发酵工程
- 格式:doc
- 大小:28.00 KB
- 文档页数:5
发酵工程知识点总结归纳一、发酵工程概述1. 发酵工程的定义发酵工程是一门研究微生物、酶等生物催化剂在工业生产中广泛应用的工程学科。
2. 发酵工程的历史发酵工程的历史可以追溯到几千年前,最早的酿酒技术可以追溯到古代民族。
随着人类对微生物的认识和技术的发展,发酵工程逐渐成为一门系统的学科。
3. 发酵工程的应用领域发酵工程广泛应用于食品、饮料、医药、生物制药、环保等领域,对人类的生活和健康有着重要影响。
二、发酵过程及机理1. 发酵过程发酵过程是利用微生物或酶对有机物进行生物催化反应,产生有机产物或能量的过程。
发酵过程通常包括菌种培养、发酵产物的分离提纯等步骤。
2. 发酵机理发酵的基本机理包括微生物的生长和代谢过程,包括物质的代谢途径、酶的作用、生理生化特性等。
三、发酵工程中的微生物1. 发酵微生物的分类发酵微生物包括细菌、真菌、酵母等。
不同的微生物在发酵过程中起到不同的作用。
2. 发酵微生物的培养发酵微生物的培养包括培养基的配制、发酵罐的设计等环节,培养条件对微生物的生长和代谢具有重要影响。
3. 发酵微生物的选育发酵工程中常用的微生物包括大肠杆菌、酵母菌等,针对不同的产品需要选择适合的微生物用于发酵生产。
四、发酵工程中的酶1. 酶的分类酶是生物催化剂,可以促进化学反应的进行。
按照其作用方式可以分为氧化酶、还原酶、水解酶等。
2. 酶的应用酶在发酵工程中有着广泛的应用,可以用于生产食品、医药、生物燃料等产品。
3. 酶的工程化酶的工程化包括酶的产生、提纯、改良等步骤,使其更好地适用于实际生产。
五、发酵工程中的设备1. 发酵罐发酵罐是用于放置和滋生微生物的设备,包括灭菌、通气、控温等功能。
2. 排气系统排气系统可以有效地排除产生的二氧化碳和其他代谢产物,以保证发酵过程的正常进行。
3. 分离设备分离设备包括离心机、膜分离等,用于分离提纯发酵产物。
六、发酵工程中的工艺控制1. 发酵条件的控制发酵过程中需要控制pH、温度、氧气供应等参数,以保证微生物的生长和产物的产生。
第3节发酵工程及其应用一、发酵工程的基本环节发酵工程一般包括菌种的选育,扩大培养,培养基的配制、灭菌,接种,发酵,产品分离、提纯等方面。
1.选育菌种:性状优良的菌种可以从自然界中筛选出来,也可以通过诱变育种或基因工程育种获得。
2.扩大培养:工业发酵罐的体积很大,接入的菌种总体积也较大,因此在发酵之前还需要对菌种进行扩大培养。
3.配制培养基:在菌种确定之后,要选择原料制备培养基。
培养基的配方要经过反复试验才能确定。
4.灭菌:发酵工程中所用的菌种大多是单一菌种。
一旦有杂菌污染,可能导致产量大大下降。
因此,培养基和发酵设备都必须经过严格的灭菌。
5.接种:扩大培养的菌种和灭菌后的培养基加入发酵罐中。
大型发酵罐有计算机控制系统,能对发酵过程中的温度、pH、溶解氧、罐压、通气量、搅拌、泡沫和营养等进行监测和控制。
6.发酵罐内发酵:在发酵过程中,要随时检测培养液中的微生物数量、产物浓度等,以了解发酵进程。
还要及时添加必需的营养组分,要严格控制温度、pH和溶解氧等发酵条件。
7.分离、提纯产物:如果发酵产品是微生物细胞本身,可在发酵结束之后,采用过滤、沉淀等方法将菌体分离和干燥得到产品。
如果产品是代谢物,可根据产物的性质采取适当的提取、分离和纯化措施来获得产品。
二、发酵工程的应用1.在食品工业上的应用(1)生产传统的发酵产品,如酱油、各种酒类。
(2)生产各种各样的食品添加剂,如通过黑曲霉发酵制得的柠檬酸,由谷氨酸棒状杆菌发酵生产味精。
