数学物理方法期末考试试题
- 格式:doc
- 大小:100.00 KB
- 文档页数:3
北京师范大学《数学物理方法》2019-2020学年第一学期期末试卷2019-2020 学年期末试卷数学物理方法专业:物理学考试时间:120 分钟总分:100 分部分一:选择题(每题 5 分,共 30 分)在数学物理方法中,Green 函数的定义式为:A) G(x, x') = ∫dk e^(ik(x-x')) / (k^2 - k_0^2)B) G(x, x') = ∫dk e^(ik(x-x')) / (k^2 + k_0^2)C) G(x, x') = ∫dk e^(ik(x-x')) / (k^2 - k_0^2 + iε)D) G(x, x') = ∫dk e^(ik(x-x')) / (k^2 + k_0^2 - iε)5 分Legendre 方程的通解为:A) P_n(x) = (1 / 2^n n!) * d^n / dx^n (x^2 - 1)^nB) P_n(x) = (1 / 2^n n!) * d^n / dx^n (x^2 + 1)^nC) P_n(x) = (1 / 2^n n!) * d^n / dx^n (x^2 - 1)^(n+1)D) P_n(x) = (1 / 2^n n!) * d^n / dx^n (x^2 + 1)^(n+1)5 分在球坐标系中,Laplacian 算符的表达式为:A) ∇^2 = ∂^2 / ∂r^2 + (2 / r) ∂ / ∂r + (1 / r^2) ∂^2 / ∂θ^2 + (1 / r^2 sin^2 θ) ∂^2 / ∂φ^2B) ∇^2 = ∂^2 / ∂r^2 + (1 / r) ∂ / ∂r + (1 / r^2) ∂^2 / ∂θ^2 + (1 / r^2 sin^2 θ) ∂^2 / ∂φ^2C) ∇^2 = ∂^2 / ∂r^2 + (3 / r) ∂ / ∂r + (1 / r^2) ∂^2 / ∂θ^2 + (1 / r^2 sin^2 θ) ∂^2 / ∂φ^2D) ∇^2 = ∂^2 / ∂r^2 + (4 / r) ∂ / ∂r + (1 / r^2) ∂^2 / ∂θ^2 + (1 / r^2 sin^2 θ) ∂^2 / ∂φ^25 分在数学物理方法中,Sturm-Liouville 问题的通解为:A) y(x) = c_1 y_1(x) + c_2 y_2(x)B) y(x) = c_1 y_1(x) - c_2 y_2(x)C) y(x) = c_1 y_1(x) + c_2 y_2(x) + c_3 y_3(x)D) y(x) = c_1 y_1(x) - c_2 y_2(x) + c_3 y_3(x)在球坐标系中,spherical harmonics Y_lm(θ, φ) 的定义式为:A) Y_lm(θ, φ) = (-1)^m * sqrt((2l + 1) / (4π)) * P_l^m(cos θ) e^(imφ)B) Y_lm(θ, φ) = (-1)^m * sqrt((2l + 1) / (4π)) * P_l^m(cos θ) e^(-imφ)C) Y_lm(θ, φ) = (-1)^m * sqrt((2l - 1) / (4π)) * P_l^m(cos θ) e^(imφ)D) Y_lm(θ, φ) = (-1)^m * sqrt((2l - 1) / (4π)) * P_l^m(cos θ) e^(-imφ)5 分在数学物理方法中,Bessel 函数的递归关系式为:A) J_n(x) = (x / 2) * (J_(n-1)(x) - J_(n+1)(x))B) J_n(x) = (x / 2) * (J_(n-1)(x) + J_(n+1)(x))C) J_n(x) = (2 / x) * (J_(n-1)(x) - J_(n+1)(x))D) J_n(x) = (2 / x) * (J_(n-1)(x) + J_(n+1)(x))5 分部分二:计算题(每题 20 分,共 60 分)证明 Legendre 方程的通解为 P_n(x) = (1 / 2^n n!) * d^n / dx^n (x^2 - 1)^n。
物理系 20 —20 学年第 学期期末考试《数学物理方法》试卷(A )考试时间:120分钟 考试方式:闭卷班级 专业 姓名 学号题 号 一 二 三 四 五 总 分 得 分核分人一、填空(本大题共7题,每空3分,共30分)1、写出复数1+3i 的三角式 ,指数式 。
2、幂级数∑∞=⎪⎭⎫⎝⎛1k kk z 的收敛半径为 。
3、复变函数),(),()(y x i y x z f υμ+=可导的充分必要条件 。
4、cos Z 在Z=0的邻域上泰勒级数的形式是(至少写出前四项)cos Z = 。
5、若周期函数f (x )是奇函数,则可展为傅立叶正弦级数f (x )= 。
展开系数为 。
6、就奇点的类型而言,Z=∞是函数f(z)=ZZcos 的 奇点,Z=0是函数的 点。
得分 阅卷人装 订 线 内 请 勿 答 题 ……………………………………………..装………………….订…………………..线………………………………………………………7、拉普拉斯方程0u ∆=在球坐标系中的表达式为:。
二、简答题(本大题共2题,每题10分,共20分)1、 分别简述单通区域和复通区域下的柯西定理。
2、长为l 的均匀弦,两端0=x 和l x = 固定,弦中张力为T 0,在h x =点,以横向力F 0拉弦,达到稳定后放手任其自由振动,写出初始条件。
得分 阅卷人三、 计算题 (本大题共2题,每题10分,共20分)1、计算回路积分⎰++l22)1z )(1z (dz (l 的方程是0y 2x 2y x 22=+++)(利用留数定理)。
2、计算实变函数积分I=⎰+π20cos 2xdx。
