八年级数学下册竞赛试卷
- 格式:doc
- 大小:220.50 KB
- 文档页数:5
第九届“睿达杯”初中生数学能力竞赛试题卷八年级 第二试 时间120分钟 满分150分一、填空(本大题共18小题20空,每空6分,共120分)1. 计算:2222201720171...331221111++++++++=___2. 已知三角形的三边长均为整数,其中有一条边是3,但不是最短边,这样的三角形有___个3. 如图,AB=BC 1=C 1C 2=C 2C 3=...=C n-1C n =1(n>2),1BC AB ⊥,211C C AC ⊥,322C C AC ⊥,...,n n n C C AC 11--⊥, 则n AC =___.4.如图,在长方形ABCD 中,点E. F 分别在CD 、AB 上,AB=8cm,BC=5cm,将长方形ABCD 沿EF 折叠成如图所示,则整个阴影部分图形的周长为___.5.已知直线y=-2x-2分别与x 轴、y 轴交于A 、B 两点,O 为坐标原点。
在直线x=2上找一点P ,使得ΔPAB 与ΔOAB 面积相等,则符合条件的点P 的坐标为___.6.若锐角三角形中有两边之比为1:2,那么这两边的夹角α的取值范围是___.7.已知m 是整数,方程组⎩⎨⎧=+=-25663my x y x 有正整数,则m 的值为___. 8.满足222)()1()1(y x y x +=-+-的有序数对(x,y )有___ 对。
9.如图,△BEF 的内角∠EBF 平分线BD 与外角∠AEF 的平分线交于点D,过D 作DH ∥BC 分别交EF 、EB 于G 、H 两点。
下列结论:①HD=HB;②∠EFD=∠CFD;③HD=HF;④BH −GF=HG,其中正确的结论是___.10. 若三角形的三条高线的长度分别为6、18、h,其中h 为正整数,则h 的最大值为___.11. 若在有一个为90°的凸n 边形(n 为大于3的自然数)中,最多有M 个内角为锐角,最少有m 个内角为锐角,则M+m=___.12. 如果,32,41,2532≤-≤+=-y x y x 那么xy=___.13. 在ΔABC 中,AB=13,BC=10,CA=29,则ΔABC 的面积为___.14. 多项式6522++-++y x by axy x 的一个因式是x+y-2,则a+b 的值为___.15. 已知ΔABC 的一个顶点为A (4,-2),∠B 被y 轴平分,∠C 被直线y=x 平分,则直线BC 的解析式是___.16. 从1开始的自然数中,把能表示成两个整数的平方差的数从小到大排列成一列,则在这列数中,第2017个数是___.17.如图,在四边形ABCD 中,AD=BD,AD ⊥BD,AC ⊥BC,若CD=1,BC=2,则AC=___ ;四边形ABCD 的面积为___.18.已知关于x 的方程kx+3=221++-x x ,当k=-2时,原方程的解为___.若方程有两个解,则k 的取值范围为___.二、解答题(本大题共2小题,每题15分,共30分)19.如图,已知线段AB=12,点P 为线段AB 上一点,以AP 为边作一正方形APMN ,点Q 在BP 的中垂线上,连接MQ 、PQ ,(1)当AP=3时,求△MPQ 周长的最小值;(2)求△MPQ 的面积的最大值。
八年级数学竞赛题试卷一、选择题(每题5分,共30分)1. 若公式,公式,则公式的值为()A. 5B. 6C. 7D. 8解析:根据完全平方公式公式,已知公式,公式,则公式,所以答案是A。
2. 已知公式,则分式公式的值为()A. 公式B. 9C. 1D. 公式解析:由公式可得公式,即公式,公式。
将公式变形为公式,把公式代入可得:公式,所以答案是A。
3. 若关于公式的方程公式有增根,则公式的值为()A. -4或6B. -4或1C. 6或1D. -4或6或1解析:先将方程化为整式方程,方程两边同乘公式得:公式,公式,公式。
因为方程有增根,所以公式或公式。
当公式时,公式,公式,公式;当公式时,公式,公式,公式。
所以答案是A。
二、填空题(每题5分,共30分)1. 分解因式公式______。
解析:先提取公因式公式,再利用平方差公式,公式。
2. 若公式,则公式______。
解析:根据完全平方公式公式,已知公式,则公式,所以公式。
3. 已知公式是方程公式的一个根,则公式______。
解析:因为公式是方程公式的根,所以公式,即公式。
则公式。
