元二次方程.2.会把一元二次方程化成一般形式,并知道各项及系数的名称.二、教学重点和难点1.重点:一元二次方程的概念.2.难点:把一元二次方程化成一般形式.三、教学过程(一)创设情境,导入新课师:(板书:3x-5=0)这是一个什么方程?(稍停)3x-5=0是一个一元一次方程(板书:一元一次方程).师:哪位同学知道什么样的方程是一元一次方程?生:……(让几名同学回答)师:(指准3x-5=0)只含有一个未知数,并且未知数的次数是1的方程,叫做一元一次方程.(指准“一元一次方程”)一元指的是含有一个未知数,一次指的是未知数的次数是1.师:一元一次方程是我们在初一已经学过的,从今天开始,我们要学习一种新的方程,叫做一元二次方程(板书:一元二次方程).(二)尝试指导,讲授新课师:什么样的方程是一元二次方程?(板书:x2-x=56)x2-x=56是一个一元二次方程,(板书:4x2-9=0)4x2-9=0也是一元二次方程,(板书:x2+3x=0)x2+3x=0也是一元二次方程,(板书:3y2-5y=7)3y2-5y=7也是一元二次方程.师:从这些一元二次方程,哪位同学能概括什么样的方程是一元二次方程?(等到有一部分同学举手再叫学生)生:……(多让几名同学回答)师:(指准x2-x=56)只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程.(师出示下面的板书)只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程.师:请大家把一元二次方程的定义读两遍.(生读)师:根据一元二次方程的定义,(指准方程)我们很容易判断x2-x=56,4x2-9=0,x2+3x=0,3y2-5y=7这些方程都是一元二次方程.(板书:3x(x-1)=5(x+2))现在请大家判断,这个方程是不是一元二次方程?为什么?(让生思考一会儿)生:……(让几名学生发表看法)师:把这个方程两边去括号,得到3x2-3x=5x+10(边讲边板书:3x2-3x=5x+10),去括号后容易看出,这个方程是一元二次方程.师:(指3x2-3x=5x+10)这个方程还可以继续整理,怎么继续整理?(指准方程)先把右边的5x和10都移到左边去,再合并,得到3x2-8x-10=0(边讲边板书:3x2-8x-10=0).师:(指原方程和3x2-8x-10=0)大家可以比较这两个方程,这个方程是这个方程经过整理得到的,这个方程的形式又简单又整齐,我们把这种形式叫做一元二次方程的一般形式(板书:一元二次方程的一般形式).师:从这个例子大家可以看到,任何一个一元二次方程,经过整理,都可以化成一般形式,一般形式就是ax2+bx+c=0这样的形式(边讲边板书:ax2+bx+c=0).师:(指准ax2+bx+c=0)在一元二次方程的一般形式中,我们把ax2叫做二次项,a 是二次项系数(板书:其中a是二次项系数);bx叫做一次项,b是一次项系数(板书:b 是一次项系数);c叫做常数项(板书:c是常数项).师:(指准3x2-8x-10=0)譬如,在这个方程中,二次项是3x2,二次项系数是3;一次项是-8x,一次项系数是-8;常数项是-10.师:(指x2+3x=0)大家看这个方程,它的二次项、二次项系数是什么?生:二次项是x2,二次项系数是1.(多让几名同学回答)师:(指x2+3x=0)它的一次项、一次项系数是什么?生:一次项是3x,一次项系数是3.(多让几名同学回答)师:(指x2+3x=0)它的常数项是什么?生:常数项是0.(多让几名同学回答,如有必要师作解释)师:(指4x2-9=0)大家再看这个方程,它的二次项、二次项系数是什么?生:二次项是4x2,二次项系数是4.师:(指4x2-9=0)它的一次项、一次项系数是什么?生:……(多让几名同学回答)师:这个方程的一次项可以写成0x(边讲边板书:0x),所以这个方程的一次项是0x,一次项系数是0.师:(指4x2-9=0)它的常数项是什么?生:常数项是-9.师:前面我们学习了一元二次方程的概念和一般形式,下面请大家利用这些知识来做几个练习.(三)试探练习,回授调节1.填空:(1)把5x2-1=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把4x2=81化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(3)把x(x+2)=15化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(4)把(3x-2)(x+1)=8x-3化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .2.