得分 阅卷人四、求解定解问题(本大题共1题,共15分)20000,0,0;(),().(0)t t xx x x x x l t t t u a u u u u x u x x l ϕψ====⎧-=⎪⎪==⎨⎪==<<⎪⎩得分 阅卷人阅卷人得分五、应用题(本大题共1题,共15分)推导无限长、均匀轻质弦做微小横振动所满足的波动方程。
《数学物理方法》课程考试试题- 学年 第 学期 班级时量: 100分钟,总分 100 分,考试形式: 闭卷1.求矢量场222A xy x yj zy k =++的矢量线方程并计算▽×A (5分) 2.求数量场22223326U x y z xy x y z =++++--在点O(o,o,o)与A(1,1,1)处梯度的大小和方向余弦。
又问在哪些点上的梯度为0.?(5分)3.证明矢量场(2)(42)(26)A x y i y x z j y z k =+++++-为调和场,并求其调和函数(10分)4.已知332cos sin (,,),r A r e e divA r r θθθθϕ=+求 (10分) 5.计算i i (5分)6.计算积分24221,,,12i i f z dz x t y t t ++==≤≤积分路径沿抛物线其中(10分) 7.在010()sin,1z f z z ==-的邻域上,把函数展开为泰勒级数,并指出它的收敛半径(10分) 8、用留数定理计算积分中2331,1(1)l z z dz l z z -+=-⎰其中是包围的任意简单闭曲线(10分)9.求矩形脉冲 0(/2)()()220()2t f t H t t ττττ⎧⎪<-⎪⎪=-<<⎨⎪⎪>⎪⎩ 的频谱(10分) 10.两端固定的长为l 的弦,用细棒敲击弦上00,x x x x ==点亦即在点施加冲力,设其冲量为I ,写出定解条件(10分)11.用分离变数法求解定解问题20(0)(0,)(,)0(,0)0,(,0)()(0)tt tt x t a U x l t U l t U x U x x x l ϕ-=<<====<<U U(15分)。
………密………封………线………以………内………答………题………无………效……附:拉普拉斯方程02=∇u 在柱坐标系和球坐标系下的表达式 柱坐标系:2222222110u u u uzρρρρϕ∂∂∂∂+++=∂∂∂∂球坐标系:2222222111sin 0sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂⎛⎫⎛⎫++= ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭一、填空题36分(每空2分)1、 数量场2322u x z y z =+在点(2, 0, -1)处沿2423x xy z =-+l i j k 方向的方向导数是。
2、 矢量场()xyz x y z ==+A r r i +j k 在点(1, 3, 3)处的散度为 。
3、 面单连域内设有矢量场A ,若其散度0∇⋅A =,则称此矢量场为 。
4、 高斯公式Sd ⋅=⎰⎰ A S ;斯托克斯公式ld ⋅=⎰ A l 。
5、 将泛定方程和 结合在一起,就构成了一个定解问题。
只有初始条件,没有边界条件的定解问题称为 ;只有边界条件,没有初始条件的定解问题称为 ;既有边界条件,又有初始条件的定解问题称为 。
………密………封………线………以………内………答………题………无………效……6、 ()l P x 是l 次勒让德多项式,则11()()l l P x P x +-''-= ; m n =时,11()()mn P x P x dx -=⎰。
7、 已知()n J x 和()n N x 分别为n 阶贝塞尔函数和n 阶诺依曼函数(其中n 为整数),那么可知(1)()n H x = 。
(2)()n H x = 。
8、 定解问题2222000(0,0)|0,||0,|0x x ay y bu ux a y b x y u u V u u ====⎧∂∂+=<<<<⎪∂∂⎪⎪==⎨⎪==⎪⎪⎩的本征函数为 ,本征值为 。
物理数学方法试题及答案一、选择题(每题2分,共10分)1. 以下哪项不是傅里叶变换的性质?A. 线性B. 可逆性C. 尺度变换D. 能量守恒答案:D2. 拉普拉斯变换的收敛区域是:A. 左半平面B. 右半平面C. 全平面D. 虚轴答案:B3. 以下哪项是线性微分方程的特征?A. 可解性B. 唯一性C. 线性叠加原理D. 非线性答案:C4. 在复数域中,以下哪个表达式表示复数的模?A. |z|B. z^2C. z*zD. z/|z|答案:A5. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)答案:B二、填空题(每题3分,共15分)1. 傅里叶级数展开中,周期函数的系数可以通过______计算得到。
答案:傅里叶系数2. 拉普拉斯变换中,s = σ + jω代表的是______。
答案:复频域3. 线性微分方程的解可以表示为______的线性组合。
答案:特解4. 复数z = a + bi的共轭复数是______。
答案:a - bi5. 波动方程的一般解可以表示为______和______的函数。
答案:空间变量;时间变量三、简答题(每题5分,共20分)1. 简述傅里叶变换和拉普拉斯变换的区别。
答案:傅里叶变换主要用于处理周期信号,将时间域信号转换到频域;而拉普拉斯变换适用于非周期信号,将时间域信号转换到复频域。
2. 什么是波动方程?请给出其一般形式。
答案:波动方程是描述波动现象的偏微分方程,一般形式为∂²u/∂t² = c²∂²u/∂x²,其中u是波函数,c是波速。
3. 请解释什么是特征值和特征向量,并给出一个例子。
答案:特征值是线性变换中,使得变换后的向量与原向量方向相同(或相反)的标量。
特征向量则是对应的非零向量。
例如,对于矩阵A,如果存在非零向量v和标量λ,使得Av = λv,则λ是A的特征值,v是对应的特征向量。