三、解答题(每题20分,共40分)1. 先化简,再求值:公式,其中公式。
解析:化简原式:\[\begin{align}&(\frac{(x 1)^{2}}{(x + 1)(x 1)}+\frac{1}{x})\div\frac{1}{x + 1}\\ =&(\frac{x 1}{x + 1}+\frac{1}{x})\div\frac{1}{x + 1}\\=&(\frac{x(x 1)+(x + 1)}{x(x + 1)})\div\frac{1}{x + 1}\\=&\frac{x^{2}-x+x + 1}{x(x + 1)}\times(x + 1)\\=&\frac{x^{2}+1}{x}\end{align}\]当公式时,公式。
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
沪科版八年级第二学期竞赛数 学 试 卷 (沪科版)考试时间:120分钟 满分:120分一、精心选一选:(本大题共7小题,每小题3分,共21分。
)1、实数a 在数轴上对应的点如图所示,则a 、-a 、1的大小关系正确的是【 】A 、-a <a <1B 、a <-a <1C 、1<-a <aD 、a <1<-a2、已知关于x 的方程3x +2a =2的解是a -1,则a 的值是 【 】A 、1B 、53 C 、51D 、-13 【 】A 、点PB 、点QC 、点MD 、点N4、若一元二次方程22(2)240m x x m -++-=的常数项为0,则m 得值为 【 】 A 、2. B 、 2-. C 、 2±. D 、4±. 5、已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b aa b+的值是 【 】 A 、22n +B 、22n -+C 、22n -D 、22n --6、已知方程20x bx a ++=有一个根是()0a a -≠,则下列代数式的值恒为常数的是 【 】A 、abB 、ab C 、a b + D 、a b - 7、若关于x 的一元二次方程22(21)10k x k x -++=有两不相等的实数根,那么k 的取值范围是【 】A 、k >14-B 、k >14-且0k ≠C 、k <14-D 、14k ≥-且0k ≠ 二、耐心填一填:(本大题共8小题,每小题4分,共32分。
)8、若a 、b 都是无理数,且a+b=2,则a 、b 的值可以是 . (填上一组满足条件的值即可)0 1第2题图9、已知113 x y-=,则代数式21422x xy yx xy y----的值为.10、一个同学在进行多边形内角和计算时,求得内角和为02750,当发现错了之后,重新检查,发现少加了一个内角,则这个内角是度。
11、对于定义一种新运算“”:,其中为常数,等式右边是通常的加法和乘法的运算.已知:,那么= .12、如图,已知点F的坐标为(3,0),点A B,分别是某函数图象与x轴、y轴的交点,点P是此图象上的一动点...设点P的横坐标为x,PF的长为d,且d与x之间满足关系:355d x=-(05x≤≤),则结论:①2AF=;②5BF=;③5OA=;④3OB=中,正确结论的序号是_ .13、在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_________.14、图中的螺旋形由一系列等腰直角三角形组成,其序号依次为①、②、③、④、⑤……,则第n个等腰直角三角形的斜边长为_____________.15、化简aaa3|2|2-=三、用心想一想:(本大题是解答题,共67分。
一、选择题(每题5分,共25分)1. 下列各数中,是正数的是()A. -3/2B. 0C. -√4D. 3/42. 若a、b是实数,且a+b=0,则下列等式中正确的是()A. a^2+b^2=0B. a^2+b^2>0C. a^2+b^2<0D. a^2+b^2≥03. 已知a=√2,b=√3,则a^2+b^2的值是()A. 5B. 4C. 3D. 24. 下列各式中,正确的是()A. √9=3B. √16=4C. √25=5D. √36=65. 已知x=√2+√3,则x^2的值是()A. 5B. 6C. 7D. 8二、填空题(每题5分,共25分)6. 若x^2=1,则x的值为______。
7. 若√(a^2+b^2)=5,且a+b=0,则a和b的值分别为______。
8. 若x=√(3+2√2),则x^2的值为______。