填空:(1)一个一元二次方程,它的二次项系数为2,一次项系数为3,常数项为-5,这个一元二次方程是;(2)一个一元二次方程,它的二次项系数为1,一次项系数为-3,常数项为3,这个一元二次方程是;(3)一个一元二次方程,它的二次项系数为5,一次项系数为-1,常数项为0,这个一元二次方程是;(4)一个一元二次方程,它的二次项系数为1,一次项系数为0,常数项为-6,这个一元二次方程是 .(四)归纳小结,布置作业师:这节课我们学习了什么?哪位同学能帮老师小结一下?生:……(让一两名学生小结)(作业:P28习题1)四、板书设计一元一次方程:3x-5=03x(x-1)=5(x+2)一元二次方程:x2-x=56 3x2-3x=5x+104x2-9=0 3x2-8x-10=0x2+3x=0 一元二次方程的一般形式:3y2-5y=7 ax2+bx+c=0,其中a是二次项系数,b是一次项系只含有一个未知数……叫做数,c是常数项一元二次方程.课题:22.1一元二次方程(第2课时)一、教学目标1.知道什么是一元二次方程的解(根).2.会用直接开平方法解一元二次方程,渗透转化思想.二、教学重点和难点1.重点:一元二次方程解(根)的概念,直接开平方法.2.难点:直接开平方法.三、教学过程(一)基本训练,巩固旧知1.填空:(1)只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程;(2)ax2+bx+c=0(a≠0)这种形式叫做一元二次方程的形式,其中是二次项系数,是一次项系数,是常数项.2.填空:(1)把(x+3)(x-4)=0化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把(2x+1)2=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .(二)尝试指导,讲授新课师:(板书:2x-6=0)这是一个一元一次方程,这个方程的解是什么?生:(齐答)解是x=3.(师板书:解是x=3)师:(指准方程)2x-6=0的解是x=3,这话是什么意思?(稍停)把x=3代入方程,左边=2×3-6=0,右边=0,左边和右边恰好相等.2x-6=0的解x=3,意思是,x=3能使方程左右两边恰好相等.师:(板书:x2-x=0)这是一个一元二次方程,这个方程的解是什么?(让生思考一会儿再叫学生)生:解是x=0.(师板书:x=0)师:(指准方程)把x=0代入方程,左边和右边相等,所以x=0是这个一元二次方程的一个解.师:除了x=0,这个方程还有没有别的的解?生:x=1.(师板书:x=1)师:(指准方程)把x=1代入方程,左边和右边相等,所以x=1也是这个一元二次方程的一个解.师:可见x2-x=0有两个解,一个解x1=0(边讲边标下标),另一个解x2=1(边讲边标下标).师:一元二次方程的解也叫做一元二次方程的根(板书:(根)),所以也可以这样说,(指准板书)x2-x=0有两个根,一个根x1是0,另一个根x2是1.师:下面请同学们做一个练习.(三)试探练习,回授调节3.填空:在-4,-3,-2,-1,0,1,2,3,4这些数中,是一元二次方程x2-x-6=0的根的是 .4.填空:方程x2-36=0的根是x1= ,x2= .(四)尝试指导,讲授新课师:(板书:x2-36=0)刚才我们求了x2-36=0这个一元二次方程的两个根,x1=6,x2=-6.我们是怎么求的?我们是通过凑数字求的.大家可以想到,凑数字求根是有局限性的,什么局限性?(稍停)通过凑数字只能求那些很简单的一元二次方程的根,如果方程稍微复杂一点,数字就不好凑了.譬如,我们把右边的0改为2x(边讲边把x2-36=0中的0改为2x),x2-36=2x这个方程就很难用凑数字来求根.所以,求一元二次方程的根不能光靠凑数字,还需要有专门的方法.师:解一元二次方程的方法有好几种,下面我们先来介绍第一种方法,叫直接开平方法(板书:直接开平方法).师:怎么用直接开平方法解一元二次方程?(稍停)让我们来看一个例子.(师出示例题)例解下列一元二次方程:(1)4x2-9=0; (2)3(2x-1)2=15.