(3)生产酶制剂,如α淀粉酶、β淀粉酶、脂肪酶等。
2.在医药工业上的应用基因工程、蛋白质工程等的广泛应用给发酵工程制药领域的发展注入了强劲动力。
3.在农牧业上的应用(1)生产微生物肥料。
微生物肥料利用了微生物在代谢过程中产生的有机酸、生物活性物质等来增进土壤肥力,改良土壤结构,促进植株生长,常见的有根瘤菌肥、固氮菌肥等。
(2)生产微生物农药。
微生物农药是利用微生物或其代谢物来防治病虫害的。
发酵工程全部知识点总结一、发酵工程的基本概念1. 发酵的定义发酵是指利用微生物或其代谢物来改变物质的过程。
主要包括酵母、细菌、真菌等微生物。
2. 发酵工程的定义发酵工程是指利用发酵微生物代谢特性,通过合理调控环境条件,进行微生物发酵过程中的相关技术。
二、发酵微生物1. 酵母酵母是发酵工程中最常用的微生物,广泛应用于酒类、面包、啤酒等食品工业中。
2. 细菌细菌在发酵工程中也有重要的应用,如益生菌、酸奶中的乳酸菌等。
3. 真菌真菌发酵应用广泛,包括酵素生产、抗生素生产、食品添加剂等。
三、发酵工程的基本过程1. 液体发酵液体发酵是将发酵微生物培养在液体培养基中,通过控制培养基成分、通气、温度等条件来进行微生物代谢产物的生产。
2. 固体发酵固体发酵是将发酵微生物培养在固体底物中,通过控制底物成分、湿度、通气等条件来进行微生物代谢产物的生产。
3. 半固体发酵半固体发酵是将发酵微生物培养在半固体底物中,采用液态和固态发酵的优点来进行微生物代谢产物的生产。
四、发酵工程的主要设备和工艺1. 发酵罐发酵罐是发酵工程的主要设备之一,根据不同的发酵工艺和需求,可以采用不同类型的发酵罐。
2. 发酵工艺发酵工艺是指在发酵过程中,针对不同的微生物和产物特性,进行合理的发酵条件控制和操作流程。
3. 发酵控制系统发酵控制系统是指在发酵工程中,通过自动化设备和仪器,实现对发酵条件如温度、pH 值、通气、搅拌等的精确控制。
五、发酵工程的应用范围1. 食品工业发酵工程在食品工业中应用广泛,如酿造啤酒、制作酸奶、发酵面包、制作酱油等。
2. 医药工业发酵工程在医药工业中应用广泛,如生产抗生素、激素、酶制剂等。
3. 燃料工业发酵工程在燃料工业中也有应用,如生物乙醇、生物柴油等。
4. 化学工业发酵工程在化学工业中也有应用,如生产乳酸、丙酮、丙二醇等。
六、发酵工程的发展趋势1. 发酵工程技术的进步随着科技的不断进步,发酵工程的技术也在不断提高,发酵设备和工艺不断更新。
发酵工程:是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术.菌种保藏:运用物理、生物手段让菌种处于完全休眠状态,使在长时间储存后仍能保持菌种原有生物特性和生命力的菌种储存的措施。
富集培养:指利用不同微生物间生命活动特点的不同,人为地提供一些特定的环境条件,使特定种(类)微生物旺盛生长,使其在数量上占优势,更利于分离出该特定微生物,并引向纯培养.菌种退化:菌种在培养或保藏过程中,由于自发突变的存在,出现某些原有优良生产性状的劣化、遗传标记的丢失等现象.前体:是被加入培养基的化合物,能够直接在生物合成过程中结合到产物分子中去,而自身的结构并未发生太大变化,却能提高产物的产量的一类小分子物质.生长因子:是一类调节微生物正常生长代谢所必需,但不能用简单的碳、氮源自行合成的有机物,包括广义生长因子和狭义生长因子。
产物合成促进剂:指那些非细胞生长所必须的营养物,又非前体,但加入后却能提高产量的添加剂。
如:链霉素生产加巴比妥,赖氨酸生产加红霉素等。