9. 若a、b是实数,且a^2+b^2=0,则a和b的值分别为______。
10. 若x=√(a^2+b^2),则x^2的值为______。
三、解答题(每题10分,共30分)11. (10分)已知a、b是实数,且a+b=0,求证:a^2+b^2=0。
12. (10分)已知x=√(3+2√2),求x^2的值。
13. (10分)已知a、b是实数,且a^2+b^2=5,求证:a+b=0。
四、附加题(每题10分,共20分)14. (10分)已知x=√(a^2+b^2),且a+b=0,求证:x=√2。
15. (10分)已知x=√(3a^2+4b^2),且a+b=0,求证:x=√(3a^2+4b^2)。
注意事项:1. 本试卷共15题,满分100分。
2. 考生在规定时间内完成试卷,不得抄袭、作弊。
3. 答题时,请将答案填写在答题卡上,不得在试卷上直接填写。
4. 考试结束后,请将试卷和答题卡一并交回。
祝各位考生考试顺利!。
⋯_ ⋯__⋯_ _ ⋯ _ _ ⋯_ _⋯_:⋯ 号 ⋯⋯座 ⋯东宅中学 2012 年春季八年级数学竞赛试卷2019-2020年八年 下数学 及参考答案( 分: 150分 : 120分 )一二三号分1-56-12 13141516得分A 、-196B 、 196C 、 ±196D 、以上都不12、如 , ABCD 是凸四 形, x 的取 范 是()A 、 2<x<7B 、 2<x<13C 、 0<x<13D 、 1<x<13三、耐心做一做( 64 分)13、 关于 x 的一次函数 ya 1 xb 1 与 y a 2 x b 2 , 称函数y m(a 1 x b 1 ) n(a 2 x b 2 ) (其中 m n 1 ) 此两个函数的生成函数.( 1)当 x=1 ,求函数 y x 1 与 y 2x 的生成函数的 ;(2)若函数 ya 1 xb 1 与 y a 2 x b 2 的 象的交点 P ,判断点 P 是否在此两个_ ⋯ ____⋯_ _ ⋯ _ _ ⋯_ _ ⋯_ _ ⋯__ ⋯ 名 ⋯ 姓 生 ⋯A .5B .6C . 7D .88.已知一个梯形的四条边长分别为2、 3、 4、 5,则此梯形的面积为()DA .5B . 810 314 5C .D .33.如图, 、 分别是矩形 的边、 的中点,连 、,设、相G 函数的生成函数的 象上,并 明理由. (15 分)CF 学 ⋯ ⋯ 9 E FABCDAB BCCE AFCE AF交于 G ,则 S ∶ SA等于()EB班⋯_ ⋯__⋯__ ⋯ _⋯ 学 ⋯中 装_ ⋯ __⋯_ _ ⋯ _ _ ⋯_ _ ⋯_ _ ⋯ _ _ ⋯ _ _ ⋯__ ⋯四边形 BEGF四边形 ABCDA .1B .2C .1D .34 961010、如果 P 与 q+2 成反比,当 q=4 , P=1, q=1 , P 的()A 、3B 、-3C 、2D 、-211、如果 ( x1)( x 3)( x 4)( x8) m是一个完全平方式, m 是()(第 9题图)14、因式分解: (ab) 4 (a b) 4 (a b)2 (a b)2 (15 分)15、在矩形 ABCD中,已知 AD=12,AB=5,P 是 AD上任意一点, PE⊥BD于 E,PF⊥AC于 F,求 PE+PF的值( 15 分)2012 春八年数学竞赛试卷参考答案16.如图,在直角梯形ABCD 中, AB=BC=12 , E 为 AB 中点,∠ DCE=45°,求 DE的长( 19 分)一、填空题(每小题 6 分,共 30分)1、5;2、- 5;3、30°>64、 4b- a5、 60°二、选择题(每小题 5 分,共 25分)6、 C7、 D8、 D9、 C10、 C11、B12、 DA D三、解答题(共 95 分)13、解:( 1)当 x =1 时,y m( x1) n(2x)Em(11) n(2 1)2m2n2(m n) ,∵m n 1 ,∴ y2.(5分)( 2)点 P 在此两个函数的生成函数的图象上.设点 P 的坐标为( a, b),B C∵ a1 a b1 b ,a2 a b2 b ,∴当 x = a 时,y m(a1 x b1 )n(a2 x b2 )m(a1 a b1 ) n(a2 a b2 )mb nb b(m n) b ,即点 P 在此两个函数的生成函数的图象上.