数学物理方法期末考试试题# 数学物理方法期末考试试题## 第一部分:选择题(每题2分,共20分)1. 以下哪个不是数学物理中的常用方法?A. 傅里叶变换B. 拉普拉斯变换C. 泰勒级数展开D. 牛顿迭代法2. 求解偏微分方程时,分离变量法的基本思想是什么?A. 将偏微分方程转化为常微分方程B. 将偏微分方程分解为几个独立的方程C. 将偏微分方程转化为线性方程D. 将偏微分方程转化为积分方程3. 在数学物理中,格林函数通常用于解决什么问题?A. 线性代数问题B. 非线性偏微分方程C. 边界值问题D. 初始值问题4. 以下哪个是求解波动方程的典型方法?A. 特征线法B. 有限差分法C. 有限元法D. 蒙特卡洛方法5. 拉普拉斯方程在数学物理中通常描述了什么类型的物理现象?A. 波动现象B. 热传导现象C. 流体动力学问题D. 电磁场问题## 第二部分:简答题(每题10分,共30分)6. 简述傅里叶变换在数学物理中的应用。
7. 解释什么是边界层理论,并说明它在流体力学中的重要性。
8. 描述格林函数在求解偏微分方程中的作用。
## 第三部分:计算题(每题25分,共50分)9. 给定函数 \( f(x) = x^2 - 4x + 3 \),使用泰勒级数展开在\( x = 1 \) 处展开 \( f(x) \) 并求出展开式。
10. 考虑一个无限长直导体,在 \( x \) 轴上,导体的电势 \( V(x) \) 满足泊松方程 \( \nabla^2 V = -\rho/\varepsilon_0 \),其中\( \rho \) 是电荷密度,\( \varepsilon_0 \) 是真空电容率。
假设\( \rho \) 是常数,求解 \( V(x) \)。
## 第四部分:论述题(共30分)11. 论述数学物理方法在解决实际物理问题中的应用,并给出至少两个具体的例子。
请注意,以上内容仅为示例,实际的数学物理方法期末考试试题可能会包含不同的问题和要求。
数学物理方法考试试题1. 求解方程(1) 求解方程$3x^2 + 4x - 7 = 0$;(2) 求解方程$\sin x + \cos x = 1$。
2. 矢量运算已知矢量$\boldsymbol{a} = 2\hat{i} - \hat{j} + 3\hat{k}$,$\boldsymbol{b} = \hat{i} + 2\hat{j} - 3\hat{k}$,求$\boldsymbol{a} + \boldsymbol{b}$和$\boldsymbol{a} \cdot \boldsymbol{b}$。
3. 微积分计算积分$\int_0^1 x^2\mathrm{d}x$。
4. 偏微分方程求解偏微分方程$u_t = \alpha^2 u_{xx}$,其中$\alpha$为常数。
5. 线性代数设矩阵$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$,求$A$的特征值和特征向量。
6. 复变函数计算函数$f(z) = \text{Re}(z^2)$的柯西黎曼方程,并判断$f(z)$在何种条件下解析。
7. 量子力学利用定态薛定谔方程,求一维谐振子的能量本征值和本征函数。
8. 物理学基础推导光的双缝干涉公式$I = I_0 \cos^2$$\left(\frac{\pi d \sin\theta}{\lambda}\right)$,并解释各符号的含义。
9. 统计力学计算理想气体的内能$U$与温度$T$的关系式,并讨论其在高温极限下的行为。
通过以上试题,考生可以全面复习数学物理方法的基础知识和解题技巧,提高应试水平,取得优异成绩。
祝各位考生考试顺利!。
《数学物理方法》试卷(A 卷)参考答案姓名: 学号:题号 一 二 三 四 五 六 七八 总分 得分注:本试卷共一页,共八大题。
答案请做在答题纸上,交卷时,将试题纸与答题纸填好姓名与学号,必须同时交齐,否则考卷作废!可能用到的公式:1). (2l +1)xP l (x )=lP l −1(x )+(l +1)P l+1(x ), 2). P 0(x )=1, P 1(x )=x ;3))(~)]([00k k f x f eF xik −=;4))]([1])([x f F ikd f F x=∫∞−ξξ; 5).])1(1[2sin )(I 333n ln l xdx l n x l x −−=−=∫ππ一、 简答下列各题。
(12分,每题6分)1. 试在复平面上画出3)arg(0π<−<i z ,4Re 2<<z 点集的区域。
解:如图阴影部分为所求区域 (6分)2. 填空题:函数3)2)(1()(i z z z f +−=是单值的还是多值的?多值的(1分);若是多值,是几值?3值(2分);其支点是什么?1,-2i ,∞(3分)。
二、 (9分) 试指出函数3sin )(zzz z f −=的奇点(含ㆀ点)属于哪一类奇点? 解:22112033)12()1(])12()1([1sin )(−∞=+∞=∑∑+−=+−−=−=n n nn n n n n n z n z z z z z z f (3分) z=0为f (z )的可去奇点;(3分)z=∞为f (z )的本性奇点;(3分)三、 (9分) 已知解析函数f (z ) = u (x ,y ) + iv (x ,y )的虚部v (x,y ) = cos x sh y , 求f (z )= ? 