斜面培养基:固体培养基(solid culture medium )的一种形式;制作时应趁热定量分装于试管内,并凝固成斜面的称为斜面培养基,用于菌种扩大转管及菌种保藏。
种子培养基:供孢子发芽、生长和大量繁殖菌丝体,并使菌体长得粗壮,成为活力强的“种子”的培养基,所以种子培养基的营养成分要求比较丰富和完全。
发酵培养基:发酵培养基是供菌种生长、繁殖和合成产物之用。
它既要使种子接种后能迅速生长,达到一定的菌丝浓度,又要使长好的菌体能迅速合成需产物。
空消:指清除空间内不好的或不需要的杂质,使之达到无害化的洁净程度。
实消:就是将配制好的培养基放入发酵罐或其他装置中,通入蒸汽将培养基和所用设备一起进行灭菌的操作过程,也称实罐灭菌。
连消:即连续灭菌,即培养基的连续灭菌,是灭菌的一种方式。
就是将配制好的并经预热的培养基用泵连续输入由直接蒸汽加热的加热塔,使其在短时间内达到灭菌温度。
发酵工程教案(打印)第一章:发酵工程的概述1.1 发酵工程的定义发酵工程的概念发酵工程的组成1.2 发酵工程的应用领域食品工业制药工业生物化工1.3 发酵工程的发展历程传统发酵技术现代发酵工程技术第二章:发酵过程的微生物学基础2.1 发酵微生物的分类与特性细菌真菌放线菌2.2 发酵微生物的培养与筛选培养基的选择与制备微生物的分离与纯化2.3 发酵微生物的代谢调控微生物的生长曲线微生物的代谢途径第三章:发酵设备的类型与选择3.1 发酵设备的类型大型发酵罐生物反应器膜分离设备3.2 发酵设备的选择原则生产规模产品特性经济效益3.3 发酵设备的运行与维护设备的启动与停止设备的清洗与消毒设备的故障处理第四章:发酵过程的控制与管理4.1 发酵过程的控制参数温度pH值溶氧量营养物质4.2 发酵过程的控制技术自动控制系统反馈控制系统计算机控制系统4.3 发酵过程的管理与优化生产计划的制定发酵条件的优化生产过程的质量控制第五章:发酵工程的案例分析5.1 乳酸菌发酵工程案例酸奶的生产泡菜的制作5.2 酵母菌发酵工程案例啤酒的生产葡萄酒的制作5.3 放线菌发酵工程案例抗生素的生产维生素的生产第六章:发酵工程的安全与环保6.1 发酵工程的安全问题微生物的危害生物安全措施发酵罐的安全操作6.2 发酵过程中的污染控制污染的来源污染的检测与控制清洁生产技术6.3 发酵工程的环保问题废水处理废气处理固体废弃物处理第七章:发酵工程的产业化应用7.1 发酵工程在食品工业的应用面包酵母的生产乳酸菌的产业化7.2 发酵工程在制药工业的应用抗生素的产业化维生素的产业化7.3 发酵工程在其他领域的应用生物燃料的生产生物材料的产业化第八章:发酵工程的研发与创新8.1 发酵工程的新技术发展重组DNA技术基因工程技术合成生物学技术8.2 发酵工程的新设备开发高通量筛选设备生物反应器的设计自动化控制系统8.3 发酵工程的产业化挑战与机遇产业化过程中的问题产业化发展的趋势产业化政策的分析第九章:发酵工程的实例分析与评价9.1 发酵工程案例分析某乳酸菌产品的生产某抗生素的生产9.2 发酵工程项目的评价技术与经济评价环境与社会影响评价风险评价9.3 发酵工程的发展前景与建议行业发展趋势技术创新方向政策与支持措施第十章:发酵工程的实验操作10.1 发酵实验的基本操作菌种的制备与保藏发酵液的制备发酵过程的监控10.2 发酵实验的设计与优化实验设计方法发酵条件的优化实验结果的分析10.3 发酵实验的操作技能培养实验操作的安全规范实验设备的操作与维护实验数据的准确记录与处理重点和难点解析重点环节一:发酵微生物的分类与特性重点掌握不同类型发酵微生物的分类、特点及应用领域。