(15 分)14、解:设 a-b=x, a+b=y, 则a2-b2=(a-b)(a+b)=xy ··············· ···········1 分原式 =x 4+y4+x2y2=(x2+y2)2-x2y2·······················7 分=(x 2+y2+xy)( x 2+y2-xy)··············· ··········10分=(2a2 +2b2+a2-b2)( 2a2+2b2-a2+b2) ·····················14 分=(3a2 +b2)( a2+3b2) ··········· ············· ·····15 分15 、( 15 分)16、解:过 D 作 DF 垂直 BC 于 G,过 C 作∠DCF为90度交 AB的延长线于 F设 DE=X ,∵∠DCE=45°,三角形 BCF 全等于三角形 GDC∴ 62(18 x) 2x2∴DE=10DAEB CGF。
2020-2021学年八年级数学北师大版下册第五章《分式与分式方程》竞赛题 学校:___________姓名:___________班级:___________考号:___________ 一,单项选择题(本大题共8小题)1.当x 分别取2020、2018、2016、…、2、0、12、14、…、12016、12018、12020时,计算分式11x x -+的值,再将所得结果相加,其和等于( ) A .1-B .1C .0D .2020【答案】A【分析】 先把互为倒数的两个数代入并求和,得0,再把没有倒数的0代入即可.【详解】解:把2020代入11x x -+,得20192021, 把12020代入11x x -+,得20192021-,相加得零, 设x=a (a≠0)代入11x x -+,得11a a -+, 把x=1a 代入11x x -+,得11a a --+, 故互为倒数的两个数代入分式后,和为0,把0代入11x x -+,得-1, 故选:A .【点睛】本题考查了分式求值运算和数字规律,解题关键是通过计算发现互为倒数的两个数代入分式后,和为0.2.若关于x 的不等式组()3222x x a x x ⎧-->-⎪⎨+<⎪⎩有解,关于y 的分式方程13244ay y y -+=---有整数解,则符合条件的所有整数a 的和为( ) A .0 B .1 C .2D .5【答案】B【分析】先解不等式组,由不等式组有解,可得a <4,再解分式方程,当2a ≠且1a ≠时,分式方程的解为:4,2y a =--再由,y a 为整数,分类讨论可得答案. 【详解】 解:()3222x x a x x ⎧-->-⎪⎨+<⎪⎩①② 由①得:36x x -+>2,-2x ∴->8,-x \<4,由②得:a x +<2,xx \>,a关于x 的不等式组()3222x x a x x ⎧-->-⎪⎨+<⎪⎩有解, a ∴<4,13244ay y y -+=---Q , ()1324,ay y ∴--=--24,ay y ∴-=-()24,a y ∴-=-当2a =时,方程无解,则2,a ≠44,22y a a -∴==--- 检验:40,y -≠440,2a ∴--≠- 44,2a ∴≠-- 21,a ∴-≠-1,a ∴≠,y a 为整数,21a ∴-=± 或22a -=±或24,a -=±3a ∴=或1a =或4a =或0a =或6a =或2,a =-a ∴<4, 2,a ≠1,a ≠∴ 3a =或0a =或 2.a =-经检验:3a =或0a =或2a =-符合题意,()302 1.∴++-=故选:.B【点睛】本题考查的是一元一次不等式组的解法,分式方程的解法,分类讨论数学思想,掌握以上知识是解题的关键.3.一支部队排成a 米长队行军,在队尾的战士要与最前面的团长联系,他用t 1分钟追上了团长、为了回到队尾,他在追上团长的地方等待了t 2分钟.如果他从最前头跑步回到队尾,那么他需要的时间是( )A .1212t t t t +分钟B .12122t t t t +分钟 C .12122t t t t +分钟 D .12122t t t t +分钟 【答案】C【分析】 根据题意得到队伍的速度为2a t ,队尾战士的速度为12a a t t +,可以得到他从最前头跑步回到队尾,那么他需要的时间是122aa a a t t t ++,化简即可求解 【详解】 解:由题意得:12212122t a a a a t t t t t t =+++分钟. 故选:C【点睛】本题考查了根据题意列分式计算,理解题意正确列出分式是解题关键.4.