解:由C-R 条件x y x v yy x u y y x v x y x u ∂∂−=∂∂∂∂=∂∂),(),(,),(),( (3分)得 u x (x,y ) = v y (x,y ) = cos x ch y u y (x,y ) = −v x (x,y ) = sin x sh y (3分)高数帮帮数帮高数帮高f (z ) = f (x +iy ) = u (x ,y ) + iv (x ,y ) = sin x ch y +i cos x sh y + c上式中令 x=z, y=0, 则 f (z ) = f (z+i0) = sinz + c (3分)四、 (10分) 求积分dz z e I Lz∫−=6)1(其中曲线L 为(a)圆周21=z ;(b)圆周2=z 解:(a) 6)1()(−=z e z f z 在圆周21=z 内解析,I = 0;(5分) (b) 在圆周2=z 内有一奇点,I = 2πiRes f (1)= 2π i !52)1()1()!16(166551lim e i z e z dx d z z π=−−−→(5分) 五、 (10分) 计算拉普拉斯变换?]2sin [=t t L (提示:要求书写计算过程)解:已知 42]2[sin ,][sin 222+=+=p t L p t L 也即ωωω(2分) 由象函数微分定理)3(4)(4p4)(4p ]2sin []2sin )[()2(4)(4p )42(]2sin )[()3(,)()1()]()[(2222222分分分+=+−−=−=−∴+−=+=−−=−p p t t L t t L p p dp d t t L p f dp d t f t L nnnn六、 (15分) 将f (x )= (35/8)x 4 + 5x 3−(30/8)x 2 +(10/3)x +1展开为以{ P l (x ) }基的广义付里叶级数。
数学物理方法试卷数学物理方法是一门重要的学科,它将数学和物理学相结合,以求解物理问题为目标。
本文档旨在提供一份针对数学物理方法的试卷,帮助学生加深对该学科的理解和应用能力。
一、选择题(共10题,每题2分)1. 下列哪个是四位数?A. 123B. 12345C. 123456D. 12342. 如何计算三角形的面积?A. 底乘高除以2B. 长乘宽C. 半径的平方乘以πD. 无法计算3. 下列哪个是速度的单位?A. 米/秒B. 千克C. 焦耳D. 牛顿4. 什么是牛顿第三定律?A. 物体的加速度和作用力成正比B. 物体的质量和加速度成正比C. 在力的作用下,物体会产生加速度D. 任何作用力都有一个相等且方向相反的反作用力5. 单位矩阵是什么?A. 所有元素都为1的矩阵B. 所有元素都为0的矩阵C. 对角线上元素都为1,其他元素为0的矩阵D. 所有元素都相等的矩阵6. 下列哪个是圆的面积公式?A. πr^2B. 2πrC. πd^2D. 0.5πr^27. 加速度的单位是什么?A. 米/秒^2B. 米/秒C. 十米/秒^2D. 千米/小时8. 下列哪个公式用于计算动能?A. F = maB. W = FdC. E = mc^2D. KE = 1/2mv^29. 如何计算两个向量的点积?A. 向量相乘再求和B. 向量相除C. 向量相减D. 无法计算10. 下列哪个没被广义相对论所解释?A. 引力B. 黑洞C. 宇宙膨胀D. 电磁力二、解答题(共3题,每题10分)1. 请用泰勒级数展开sin(x),并计算在x=π/6时的近似值。
2. 请用微分方程求解y'' + 4y = 0,并给出其特解。
3. 请解释质心是什么,并说明为什么在某些问题中质心坐标系非常有用。
本试卷针对数学物理方法的知识进行了全面的考察。
选择题部分测试了学生的基础知识和概念理解能力,而解答题则要求学生能够运用所学的数学物理方法进行实际问题的求解和解释。
西北师范大学物理与电子工程学院2006-2007学年度第一学期《数学物理方法》期末试卷(A 卷)系别:专业:级别:班级:学号:姓名:任课教师:题号一二三四五六七八总分得分一、(10分)在经典数学物理方程中,以二阶线性偏微分方程为主要研究对象.请问二阶线性偏微分方程从数学上分为哪几类?在物理上分别对应于什么过程?并写出各类方程的标准形式.二、(10分)数学物理方程有两大基本任务:导出定解问题和求解相应的定解问题.请问什么是定解问题?定解问题包括哪些要素?我们学习了哪些定解问题?以及求解这些定解问题的主要方法有哪些?三、(10分)定解问题的适定性对于导出定解问题和求解定解问题具有重要的指导意义.请问什么是定解问题的适定性?适定性包括哪些方面?并从物理角度分析如下定解问题是不适定的(提示:可以从温度场或静电场出发,解可能不存在).∆u =f (f =0)(在区域D 内)∂u ∂n S =0(S 为区域D 的边界,n 为边界S 的外法线方向)四、(5分)一根长为l 的均匀细杆,其温度分布满足如下定解问题:u t −a 2u xx =0(0<x <l,t >0)u (0,t )=0,u x (l,t )=0(t ≥0)u (x,0)=200(0≤x ≤l )《数学物理方法》试卷(A 卷)第1页(共3页)不求解定解问题,从物理角度直观分析细杆上温度随时间的变化情况,并考察t →+∞时细杆上的温度.五、(30分)分离变量法是求解定解问题的重要方法之一.请问分离变量法对定解问题有什么要求?分离变量法有哪些基本步骤?关键的步骤是什么?请用分离变量法求解如下弦振动方程的混合问题(要求写出完整的求解过程),并分析解的物理意义.u tt =a 2u xx (0<x <l,t >0)u (0,t )=0,u (l,t )=0(t ≥0)u (x,0)=sin 2πx l ,u t (x,0)=0(0≤x ≥l )六、(15分)一根无限长的均匀细杆,其振动满足如下定解问题:u tt =a 2(u xx +2x u x )(−∞<x <∞,t >0)u (x,0)=ϕ(x )(−∞<x <∞)u t (x,0)=ψ(x )(−∞<x <∞)其中ϕ(x ),ψ(x )为充分光滑的已知函数.请求解该定解问题,并说明解的物理意义(提示:令v (x,t )=xu (x,t )).七、(10分)格林函数又称点源影响函数,请用镜像法求出Laplace 方程上半空间Dirichlet 问题的格林函数,并说明其物理意义.同时请写出Laplace 方程上半空间Dirichlet 问题∆u =0(z >0,−∞<x <∞,−∞<y <∞)u (x,y,0)=f (x,y )(−∞<x <∞,−∞<y <∞)解的积分公式.八、(10分)求解常微分方程的本征值问题时,会得到各种各样的特殊函数,诸如Legendre(勒让德)多项式、Bessel(贝塞耳)函数、Hermite(厄密)多项式《数学物理方法》试卷(A 卷)第2页(共3页)和Laguerre(拉盖尔)多项式等.