高中发酵工程的知识点总结一、发酵工程的基本概念1. 发酵工程的定义发酵工程是以微生物或酶等生物催化剂为基础,通过控制合适的环境条件,利用微生物或酶的代谢作用,进行有选择地生产物质或提取有用产品的工程技术。
2. 发酵工程的原理发酵工程利用生物催化剂在适宜的温度、pH、氧气供应等条件下对原料进行代谢作用,使其产生有用的化学产物。
发酵过程分为有氧发酵和无氧发酵,有氧发酵是指微生物在充分供氧的情况下进行代谢作用,而无氧发酵则是微生物在缺氧条件下进行代谢作用。
3. 发酵工程的应用发酵工程在食品、医药、酒类、饲料、化工等领域都有重要的应用,可以生产出酒精、乳酸、维生素、抗生素、酶等多种产品。
二、微生物学基础1. 微生物的分类微生物是一类极小的生物体,包括细菌、真菌、酵母菌、病毒等。
其中,细菌可分为革兰氏阳性菌和革兰氏阴性菌,酵母菌主要是酵母菌科的酵母菌,真菌包括霉菌和酵母菌。
2. 微生物的生长特性微生物的生长需要适宜的温度、pH值、氧气供应等条件,不同微生物的生长特性有所不同。
典型的微生物生长曲线包括潜伏期、对数生长期和平稳期。
3. 微生物的代谢特点微生物的代谢分为呼吸代谢和发酵代谢两种形式。
呼吸代谢需要有氧气,产生CO2和H2O,而发酵代谢不需要氧气,产生乳酸、酒精、醋酸等产物。
4. 微生物的培养方法微生物的培养方法包括液体培养和固体培养两种形式,培养基的选择对微生物的生长有重要影响。
三、发酵工程的工艺流程1. 发酵工程的基本流程发酵工程的基本流程包括发酵菌种的培养和保存、发酵罐的设计和运行、发酵过程的控制和调节、产品的分离和提取等步骤。
2. 发酵工程的发酵罐发酵罐是进行微生物发酵的设备,按照不同的设计要求可分为批式发酵罐和连续式发酵罐。
3. 发酵工程的发酵菌种发酵菌种是进行发酵的微生物,可以是细菌、酵母菌、真菌等。
合适的发酵菌种是发酵工程成功的关键。
4. 发酵工程的发酵过程控制发酵过程的控制包括温度、pH值、氧气供应、营养物质的添加等方面,需要根据不同的菌种和发酵产品进行调节。
生物选修三发酵工程知识点知乎发酵工程是一门研究利用微生物进行发酵生产的学科,涉及到微生物学、化学、生物工程等多个学科领域。
以下是发酵工程的一些重要知识点:1.发酵过程及其条件:发酵是一种利用微生物或酶催化剂进行有机物转化的生物过程。
发酵过程通常需要一些基本条件,如适宜的温度、pH值、氧气供应、营养物质等。
2.微生物的选择:发酵过程中,选择适宜的微生物对于产品的质量和产量起到至关重要的作用。
常见的发酵微生物包括酵母菌、乳酸菌、大肠杆菌等。
3.发酵基质:发酵基质是微生物生长和代谢所必需的营养物质,它包括碳源、氮源、矿物质、维生素等。
发酵过程中需要根据不同微生物的需求来设计合适的发酵基质。
4.发酵过程的控制:发酵过程是一个相对复杂的过程,需要通过控制发酵温度、pH值、氧气供应、基质浓度等参数来实现最佳的发酵效果。
5.发酵设备及操作:发酵工程中使用的设备包括发酵罐、搅拌器、气体供应系统、温控系统等。
发酵操作需要严格控制发酵过程中的各个参数,并采取相应的措施来确保发酵过程的成功进行。
6.剪切力与氧气传递:在发酵过程中,剪切力的作用可以促使混合物更加均匀地分布在发酵液中,从而提高氧气传递效率,有效促进微生物的生长和代谢。
7.发酵产物的分离与纯化:发酵产物的分离与纯化是发酵工程中的关键步骤之一、常用的分离技术包括离心、滤过、透析、薄层层析、凝胶层析等。
8.发酵中的计量和控制:发酵过程的计量和控制是发酵工程中的重要内容之一、通过监测和调控发酵过程中的各个参数,可以实现发酵过程的优化和控制。