已知113x y -=,则分式5xy 5xy y x y x+---的值为( ) A .8B .72C .53-D .4【答案】A【分析】 由113x y-=,得3y x xy -=,3x y xy -=-.代入所求的式子化简即可. 【详解】 解:由113x y-=,得3y x xy -=, ∴555()15168()32y xy x y x xy xy xy xy y xy x y x xy xy xy xy+--++====-----. 故选:A .【点睛】本题解题关键是用到了整体代入的思想.5.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =4 【答案】B【分析】 先计算21M N x x ++-=()()222M N x M N x x ++-++- ,根据已知可得关于M 、N 的二元一次方程组227M N M N +⎧⎨-+⎩== ,解之可得. 【详解】 解:21M N x x ++- =()()()()1221M x N x x x -+++-=()()222M N x M N x x ++-++- ∴2272x x x ++-=()()222M N x M N x x ++-++- ∴227M N M N +⎧⎨-+⎩==, 解得:13M N -⎧⎨=⎩=, 故选B .【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减法则,并根据已知等式得出关于M 、N 的方程组.6.如果2220x x +-=,那么代数式214422x x x x x x -+⋅--+的值为( ) A .2-B .1-C .1D .2【答案】A【分析】 由2220x x +-=可得222x x +=,再化简214422x x x x x x -+⋅--+,最后将222x x +=代入求值即可.【详解】解:由2220x x +-=可得222x x +=214422x x x x x x -+⋅--+ =()22122x x x x x -⋅--+ =22x x x x --+ =()()22422x x x x x x --++ =242x x-+=42- =-2故答案为A .【点睛】本题考查了分式的化简求值,正确化简分式以及根据2220x x +-=得到222x x +=都是解答本题的关键.7.当4x =-的值为( ) A .1BC .2D .3【答案】A【分析】 根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式= 将4x =代入得,原式===1=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.8.已知13x x +=,则2421x x x ++的值是( ) A .9B .8C .19D .18【答案】D【分析】 根据13x x += 可知21()9x x += 即2217x x += ,把2421x x x ++ 分子、分母同时除以2x 得2217x x += ,把2217x x +=代入即可. 【详解】 由13x x +=得21()9x x+=,即2217x x += 2421x x x ++=22111x x++, 把2217x x +=代入得22111x x ++=11178=+ , 故选D【点睛】本题考查利用恒等变形求分式的值,利用分式的性质,找到可以等量代换的代数式是解题关键.二、填空题(本大题共6小题)9.关于x 的分式方程11211a x x-+=--的解为正数,则a 的取值范围是________ . 【答案】4a <且2a ≠.【分析】去分母,化成整式,计算分母为零时,a 的值,计算方程的解,根据解是正数,转化为不等式,确定a 的范围,最后将分母为零时的a 值除去即可.【详解】 ∵11211a x x-+=--, 去分母,得-1+a-1=2(1-x ),当x=1时,解得a=2;当x≠1时,解得x=42a -, ∵方程的解为正数, ∴42a ->0, ∴a <4,∴a <4且a≠2,故答案为a <4且a≠2.【点睛】本题考查了分式方程的解,探解时,熟练把解转化为相应的不等式,同时,把分母为零对应的值扣除是解题的关键.10.若240x y z -+=,4320x y z +-=.