对连带Legendre多项式,请填空(每空2分):l阶连带Legendre微分方程的一般形式为,其中有两个本征值l(l+1)和m.l的取值范围为,相应m的取值范围为.l阶连带Legendre微分方程的解为l阶连带Legendre多项式,连带Legendre多项式的性、性和完备性是使它成为一个坐标函数系的三个重要性质.《数学物理方法》试卷(A卷)第3页(共3页)西北师范大学物理与电子工程学院2006-2007学年度第一学期《数学物理方法》期末试卷(A卷)参考答案一、(10分)二阶线性偏微分方程从数学上分为双曲型、抛物型、椭圆型三类,在物理上,双曲型方程对应于波动过程,抛物型方程对应于传输和扩散过程,椭圆型方程对应于稳定场过程.双曲型方程的标准形式为u tt−a2∆u=f,抛物型方程的标准形式为u t−a2∆u=f,椭圆型方程的标准形式为∆u=f.二、(10分)物理问题在数学上的完整提法是:在给定的定解条件下,求解数学物理方程.数学物理方程加上相应的定解条件就构成定解问题.定解问题包括泛定方程和定解条件.物理规律用偏微分方程表达出来,叫作数学物理方程.数学物理方程,作为同一类物理现象的共性,反映的是矛盾的普遍性,与具体条件无关,是解决问题的依据,所以又称为泛定方程.定解条件包括边界条件和初始条件,有时还需要衔接条件.边界条件和初始条件反映了具体问题特定的环境和历史,即矛盾的特殊性.泛定方程提供解决问题的依据,定解条件提出具体的物理问题,泛定方程和定解条件作为一个整体,合称为定解问题.学习的定解问题有:对波动过程:针对有界弦,提出了弦振动方程的混合问题;针对无界弦,提出了弦振动方程的初值问题(或Cauchy问题).对传输和扩散过程:针对有界杆,提出了热传导方程的混合问题;针对无界杆,提出了热传导方程的初值问题;针对一端有界的杆,提出了热传导方程的半无限问题.对稳定场过程:提出了Laplace方程圆、球、半空间、半平面的Dirichlet问题.求解这些定解问题的主要方法有:分离变量法(有界空间、无界空间、极坐标系、球坐标系)、Fourier级数法(齐次泛定方程、非齐次泛定方程)、行《数学物理方法》试卷(A卷)参考答案第1页(共4页)波解法(或D’Alembert解法)、冲量定理法、格林函数法(波动、热传导、镜像法)等.三、(10分)定解问题是对真实的物理问题经过一定的近似后得到的,近似就涉及到是否合理的问题,即定解问题是否提的正确,这一问题称为定解问题的适定性.定解问题的适定性包括解的存在性、解的唯一性和解的稳定性三个方面.该定解问题如果从温度场来考虑,反映的是这样一种温度场:区域D内存在热源,而边界上是绝热的.热源不停的放出热量,而热量又不能经由边界散发出去,D内的温度必然要不停的升高,其温度分布不可能是稳定的,故该问题不能由Possion方程来描述,因此该定解问题的解是不存在的.从而该定解问题是不适定的.(注:从静电场分析类似,只不过内部有电荷分布,而电场的法向分量为零.)四、(5分)从该定解问题可以看出:杆的左端温度为0,右端绝热,杆内部没有热源,杆上初始时刻各处温度均为常数200.根据热传导规律,杆上的温度将随时间降低,越靠近左端,温度降得越快,最后当t→+∞时细杆的温度将和左端的温度相等,即杆上各处的温度均为0.五、(30分)分离变量法要求定解问题的泛定方程与边界条件必须是齐次的.分离变量法其基本步骤为:1、变量分离;2、求解本征值问题;3、求解另外的常微分方程;4、特解的叠加;5、利用定解条件确定叠加系数.分离变量法关键的步骤是求解本征值问题.1.变量分离设u(x,t)=X(x)T(t),代入泛定方程得X +λX=0T +λa2T=0,其中λ为分离常数.将u(x,t)=X(x)T(t)代入边界条件得X(0)=0,X(l)=0.《数学物理方法》试卷(A卷)参考答案第2页(共4页)2.求解本征值问题X +λX =0X (0)=0,X (l )=0本征值λn =n 2π2l 2,本征函数X n (x )=sin nπxl ,n =1,2,···.3.求解常微分方程T+n 2π2a 2l 2T =0,n =1,2,···T n (t )=C n cos nπa l t +D n sin nπalt ,n =1,2,···.其中C n ,D n 为任意常数.得一系列特解u n (x,t )=X n (x )T n (t )=C n cos nπa l t +D n sin nπa l t sin nπxl,n =1,2,···.4.特解的叠加u (x,t )=∞ n =1u n (x,t )=∞ n =1C n cos nπal t +D n sin nπa l t sin nπx l.5.利用初始条件确定叠加系数C n ,D nu (x,0)=∞ n =1C n sinnπx l =sin 2πxl =⇒C 2=1C n =0,n =2.u t (x,0)=∞ n =1D n nπa l sin nπxl=0=⇒D n =0,n =1,2,···.所以该定解问题的解为u (x,t )=cos2πa l t sin 2πxl.解的物理意义:该Fourier 级数解在物理上表示驻波.六、(15分)令v (x,t )=xu (x,t ).化原定解问题为:v tt =a 2v xx (−∞<x <∞,t >0)v (x,0)=xϕ(x )(−∞<x <∞)v t (x,0)=xψ(x )(−∞<x <∞)利用D’Alembert 公式,有《数学物理方法》试卷(A 卷)参考答案第3页(共4页)v(x,t)=(x−at)ϕ(x−at)+(x+at)ϕ(x+at)2+12ax+atx−atαψ(α)dα.所以,u(x,t)=1xv(x,t)=12x(x−at)ϕ(x−at)+(x+at)ϕ(x+at)+1ax+atx−atαψ(α)dα.