9.发酵工程的应用:发酵工程在食品工业、医药工业、化工工业等领域有广泛的应用。
例如,酿酒、饮料、乳制品、药物、酶制剂等都是通过发酵工艺生产的。
10.发酵工程的发展:随着生物技术的迅猛发展,发酵工程的研究和应用也得到了广泛的推广。
发酵工程的发展方向包括发酵过程优化、新型发酵设备开发、生物传感器等。
总结起来,发酵工程是研究利用微生物进行发酵生产的学科,涉及到微生物学、化学、生物工程等多个学科领域。
发酵工程名词解释1、发酵工程:是指利用微生物的生长繁殖和代谢活动来大量生产人们所需产品过程的理论和工程技术体系。
该技术体系主要包括菌种选育和保藏、菌种的扩大生产、微生物代谢产物的发酵生产和分离纯化制备。
2、现代发酵工程:是指将DNA重组及细胞融合技术、组学及代谢网络调控技术、发酵过程优化放大与精准控制技术等新技术与传统发酵工程融合,大大提高了传统发酵技术,拓展了传统发酵应用领域和产品范围的一种现代工业生物技术理论与工程技术体系。
3、富集培养:是在目的微生物含量较少时,根据微生物的生理特点,设计一种选择性培养基,创造有利的生长条件,使目的微生物在最适的环境下迅速地生长繁殖,数量增加,由原来自然条件下的劣势种变成人工环境下的优势种,以利分离到所需的菌种。
4、诱变育种:就是人为的利用物理或化学等因素,使诱变对象细胞内的遗传物质发生变化,引起突变,并通过筛选获得符合要求的变异菌株的一种育种方法。
5、代谢控制育种:是通过选育特定突变型,达到改变代谢通路,降低支路代谢终产物的生产,或切断支路代谢途径,并提高细胞膜的透性等,使代谢流向目的产物积累方向。
6、分解代谢阻遏现象:在初级或次级代谢中都存在,其含义是指代谢过程中酶的合成往往受高浓度的葡萄糖或其他易分解利用的碳源或氮源所抑制。
7、渗漏缺陷型:是一种特殊的营养缺陷型,是遗传性障碍不完全的突变型,其特点是酶活力下降但没有完全丧失,并能在基本培养基上少量生长。
8、抗反馈作用突变株:是一种解除合成代谢反馈调节机制的突变型菌株,其特点是所需产物不断积累,不会因其浓度超量而终止生产。
9、结构类似物:是指那些结构上和代谢终产物(氨基酸、嘌呤、维生素等)相似的物质。
10、代谢工程:利用多基因重组技术有目的地对细胞代谢途径进行修饰、改造、改变细胞特性,并与细胞基因调控、代谢调控及生化工程相结合,为实现构建新的代谢途径,生产特定目的产物而发展起来的一个新的学科领域。
11、菌种退化:所谓菌种退化,是指优良菌种的群体中出现某些生理特征和形态特征逐渐减退或丧失,而表现为目的代谢产物合成能力下降的现象。
第二章发酵工程第一节发酵工程概况一、发酵和发酵工程1、什么是发酵(1)传统的发酵定义:发酵(fermentation)最初来自拉丁语“发泡”(fervere),人们早期的认识,发酵是指酵母作用于果汁或谷物,进行酒精发酵产生CO2的现象,这个过程是酵母在无氧状态下的呼吸过程,是微生物获得能量的一种形式。
(2)现在定义:目前人们把借助微生物在有氧或无氧条件下的生命活动来制备微生物菌体本身、或直接代谢产物或次级代谢产物的过程统称为发酵。
2、发酵工程(1)定义:它是一门将微生物学、生物化学和化学工程学的基本原理有机地结合起来,利用微生物的生长和代谢活动来生产各种有用物质的工程技术。
由于它以培养微生物为主,所以又称微生物工程。
(2)分类:发酵工程分为:食品发酵工程和非食品发酵工程两大类。
食品发酵工程又叫酿造工业,如啤酒、白酒、黄酒、葡萄酒、酱油、食醋、酱、豆豉、腐乳。
这些产品成分复杂,对风味有较高的要求。