则222xy yz zx x y z ++++的值为______ 【答案】16-【分析】先由题意2x−y+4z=0 ,4x+3y−2z=0,得出用含x 的式子分别表示y ,z ,然后带入要求的式中,化简便可求出.【详解】2x-y+4z= 0①,4x+3y- 2z= 0②,将②×2得: 8x+ 6y-4z=0③. ①+③得: 10x+ 5y= 0,∴y= -2x ,将y= - 2x 代入①中得:2x- (-2x)+4z=0∴z=-x将y= -2x ,z=-x ,代入上式 222xy yz zx x y z ++++ =()()()()()()222·22?·2x x x x x x x x x -+--+-+-+-=222222 224x x x x x x -+-++=22 6 x x -=1 6 -故答案为:1 6 -【点睛】本题考查了分式的化简求值,解题的关键是根据题目,得出用含x的式子表示y,z.本题较难,要学会灵活化简.11.已知三个数,x,y,z满足443,,33xy yz zxx y y z z x=-==-+++,则y的值是______【答案】12 7【分析】将443,,33xy yz zxx y y z z x=-==-+++变形为133,,344x y y z z xxy yz zx+++=-==-,得到111113113,,344y x z y x z+=-+=+=-,利用11113()()2z y x z+-+=,求出1132x y=-,代入1113y x+=-即可求出答案.【详解】∵443,,33 xy yz zxx y y z z x=-==-+++,∴133,,344x y y z z xxy yz zx+++=-==-,∴111113113,,344y x z y x z+=-+=+=-,∴11113 ()()2z y x z+-+=,得1132y x -=, ∴1132x y =-, 将1132x y =-代入1113y x +=-,得276y =, ∴y=127, 故答案为:127. 【点睛】 此题考查分式的性质,分式的变形计算,根据分式的性质得到111113113,,344y x z y x z +=-+=+=-是解题的关键. 12.已知方程11x c x c +=+(c 是常数,0c ≠)的解是c 或1c ,那么方程2131462a a x x a+++=-(a 是常数,且0a ≠)的解是________. 【答案】32a +或312a a + 【分析】 观察方程:11x c x c+=+(c 是常数,c≠0)的特点,发现此方程的左边是未知数与其倒数的和,方程右边的形式与左边的形式完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接求解.本题需要将方程x +2131462a a x a++=- 变形,使等号左边未知数的系数变得相同,等号右边的代数式可变为31222a a ++.为此,方程的两边同乘2,整理后,即可写成方程11x c x c+=+的形式,从而求出原方程的解. 【详解】 将2131462a a x x a+++=- 整理得 112323x a x a+=++-, 即112323x a x a -+=+-,所以23x a -=或1a , 故答案为:32a x +=或312a a +. 【点睛】 本题考查了阅读理解能力与知识的迁移能力.关键在于将所求方程变形为已知方程的形式.难点是方程左边含未知数的项的系数不相同.13.对于两个不相等的实数,a b ,我们规定符号max{,}a b 表示,a b 中的较大值,如:{}max 2,44=,故{}max 3,5=__________;按照这个规定,方程{}21max ,x x x x--=的解为__________.【答案】5 1-1【分析】 按照规定符号可求得{}max 3,5=5;根据x 与x -的大小关系化简所求方程,求出解即可.【详解】{}max 35=,5;故答案为:5;当x x >-,即0x >时,方程化简得:21x x x -=, 去分母得:221x x =-,整理得:2210x x -+=,即()210x -=解得:1x =,经检验:1x =是分式方程的解;当x x <-,即0x <时,方程化简得:21x x x--=, 去分母得:221x x -=-,整理得:2210x x +-=,解得:1x =-+不合题意,舍去)或1-经检验:1x =-故答案为:1-1.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.