解的物理意义:f(x−at)表示右行波(或右传播波、正行波),f(x+at)表示左行波(或左传播波、逆行波),u(x,t)表示沿x轴正、负方向传播的行波,其中前一项来源于初始位移ϕ(x),后一项来源于初始速度ψ(x).七、(10分)Laplace方程上半空间Dirichlet问题的格林函数为:G(M,M0)=1r MM−g(M,M0)=1r MM−1r MM1=1(x−x0)2+(y−y0)2+(z−z0)2−1(x−x0)2+(y−y0)2+(z+z0)2,其中1r MM=1(x−x0)2+(y−y0)2+(z−z0)2在静电学上表示M0(x0,y0,z0)处单位正电荷在M(x,y,z)处产生的电势,−g(M,M0)表示接地导体平面z=0上感应负电荷在M(x,y,z)处产生的电势,其可以用镜像点M1(x0,y0,−z0)处单位负电荷产生的电势−1(x−x0)2+(y−y0)2+(z+z0)2来代替.Laplace方程上半空间Dirichlet问题解的积分公式为:u(x0,y0,z0)=−14πf∂G(M,M0)∂ndS=14π∞−∞∞−∞f(x,y)·∂∂z1(x−x0)2+(y−y0)2+(z−z0)2−1(x−x0)2+(y−y0)2+(z+z0)2z=0dx dy=z02π∞−∞∞−∞f(x,y)(x−x0)2+(y−y0)2+z203/2dxdy八、(10分)(1−x2)d2ydx2−2xdydx+l(l+1)−m21−x2y=0.l=0,1,2,3,···,m=0,1,2,···,l.正交、归一.《数学物理方法》试卷(A卷)参考答案第4页(共4页)。
物理方法考试试题及答案一、选择题(每题2分,共20分)1. 根据牛顿第二定律,物体的加速度与作用力的关系是:A. 成正比B. 成反比C. 与作用力无关D. 无法确定答案:A2. 光在真空中的传播速度是:A. 3×10^8 m/sB. 3×10^5 m/sC. 3×10^2 m/sD. 3×10^3 m/s答案:A3. 以下哪个选项是描述能量守恒定律的?A. 能量可以被创造或消灭B. 能量可以从一种形式转化为另一种形式C. 能量在转化过程中总量不变D. 能量只能在特定条件下转化答案:C4. 根据欧姆定律,电阻、电流和电压之间的关系是:A. 电流与电压成正比,与电阻成反比B. 电流与电压成反比,与电阻成正比C. 电流与电压无关,与电阻无关D. 电流与电压和电阻都成正比答案:A5. 一个物体在水平面上受到的摩擦力大小与以下哪个因素无关?A. 物体的质量B. 物体与地面的接触面积C. 物体对地面的压力D. 物体与地面的摩擦系数答案:B6. 以下哪个选项是描述光的折射现象的?A. 光在不同介质中传播速度不同B. 光在不同介质中传播方向不变C. 光在不同介质中传播速度相同D. 光在不同介质中传播方向相同答案:A7. 根据热力学第二定律,以下哪个说法是正确的?A. 热量可以自发地从低温物体传向高温物体B. 热量不能自发地从低温物体传向高温物体C. 热量可以在没有外部作用下从高温物体传向低温物体D. 热量可以在没有外部作用下从低温物体传向高温物体答案:B8. 以下哪个选项是描述电磁感应现象的?A. 变化的磁场产生电场B. 变化的电场产生磁场C. 稳定的磁场产生电场D. 稳定的电场产生磁场答案:A9. 以下哪个选项是描述波的干涉现象的?A. 两个波相遇时,它们的振幅相加B. 两个波相遇时,它们的振幅相减C. 两个波相遇时,它们的频率相加D. 两个波相遇时,它们的频率相减答案:A10. 以下哪个选项是描述量子力学中的不确定性原理的?A. 粒子的位置和动量可以同时被精确测量B. 粒子的位置和动量不能同时被精确测量C. 粒子的速度和动量可以同时被精确测量D. 粒子的速度和位置可以同时被精确测量答案:B二、填空题(每题2分,共20分)1. 牛顿第三定律指出,两个物体之间的力是_________的。
数学物理方法考试试题一、选择题1. 在坐标系中,以下哪个曲线表示了函数 y = e^x 的图像?A. y = x^2B. y = eC. y = e^(-x)D. y = ln(x)2. 一个小球从地面上方以速度 v0 抛下,忽略空气阻力。
以下哪个公式正确地描述了小球的下降高度 h(t) 随时间变化的关系?A. h(t) = v0 * t - 0.5 * g * t^2B. h(t) = v0 * t + 0.5 * g * t^2C. h(t) = v0 * t + g * t^2D. h(t) = v0 * t - g * t^23. 空间中有一个电场 E = 2x i + 3y j + 4z k。
一个电子从点 (1, 2, 3) 处开始沿电场方向运动,电子的加速度大小是多少?A. 7B. 5C. 6D. 44. 一个质点在平面上做匀速圆周运动,其角速度大小为 2 rad/s。
质点的速度大小和圆周半径分别是多少?A. v = 2rB. v = 4rC. v = 6rD. v = 8r5. 一辆汽车以匀加速度 a 行驶,在时刻 t1 时起动,时刻 t2 时速度为 v2。
以下哪个公式可以用于计算汽车在时间区间 [t1, t2] 内行驶的距离?A. s = v2 - v1B. s = a * (t2 - t1)C. s = v1 * (t2 - t1) + 0.5 * a * (t2 - t1)^2D. s = v1 * (t2 + t1) + 0.5 * a * (t2 - t1)^2二、计算题1. 计算下列函数的导数:(1) f(x) = x^3 - 2x^2 + 3x - 4(2) g(x) = e^x * sin(x)2. 一个弹簧的劲度系数为 k,质量为 m 的物体悬挂在弹簧上。
当物体受到外力 F(t) = 2cos(t) 作用时,确定物体的运动方程并解释物体的运动特性。
3. 一个半径为 R 的圆形铁环在匀强磁场 B 的作用下,磁通量在时间区间 [0, t] 内以恒定速率增大。