非食品发酵工程,如酒精、抗生素、柠檬酸、氨基酸、酶制剂、核苷酸、单细胞蛋白等。
这些产品成分单一,无风味要求。
二、发酵工程的发展历程1、天然发酵阶段19世纪前,人们对发酵的本质并不了解,但已经在利用自然发酵现象制成各种发酵产品,如酱油、米酒、面包、奶酪、啤酒、白酒等。
菌种是天然的,而非纯种培养,凭经验传授技术、带徒弟,产品质量不稳定,常常受到杂菌的污染而使人们感到困惑。
2、纯培养技术的建立1680年,发明了显微镜(270倍),人类历史上第一次看到了大量的活的微生物。
1859年,巴斯德证明了发酵原理,随后发明了低温杀菌法(巴氏杀菌),挽救了法国的葡萄酒。
1881年,柯赫建立了细菌纯粹培养技术,并获1905年的诺贝尔奖。
确立了单种微生物的分离和纯粹培养技术,使发酵技术从天然发酵转变为纯粹培养发酵,实现了第一次发酵技术进步(第一个转折期)。
从此,人类开始了人为地控制微生物的发酵过程,产品质量的稳定性得到大大地提高。
发酵工程的名词解释
发酵工程是微生物、植物、动物和环境的交互作用的综合应用,可以将物质和能量重新配置,以改善化学特性,利用发酵生物技术将原料转化成多种有用的化合物,包括蛋白质、氨基酸、维生素、抗生素、有机酸、抗菌物质、食品添加剂等。
发酵反应是通过微生物的代谢动力学过程,将原料转化成目的产物的过程。
这种代谢反应一般指的是一个或多个原料(碳源),由微生物分解并释放出它们的能量,然后这些能量被微生物代谢成有用的产物的过程。
它具有同化作用、外源代谢作用、细胞成熟作用和生物合成作用等特性。
发酵技术在食品加工中实用性很强,可以调节食品的味道、质地、颜色和保质期等特性,以满足消费者的要求;也可以利用微生物发酵技术,将原料转化为乳、酒、糖、醋、酱油等美味的保健品;此外,由于发酵技术可以有效提高食品营养价值,使食品更加健康,因此越来越受到人们的重视。
另外,发酵工程不仅可以应用在食品领域,还可以用于产生对环境有益的物质,如植物激素、微量元素、农用洗涤剂以及活性剂等。
此外,由于发酵技术可以以少量原料、少量空间和少量能源获得较多的产物,因此被认为是高效率和环保的生产方式。
总之,发酵工程是一门研究发酵反应的工程学科,是上述所有发酵技术的综合应用与开发。
它综合利用了生物、化学、物理、机械等学科的知识,是一门具有深远影响的高新技术。
目前,发酵技术在现代社会已经发挥了重要作用,从食品工业到农业生物技术,以及其他众多领域,都有着广泛的应用。
发酵工程的发展也在迅速推动着生物科技的发展,成为生物科技中重要的一环,为人类社会健康、发展提供了重要贡献。
专题九发酵工程(1)泡菜、果酒和果醋的制备原理、过程和条件控制。
(2)微生物培养基的配制和无菌技术。
(3)微生物的选择培养和计数。
(4)发酵工程及其基本环节。
1.判断有关发酵工程应用说法的正误(1)腐乳制作利用了毛霉等微生物产生的蛋白酶和脂肪酶。
(√)(2)在制作果醋时,如果条件适宜,醋酸菌可将葡萄汁中的糖分解成乙酸。
(√)(3)果酒发酵所需的最适温度高于果醋发酵温度。
(×)(4)制作泡菜时,盐水煮沸后可以立即使用。
(×)(5)泡菜的制作前期需要通入氧气,后期应严格保持无氧条件。
(×)(6)发酵工程的产品主要包括微生物的代谢产物、酶及菌体本身。
(√)(7)在啤酒生产中,使用基因工程改造的啤酒酵母,可以加速发酵过程,缩短生产周期。
(√)2.判断有关微生物培养与应用说法的正误(1)在琼脂固体培养基上长出的单个菌落含有多种细菌。
(×)(2)检测土壤中细菌总数实验操作中,确定对照组无菌后,选择菌落数在300以上的实验组平板进行计数。