(师边讲解边板书,解题过程如下所示)解:(1)原方程化成29x=4.开平方,得3x=2±,x1=32,x2=-32.(2)原方程化成2(2x-1)=5.开平方,得2x-1=5±x1=5+12,x2=-5+12.师:(指准例题)从这两个题目,哪位同学会概括用直接开平方法解一元二次方程的步骤?生:……(让一两名好生概括)师:(指准例题)用直接开平方法解一元二次方程,有三步,第一步把原方程化成x2=常数,或者含x的式子的平方=常数的形式(板书:第一步:化成什么2=常数);第二步开平方,把一元二次方程化成一元一次方程(板书:第二步:开平方);第三步解一元一次方程,得到两个根(板书:第三步:解一元一次方程).师:下面请同学们按这三步来做两个题目.(五)试探练习,回授调节5.完成下面的解题过程:(1)解方程:2x2-6=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:9(x-2)2=1.解:原方程化成 .开平方,得,x1= ,x2= .(六)归纳小结,布置作业师:(指准板书)本节课我们学习了一元二次方程根的概念,还学习了用直接开平方法解一元二次方程.用直接开平方法解一元二次方程有这么三步,第一步把原方程化成什么2=常数这种形式;第二步开平方,把一元二次方程化成一元一次方程,也就是把二次降为一次(板书:降次);第三步解一元一次方程,得到两个根.(作业:P28习题3,P42习题1)四、板书设计2x-6=0解是x=3 直接开平方法例x2-x=0解是x1=0,x2=1 第一步:化成什么2=常数;x2-36=2x 第二步:开平方,降次;第三步:解一元一次方程.。
人教版数学九年级上册21.1《一元二次方程(1)》教学设计一. 教材分析《一元二次方程(1)》是人教版数学九年级上册第21.1节的内容,本节主要介绍一元二次方程的定义、解法及其应用。
一元二次方程是初中数学的重要内容,也是后续学习高中数学的基础。
通过本节的学习,学生能够了解一元二次方程在实际生活中的应用,培养其解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的代数基础,对一元一次方程有一定的了解。
但在解一元二次方程方面,学生可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,引导学生逐步掌握一元二次方程的解法。
三. 教学目标1.知识与技能:理解一元二次方程的定义,掌握一元二次方程的解法,能够应用一元二次方程解决实际问题。
2.过程与方法:通过合作交流,培养学生探究问题的能力,提高学生解决问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,感受数学与生活的联系。
四. 教学重难点1.重点:一元二次方程的定义,一元二次方程的解法。
2.难点:一元二次方程的解法,应用一元二次方程解决实际问题。
五. 教学方法采用问题驱动法、合作交流法、案例教学法等,引导学生主动探究,合作解决问题。
六. 教学准备1.教师准备:教材、教案、PPT、教学辅助材料等。
2.学生准备:课本、练习本、文具等。
七. 教学过程1.导入(5分钟)通过一个实际问题引入一元二次方程的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解一元二次方程的定义,呈现一元二次方程的解法,引导学生理解并掌握解法。
3.操练(10分钟)学生独立完成一些一元二次方程的练习题,巩固所学知识。
4.巩固(5分钟)对学生的练习进行讲解,解答学生的疑问,帮助学生巩固知识。
5.拓展(10分钟)引导学生思考一元二次方程在实际生活中的应用,让学生尝试解决实际问题。
6.小结(5分钟)对本节课的主要内容进行总结,强调一元二次方程的定义和解法。
7.家庭作业(5分钟)布置一些一元二次方程的练习题,让学生课后巩固所学知识。