数学物理方程期末考试题及答案一、选择题(每题2分,共10分)1. 以下哪一项不是数学物理方程的特点?A. 连续性B. 离散性C. 线性D. 非线性答案:B2. 波方程是描述什么的方程?A. 热传导B. 电磁波C. 机械波D. 流体动力学答案:C3. 拉普拉斯方程通常出现在哪种物理现象中?A. 热传导B. 流体流动C. 电磁场D. 弹性力学答案:C4. 以下哪个不是偏微分方程的解的性质?A. 唯一性B. 线性C. 稳定性D. 离散性答案:D5. 波动方程的解通常表示什么?A. 温度分布B. 电荷分布C. 压力分布D. 位移分布答案:D二、填空题(每空2分,共20分)6. 波动方程的基本形式是 _______。
答案:\( \frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u \)7. 热传导方程,也称为________方程。
答案:傅里叶8. 拉普拉斯方程 \( \nabla^2 \phi = 0 \) 在静电学中描述的是________。
答案:电势9. 边界条件通常分为________和________。
答案:狄利克雷边界条件;诺伊曼边界条件10. 波动方程的一般解可以表示为________和________的叠加。
答案:基频解;高阶谐波三、简答题(每题10分,共30分)11. 解释什么是边界层的概念,并给出一个实际应用的例子。
答案:边界层是流体力学中的一个概念,指的是流体靠近物体表面处的一层非常薄的流体,其中速度梯度很大。
在边界层内,流体的速度从物体表面的零速度逐渐增加到与外部流体速度相匹配。
一个实际应用的例子是飞机的机翼,边界层的厚度和特性对飞机的升力和阻力有重要影响。
12. 描述什么是格林函数,并解释它在解决偏微分方程中的作用。
答案:格林函数是一种数学工具,用于解决线性偏微分方程。
它是一个特定的函数,当它与方程的算子相乘时,结果是一个狄利克雷问题,其解是原始方程的一个解。
数学物理方程期末考试试题及答案一、求解方程(15分)⎧utt -a2uxx=0⎪⎨ux-at=0=ϕ(x)⎪u⎩x+at=0=ψ(x).其中ϕ(0)=ψ(0)。
⎧ξ=x-at解:设⎨则方程变为:η=x+at⎩uξη=0,u=F(x-at)+G(x+at)(8’)由边值条件可得:F(0)+G(2x)=ϕ(x),F(2x)+G(0)=ψ(x)由ϕ(0)=ψ(0)即得:u(x,t)=ϕ(x+at x-at)+ψ()-ϕ(0)。
22二、利用变量分离法求解方程。
(15分)⎧utt -a2uxx=0,(x,t)∈Q,⎪⎨ux=0=ux=l=0,t≥0,⎪u=ϕ(x),ut t=0=ψ(x)⎩t=0其中0≤x≤l。
a>0为常数解:设u=X(x)T(t)代于方程得:X''+λX=0,T''+λa2T=0(8’)X=C1cosλx+C2sinλx,T=C1cosλat+C2sinλat由边值条件得:C 1=0,λ=(∞n π2)ln πx lu =∑(B n cos λat +A n sin λat )sin n =1B n =2l n πx 2l n πx ,ϕ(x )sin dx A =ψ(x )sin dx n ⎰⎰00l l an πl2三.证明方程u t -a u xx -cu =0(c ≥0)具有狄利克雷边界条件的初边值问题解的唯一性与稳定性. (15分)证明:设v =e -ct u 代入方程:⎧v t-a 2v xx =0⎪⎨v t =0=ϕ(x )⎪v (0,t )=g (t ),v (l ,t )=g (t ).12⎩设v 1,v 2都是方程的解设v =v 1-v 2代入方程得:⎧v t-a 2v xx =0⎪⎨v t =0=0⎪v (0,t )=,v (l ,t )=0⎩由极值原理得v =0唯一性得证。
(8’)由v 1-v 2≤v 1-v 2得证。
τ≤ε,稳定性得证由v =e -ct u 知u 的唯一性稳定性四.求解二维调和方程在半平面上的狄利克雷问题(15分).∆u =u xx +u yy +u zz=0,z >0,u z =0=f (x ).解:设p (ξ,η,ζ)是上半平面内一点,在该点放置单位点电荷,其对称点p (ξ,η,-ς)格林函数:G (x ,y ,ξ,η)=-14π14π1(x -ξ)+(y -η)+(z -ς)1(x -ξ)+(y -η)+(z +ς)222222+∂G∂G=-∂n∂z z=0=ς2π[(x-ξ)+(y-η)+ς]2223/2方程的解:u(ξ,η)=ς2πϕ(x,y)⎰[(x-ξ)2+(y-η)2+ς2]3/2dx R2五、证明下列初边值问题解的唯一性.(20分)u utt-a2(uxx+uyy)=f(x,y,t) t=0=ϕ(x,y),=ψ(x,y),ut t=0uΓ=g(x,y,t).其中t>0,(x,y)∈Ω,Γ为Ω的边界.解:设u1,u2都是方程的解设u=u1-u2代入方程得:u tt -a(uxx+uyy)=0u u t t=02 =0=0 t=0uΓ=0.设E(t)=12222[u+a(u+u]dxdy t x y⎰⎰2ΩdE(t)=2⎰⎰[ut utt+a2(uxuxt+uyuyt)]dxdydtΩ=2[ut [utt-a(uxx+uyy)]dxdyΩ⎰⎰2=0(10’)E(t)=E(0)=0,u=C,由边值条件得:u=0。
2013 —2014 学年度第 一 学期 《数学物理方法》试卷(A )学院 专业 班 学号 姓名 分数一、(本题10分)写出下列物理问题的定解问题1.一长度为l 的细杆,杆的侧面和两端保持绝热,初始杆上温度分布为x ,写出此定解问题。
并指出+∞→t 时的杆上的温度分布情况。
2.一半带形区域(0,0≥≤≤y a x ),已知边界0=x 和0=y 上的电势都为零,而边界a x =上的电势为 u 0,写出此半带形区域内电势满足的定解问题。
二、(本题10分)计算积分 dx x xJ I ⎰=)(2将计算结果用零阶和一阶贝塞尔函数表示,因为工程上有零阶、一阶贝塞尔函数表可查。
三、(本题15分)定解问题 ⎪⎪⎩⎪⎪⎨⎧====><<=-====0,5,0)0,0(30002t t t x x xx tt u x u u u t x u a u ππ1)若要使边界条件齐次化,求其辅助函数,并写出边界条件齐次化后相应的定解问题。