(×)(3)虽然各种培养基的具体配方不同,但一般都含有水、碳源、氮源和无机盐。
(√)(4)对异养微生物来说,含C、H、O、N的有机化合物既是碳源又是氮源。
(√)(5)观察细菌培养的实验时,最好是在另一块平板上接种无菌水作为对照实验。
(√)(6)平板划线法要求多次划线,稀释涂布平板法中菌液要充分地稀释。
(√)(7)倒平板时,应将打开的皿盖放到一边,以免培养基溅到皿盖上。
(×)(8)对细菌进行计数能采用稀释涂布平板法,也能用平板划线法。
(×)(9)分解尿素的细菌在分解尿素时,可以将尿素转化为氨,使得培养基的酸碱度降低。
(×)(10)刚果红可以与纤维素形成透明复合物,所以可以通过是否产生透明圈来筛选纤维素分解菌。
(×)1.果酒发酵时,装入发酵瓶要留有大约1/3的空间,原因是。
提示为酵母菌大量繁殖提供适量的氧气,防止发酵时汁液溢出2.某同学在通过发酵制作果酒时,发现在制作原料中添加一定量的糖,可以提高酒精度,原因是。
发酵工程复习题
1.发酵工程:是指利用微生物的特定形状,通过现代工程技术,在发酵罐中生产有用物质的一种技术。
2.前体:是指某些化合物加入到发酵培养基中,能直接被微生物在生物合成过程中结合到产物分子中去,而其自身的结构并没有多大变化,但是产物的产量却因有前体而又较大提高。
3.生长因子:某些微生物不能从普通的碳源、氮源、合成。
而需要另外少量加入来满足生长所需的有机物。
4.接种龄:是指种子罐中培养的菌丝转入下一级种子罐或发酵罐时的培养时间。
5.接种量:是指移入的种子液体和接种后培养液体积的比例。
6.工业上常用的菌种:细菌、酵母菌、霉菌、放线菌
7.菌种的选育方法:自然选育、诱变选育、杂交选育
8.常用的菌种保藏方法:斜面低温保藏法、矿油保藏法、载体吸附保藏法、液氮超低温保藏法、真空冷冻干燥保藏法
9.微生物提供生长相应的营养条件:碳源、氮源、无机盐、微量元素、
10.生长因子:氨基酸、维生素、嘌呤和嘧啶碱及其衍生物
11.培养基的种类:孢子培养基、种子培养基、发酵培养基
12.培养基的灭菌方法:分批灭菌法、连续灭菌法
13.发酵的三种模式:歇发酵、连续发酵、流加发酵
14.发酵过程的代谢产物参数:温度、PH值、溶解氧、气泡
15.发酵常用的消泡剂:天然油脂类、高碳醇、脂肪酸和酯类聚醚类、
硅酮类
16.酿酒所用的曲:大曲、小曲
17.啤酒的酿造原料:大麦、酒花、水
接种龄选择对数生长后期,比较适合的接种量在50%~20%,这样可以在短时间内产生大量菌丝,缩短发酵周期。
种子罐级数越多,变异的几率就越大,一般选择一级到二级。
18.高温短时灭菌法:提高灭菌温度可明显缩短灭菌时间,并减少培养基营养成分的破坏。
19.发酵罐的尺寸比例:酒花赋予啤酒香味和爽口苦味,同时也提高啤酒泡沫的持久力和稳定性,是蛋白质沉淀,有利于啤酒澄清,并有抑制作用,能增强麦芽汁和啤酒的防腐能力。
在红葡萄酒的生产过程中的作用:主要是起杀灭杂菌,澄清杂质,溶解色素以及增酸还原作用。
20.抗生素的分类?①按生物来源分:放线菌产生的抗生素(链霉素)、真菌产生的抗生素(青霉素)、细菌产生的抗生素(多黏菌素)动、植物产生的抗生素(鱼素)②按作用分:广谱抗生素(氨苄青霉素)、抗革兰氏阳性菌抗生素(青霉素)、抗革兰氏阴性菌抗生素(链霉素)、抗真菌抗生素(制霉素)、抗病毒抗生素(四环类抗生素)、抗癌抗生素(阿霉素)③按化学结构分:-内酰胺类(青霉素)、氨基糖苷类(链霉素)、大环内酯类(红霉素)、四环类(四环素)、多肽类(多粘菌素)④按作用机制分:抑制细胞壁合成的抗生素(青霉素)、影响细胞膜功能的抗生素(多烯类抗生素)、抑制病原菌蛋白质合成的抗生