专题21.1 一元二次方程定义及配方法解一元二次方程【考点导航】目录【典型例题】 (1)【考点一一元二次方程的识别】 (1)【考点二利用一元二次方程的定义求参数的值】 (2)【考点三一元二次方程的一般形式、各项系数】 (2)【考点四已知一元二次方程的解求参数(式子)的值】 (3)【考点五解一元二次方程——直接开平方法】 (3)【考点六解一元二次方程——配方法】 (4)【考点七用配方法解一元二次方程错解复原】 (5)【考点八配方法的应用】 (7)【过关检测】 (9)【典型例题】【考点一一元二次方程的识别】【例题1】(2023春·安徽合肥·八年级统考期中)下列方程中属于一元二次方程的是()2y x【变式1-1】(2023程的是()0c 中,属于一元二次方程的有D .4个【考点二 利用一元二次方程的定义求参数的值】【例题2】(2023·全国·九年级假期作业)当m =______时,关于x 的方程()32690m m x x +++-=是一元二次【考点三 一元二次方程的一般形式、各项系数】【例题3】(2023·全国·九年级假期作业)若方程22533x x x x --=-+的二次项系数是4,则方程的一次项系数是______,常数项是_______.【变式3-1】(2022秋·海南省直辖县级单位·九年级校考阶段练习)将方程221x x -=-化为一般形式为__________,其中=a ________,b =________,c =________.【变式3-2】(2022秋·云南昭通·九年级统考期中)方程3(1)5x x -=的二次项系数是______,一次项系数是______,常数项是______.【变式3-3】(2023秋·河北廊坊·九年级统考期末)将方程()()32183x x x -+=-化成一元二次方程的一般形式后,二次项系数为a ,一次项系数为b ,常数项为c ,则a b c ++=______.【考点四 已知一元二次方程的解求参数(式子)的值】【例题4】(2023春·黑龙江哈尔滨·八年级哈尔滨市第六十九中学校校考阶段练习)关于x 的一元二次方程2210x x a ++-=的一个根是0,则a 的值为______.【变式4-1】(2023·湖南长沙·校考二模)若1x =是一元二次方程220x x m -+=的一个根,则m 的值是________.【变式4-2】(2023·甘肃平凉·统考二模)若m 是方程22310x x -+=的一个根,则2692023m m -+的值为______.【变式4-3】(2023·全国·九年级假期作业)若m 是一元二次方程230x x --=的根,则325m m m +-的值为_____【考点五 解一元二次方程——直接开平方法】【例题5】(2023·上海·八年级假期作业)解关于x 的方程:251250x -=.【变式5-1】(2023·上海·八年级假期作业)解关于x 的方程:290x .【变式5-2】(2023·江苏·九年级假期作业)解下列一元二次方程:()2(21)42140x x ++++=;【变式5-3】(2023·上海·八年级假期作业)解下列方程: (1) ()()22231+=-x x ; (2)229(21)16(2)0+--=x x ;(3)24410x x -+=; (4)21236=--x x .【考点六解一元二次方程——配方法】2210x.【考点七 用配方法解一元二次方程错解复原】 【例题7】(2023·全国·九年级假期作业)以下是圆圆在用配方法解一元二次方程2240x x --=的过程: 解:移项得224x x -=配方:2214x x -+=()214x -=开平方得:12x -=±移项:21x =±+所以:13x =,23x =圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.【变式7-1】(2023秋·河北沧州·九年级统考期末)阅读材料,并回答问题: 佳佳解一元二次方程2640x x +-=的过程如下:解:2640x x +-=264x x +=-------------------------------- ①2694x x ++=----------------------------- ②2(3)4x += -------------------------------③32+=±x --------------------------------④3232x x +=+=-,1215x x ==-,.问题:(1)佳佳解方程的方法是______;A .直接开平方法B .配方法C .公式法D .因式分解法(2)上述解答过程中,从______步开始出现了错误(填序号),发生错误的原因是______;(3)在下面的空白处,写出正确的解答过程.24x,……………………该同学的解答从第______步开始出错;请写出正确的解答过程.【考点八 配方法的应用】【例题8】(2023秋·甘肃庆阳·八年级统考期末)阅读材料:利用公式法,可以将一些形如()20ax bx c a ++≠的多项式变形为()2a x m n ++的形式,我们把这样的变形方法叫作“配方法”.