2)当方程的非齐次项和边界条件都与自变量t 无关时,可以选择特定的辅助函数w ,使得经变换w v u +=后所得v 的泛定方程和边界条件都是齐次的。
求满足本定解问题的辅助函数)(x w 。
四、(本题15分)有一内、外半径分别为a 和2a 的均匀球壳,其内球壳的电势分布为θ20cos u ,外球壳的电势为零,球壳内、外均无电荷。
求: 1)球壳内)2(a r a <<的电势分布;2)将单位正电荷从球壳的球心移到球壳内表面电场力所做的最大功是多少。
五、(本题20分)分离变量法和本征函数法1)定解问题⎪⎪⎪⎩⎪⎪⎪⎨⎧====><<=-====000)0,0(sin sin 0002t t t l x x xx ttu u u u t l x t lx A u a u ωπ用本征函数法展开求解时,关于)(t T 满足的方程和初始条件是什么。
2)利用分离变量法求解下列热传导问题⎪⎪⎩⎪⎪⎨⎧===><<=-===x u u u t x Du u t x x x x xx t 200sin 80)0,0(0ππ六、(本题15分)一维无界波动问题1)写出一维无界波动问题⎪⎪⎩⎪⎪⎨⎧==>+∞<<-∞=-==)()()0,(0002x u x u t x u a u t t t xx tt ψϕ的通解。
2018-2019(1)数学物理方法期末复习题1、将下列复数表示为sin θ,cos θ的幂的形式(1)cos5θ;(2)sin 5θ2、计算下列复数(1)(101−+;(2(3)()i +Ln 1;3、根据已知条件,求解析函数()()(),,f z u x y iv x y =+(1) 已知:()22,u x y x y xy =−+,()00f =(2) 已知:32(,)3=−u x y x xy ,()00f =(3) 已知:(),sin px v x y e y =,p 为待定值。
4、计算下列积分:(1)z 2()(3)dz z i z =−+⎰; (2)3||1cos (z i z dz z i −=−⎰); (3)z 4(2)(3)dz z z =++⎰; (4)2sin d 210x x x x x +∞−∞−+⎰;(5)201d ,1sin x a a x π>+⎰;(6)220cos d (1)x x x +⎰π 5、计算积分()Re cz dz ⎰,(1)c 是连结点0到1+i 的直线段;(2)c 是由1+i 到1+2i ,再到3+2i 的折线段。
6、试将函数1()1z f z z −=+在z=1的邻域内展开成泰勒级数。
7、将函数21()-32f z z z =+在(1)0<|z |<1(2)1<|z |<2(3)|z |>2分别展开成洛朗级数。
8、求解下列本征值问题的本征值和本征函数:(1)()()0(0)0,()0X x X x X X l λ''+=⎧⎨==⎩;(2)()()0(0)0,()0X x X x X X l λ''+=⎧⎨'==⎩;(3)()()0(0)0,()0X x X x X X l λ''+=⎧⎨''==⎩9、已知勒让德多项式的正交性: 112 () P ()P ()d 210 ()n l n l x x x l n l −⎧=⎪=+⎨⎪≠⎩⎰, 前几阶勒让德多项式:0P ()1x =;1P ()x x =;2122P ()(31)x x =−;3132P ()(53)x x x =−(1)计算11(12)()n x P x dx −+⎰; (2)证明:12212(1)(1)[()]21n n n x P x dx n +−+'−=+⎰(3)以勒让德多项式为基,在[-1,1]上把f (x )= x 3展开为广义Fourier 级数 。
数学物理方法期末考试试题一、单项选择题(每小题2分)
1.齐次边界条件的本征函数是_______。
A) B)
C) D)
2.描述无源空间静电势满足的方程是________.
A) 波动方程 B)热传导方程
C) Poisson方程 D)Laplace方程
3.半径为R的圆形膜,边缘固定,其定解问题是
其解的形式为,下列哪一个结论是错误的______。
A)
B)圆形膜固有振动模式是和
C)是零阶Bessel函数的第m个零点。
D)满足方程
4.是下列哪一个方程的解_________。
A) B)
C) D)
5.根据整数阶Bessel函数的递推公式,下列结论哪一个是正确的________。
A) B)
C) D)
二、填空题(每题3分)
1.定解问题
用本征函数发展开求解时,关于T(t)满足的方程是:__________ 2.Legendre多项式的x的值域是____________。
Bessel函数的x的值域是______________________.
3.一圆柱体内的定解问题为
1)则定解问题关于ρ满足的方程是:_____________________________;
相应方程的解为___________________________;
2)关于z满足的方程是_______________________________________;
4.计算积分
5.计算积分
三、(10分)长为的弦,两端固定,初始位移为,初始速度为4x,写出此物理问题的定解问题。
四、(10分)定解问题
,
若要使边界条件齐次化,,求其辅助函数,并写出相应的定解问题
五、(10分)利用达朗贝尔公式求解一维无界波动问题
六、(15分)用分离变量法求解定解问题
计算积分
七、(15分)有一半径为R的薄圆盘,若圆盘的上下面绝热,圆盘边缘的温度分布为
,试求圆盘上稳定的温度分布.
八、(15分)设有一半径为R的球壳,其球壳的电位分布,写出球外的电位满足的定解
问题,并求球外的电位分布
参考公式
(1)柱坐标中Laplace算符的表达式
(2)Legendre多项式
(3)Legendre多项式的递推公式
(4)Legendre多项式的正交关系
(5)整数阶Bessel函数
(6)Bessel函数的递推关系。