素(四环素)、一直核酸合成的抗生素(丝裂霉素C)、抑制生物能作用的抗生素(抗霉素)⑤按合成途径分:氨基酸、肽聚类衍生物抗生素(青霉素)、糖类衍生物抗生素(链霉素糖苷类抗生素)、乙酸、丙酸衍生物抗生素(红霉素)
21.抗生素发酵生产的一般过程:发酵过程及控制、提取和精制抗生素用于治疗各种细菌感染或抑制致病微生物感染的药物。
酱油中的风味物质主要来自原料中的蛋白质、淀粉等大分子物质经微生物酶水解后的产物,微生物发酵过程中的产生的代谢产物,以及这些物质之间所产生的复杂的化学放映的产物。
酱油的色素主要是通过麦拉反应,产生含氧化合物--类黑素。
酱油中的香味是因为复杂的化学和生物化学变化产生的,称为火香。
酱油中的鲜味来自原料蛋白质经曲霉的蛋白酶、肽酶、谷氨酰胺酶的作用,水解后生成的18种游离氨基酸。
酱油中的咸味来源是食盐,主要成分是氯化钠。
酱油中的甜味来源是淀粉经曲霉淀粉酶水解生成的葡萄糖和麦芽糖蛋白质水解产生的游离的氨基酸中的甘氨酸、丙氨酸、算算和脯氨酸均呈甜味、米曲霉分泌的脂肪酶将油脂水解生成的甘油
22.空气净化的流程:冷热空气直接混合除菌流程两级冷却、分离、加热流程高效前置过滤除菌流程
23.冷热空气直接混合除菌流程:压缩空气从贮罐出来后分成两部分,一部分进入冷却器冷却到较低温度,经分离器分离油和水雾后,与另一部分未处理过的高温压缩空气混合,要求控制混合后的空气参数温
度T在30~35,相对湿度为50%~60%,混合后进入过滤器过滤。
24.分批灭菌的流程:实消时先将配好的培养基从配料池输入发酵罐中,搅拌打散团块,然后密闭,打开各种排气阀,通入高压蒸汽加热。
通用的发酵罐一般有排料管、进气管和取样管三路进气,为了缩短升温时间,灭菌时要求三路进气。
当有蒸汽冒出时,将排气阀逐渐关小,待罐温上升到120度时,罐压维持在0.1MP并保温30Min左右。
灭菌室迅速关闭部分排气阀和全部排气阀,待罐压低于分过滤器空气压力时,通入无菌空保压,同时冷却降温到接种温度。
25.防止菌种衰退的措施:经量减少传代次数、选择合适的培养条件、利用不同类型的细胞进行传代、选择合适的保藏方法
26.菌种保藏的原理:是根据微生物的生理、生化特性,在人工创造的条件下,使其代谢处于不活泼的休眠状态,生长繁殖受到抑制。
27.用于发酵的菌种的要求:菌种不能是病原菌,不恩能够产生有害的生物活性物质或毒素,以保证产品的安全性、有较短的发酵周期内产生大量发酵产物的能力、在发酵过程中不产生或减少产生与目标产物性质相近的副产品及其他产物,可提高一样物质的转化率,减少分离纯化的难度,降低成本,提高产品的质量、生长繁殖能力强,生长、反应速度快,发酵周期短,产胞菌应具有较强的产孢子能力、原料来源广,价格低廉,菌种能高效的将原料转化成产品、对需要添加的前体物质有耐受能力,不能将前体作为一般的碳源使用、菌种纯,遗传特性稳定,抗噬菌体能力强,以保证发酵过生产和产品的稳定性。
28.种子培养期染菌:立即对种子灭菌处理,种子和培养基都弃之不
用,并且对种子培养管道进行检查。
29.发酵前期染菌:由于营养成分消耗不多,能耗也不大,从经济角度考虑,应迅速灭菌,补充必要的营养成分,重新接种,再进行扩散。
30.发酵中期染菌:营养成分已损失一半,已经有一定数量的产物牺牲,早发现早处理,用一罐没有染菌的发酵液生产能力旺盛与染菌的发酵液混合,使有害菌浓度下降,去抑制染菌的生长。
31.发酵后期染菌:产物积累比较多,营养成分基本耗尽,如果染菌数量不多,继续发酵,如染菌数量比较多,停止发酵。