运用多项式的配方法及平方差()()()()232351x x x x =+++-=+-.根据以上材料,解答下列问题:(1)分解因式:228x x +-.(2)求多项式287x x +-的最小值.【变式8-1】(2023春·浙江·七年级专题练习)代数式243x x -+的最小值为( ). A .1- B .0 C .3 D .5【变式8-2】(2023春·浙江·七年级专题练习)把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式:243a a ++,解:原式()22=441=21a a a ++-+- ()()()()=2121=31a a a a +++-++②226M a a =-+,利用配方法求M 的最小值:解:()222=26=215=15M a a a a a -+-++-+因为()210a -≥,所以当1a =时,M 有最小值5请根据上述材料解决下列问题:(1)在横线上添加一个常数,使之成为完全平方式28x x -+ ;(2)用配方法因式分解22412x xy y --;(3)若2=421M x x +-,求M 的最小值.【变式8-3】(2023秋·河南信阳·八年级统考期末)教材中这样写道:“我们把多项式222a ab b ++及222a ab b -+叫做完全平方式”,如果关于某一字母的二次多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式223x x +-.原式22(21)4(1)4(12)(12)(3)(1)x x x x x x x =++-=+-=+++-=+-;;例如:求代数式246x x ++的最小值.原式22442(2)2x x x =+++=++.2(2)0x +≥,∴当2x =-时,246x x ++有最小值是2.根据阅读材料用配方法解决下列问题:(1)分解因式:245m m --= ;(2)求代数式2612x x -+的最小值;(3)若22y x x =--当x = 时,y 有最 值(填“大”或“小”),这个值是 .【过关检测】一、选择题二、填空题三、解答题11.(2023春·浙江·八年级专题练习)已知方程21(1)(2)10aa x a x +++--=是关于x 的一元二次方程,求a 的值.12.(2023春·浙江·八年级专题练习)把下列方程化成一元二次方程的一般形式,再写出它的二次项系数、。
21.1一元二次方程一、教学目标:1.通过类比一元一次方程,了解一元二次方程的概念及一般形式ax2+bx+c=0(a≠0). 2.分清二次项及其系数、一次项及其系数与常数项等概念.3.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.4.通过例题和习题,列一元二次方程,让学生体会一元二次方程是刻画现实世界数量关系的有效模型,培养学生初步形成“模型思想”,增强学生应用数学知识解决问题的意识.二、重点难点:重点:通过类比一元一次方程,了解一元二次方程的概念及一般形式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点:一元二次方程及其二次项系数、一次项系数和常数项的识别.三、教学过程:(一) 复习回顾:1.什么叫方程?2.目前我们已经学习了哪些方程?①一元一次方程 ②二元一次方程(组) ③分式方程练习:根据下列问题列出关于x 的方程.(1)4个完全相同的正方形的面积之和是25,求正方形的边长x ;(2)一个矩形的长比宽多2,面积是100,求矩形的长x ;即: (3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x ; 即:问题:这三个方程和之前学习过的方程类型一样吗?它们属于哪一类方程?设计意图:引导学生回顾方程概念,梳理清楚在方程这个大家族里面有很多分支,比如一元一次方程,二元一次方程(组),分式方程等.其次通过列方程实际问题得出方程(一元二次方程),设计问题引导学生对比和类比,为新知识的学习做铺垫.注重新旧知识的联系,也让学生对新概念的内涵和外延都有初步认识.(二)引出本节课课题:一元二次方程观察与思考:2425x =(2)100x x -=22100x x -=2(1)x x =-212x x x =-+222425210012x x x x x x =-==-+这三个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?特点: ①都是整式方程;②只含一个未知数;③未知数的最高次数是2.知识1类比归纳:一元二次方程的概念等号两边都是整式, 只含有一个未知数(一元),并且未知数的最高次数是2 (二次)的方程,叫做一元二次方程.练习1.下列方程是一元二次方程吗?(1) 3253x y +=- ×(2) 24x = √(3) 2211x x x --=+ × (4)224(2)x x -=+ ×方法总结:判断一个方程是否是一元二次方程的依据:①都是整式方程;②只含一个未知数;③未知数的最高次数是2.注意:有些方程化简前含有未知数最高次数为2的项,但是化简后不存在未知数最高次数是2的项,这样的方程不是一元二次方程.设计意图:将一元二次方程的具体例子与一元一次方程作比较,引导学生观察一元二次方程在形式上的特点,找出两类方程的相同点和不同点,再类比一元一次方程的命名,学生可以很容易得出一元二次方程的命名和概念.让学生对一元二次方程的概念印象深刻,同时减少学生对新知识的陌生感,提高学习兴趣.通过练习,加深对概念的理解.活动:对这些一元二次方程进行整理,使得右边等于0.222425210012x x x x x x =-==-+222425021000310x x x x x -=--=-+=知识2:一元二次方程的一般形式:ax 2+bx +c =0(a ≠0)20(0)ax bx c a ++=≠一元二次方程一般式:思考:为什么要规定a ≠0?b 、c 可以为零吗? 设计意图:让学生对所给的一元二次方程进行整理,容易发现其一般形式,并分清二次项及其系数、一次项及其系数与常数项等概念.例 将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数: 3(1)5(2)x x x -=+注:各项都应带符号.练习2.将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:22(1)514(2)481(3)4(2)25(4)(32)(1)83x x x x x x x x -==+=-+=-练习3. 当m 为何值时, 方程 42(1)2750m m xmx -+++= 是关于x 的一元二次方程.练习4.方程2(24)20a x bx a --+=,在什么条件下为一元二次方程?在什么条件下为一元一次方程?解:当 a ≠2 时,是一元二次方程;当 a =2,b ≠0 时,是一元一次方程.练习5.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式:问题(1) 要设计一座高2m 的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的高度比,求雕像的下部应设计为高多少米?解:设雕像的下部应设计为高x 米(2)::2x x x -=问题(2) 有一块矩形铁皮,长100㎝,宽50㎝,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600平方厘米,那么铁皮各角应切去多大的正方形?解:设各角切去的正方形边长x cm(1002)(502)3600x x --=问题(3) 要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?解:设比赛组织者应邀请x 个队参加比赛(1)472x x -=⨯ 设计意图:通过例题和习题,加深对一元二次方程概念以及二次项及其系数、一次项及其系数与常数项等概念的理解.最后通过所学方程解决实际问题,让学生体会一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.知识3:一元二次方程的根使方程左右两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的根. 练习6. 下列哪些数是方程的根?260--=x x-4,-3,-2,-1,0,1,2,3,4设计意图:通过复习方程根的知识,明白方程根的意义.也为解一元二次方程做铺垫,提高学生学习兴趣.(三)课堂小结:1.一元二次方程的概念是什么?2. 如何将一元二次方程转化为一般形式,一般形式包括哪些项?3. 什么是一元二次方程的根?。