弄清题中的新定义是解本题的关键. 14.设有三个互不相等的有理数,既可表示为-1,a +b ,a 的形式,又可表示为0,-b a,b 的形式,则20192020-a b 的值为____. 【答案】-1【分析】由题意三个互不相等的有理数,既可表示为-1、+a b 、a 的形式,又可表示为0、b a-、b 的形式,可知这两个三数组分别对应相等.从而判断出a 、b 的值.代入计算出结果. 【详解】 解:三个互不相等的有理数,既可表示为-1、+a b 、a 的形式,又可表示为0、b a -、b 的形式,∴这两个三数组分别对应相等.a b ∴+、a 中有一个是0,由于b a有意义,所以0a ≠, 则0a b +=,所以a 、b 互为相反数. ∴1b a=-, ∴1b a -= ∴1b =-,1a =.∴()2019202011111-=-=--. 故答案是:-1.【点睛】本题考查了有理数的概念,分式有意义的条件,有理数的运算等相关知识,理解题意是关键.三、解答题(本大题共4小题)15.解方程组:113311x x y x x y⎧+=⎪+⎪⎨⎪-=⎪+⎩.【答案】10.5x y =⎧⎨=-⎩.【分析】 设1a x=,1b x y =+,把原方程组转化为二元一次方程组,求解后,再解分式方程即可.【详解】 解:设1a x=,1b x y =+, 则原方程组化为:331a b a b +=⎧⎨-=⎩①②, ①+②得:44a =,解得:1a =,把1a =代入①得:13+=b ,解得:2b =, 即1112x x y⎧=⎪⎪⎨⎪=+⎪⎩, 解得:10.5x y =⎧⎨=-⎩, 经检验10.5x y =⎧⎨=-⎩是原方程组的解, 所以原方程组的解是10.5x y =⎧⎨=-⎩. 【点睛】本题考查了换元法解方程组,解题关键是抓住方程组的特征,巧妙换元,熟练的解二元一次方程组和分式方程,注意:分式方程要检验.16.(1)先化简:23111x x x x x x ⎛⎫-÷⎪-+-⎝⎭,再从1-,0,1,2中取一个你喜欢的数代入求值.(2)已知12x x-=,求221x x +,1x x +. 【答案】(1)8;(2)6;±【分析】(1)原式括号中两项通分并利用异分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=0代入计算即可求出值.(2)将已知等式两边平方,利用完全平方式展开,即可求出所求式子的值.【详解】解:(1)23111x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭ =(3(1)(1)(1)(1)(1)(1)x x x x x x x x +---+-+)÷2x 1x - =2224-1x x x +21x x- =24x +∵ 21x - ≠0,0x ≠∴x ≠1或x ≠-1,0x ≠当x=2时,原式=4+4=8.(2)12x x -= 21x 4x ⎛⎫= ⎪⎝⎭-41222=+-x x 2216x x +=; 21x x ⎛⎫ ⎪⎝⎭+ =221x 2x ++=8 1xx+=±【点睛】本题考查了分式的化简求值和完全平方式,熟练掌握公式和运算法则是解题的关键. 17.阅读下面材料:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”,例如:11x x -+,21x x -这样的分式就是假分式;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:31x +,221x x +这样的分式就是真分式.我们知道,假分数可以化为带分数,例如:86222223333+==+=,类似地,假分式也可以化为“带分式”(即整式与真分式的和的形式)参考上面的方法解决下列问题:()1将分式11x x -+,422311x x x +-+化为带分式. ()2当x 取什么整数值时,分式212x x -+的值也为整数? 【答案】(1)112x +-,22321x x +-+;(2)1x =-,3,3-,7-时,分式的值也为整数.【分析】(1)两式根据材料中的方法变形即可得到结果;(2)原式利用材料中的方法变形,即可确定出分式的值为整数时整数x 的值.【详解】解:(1)12111222x x x x x --+==+---, 42222222231(1)2(1)332111x x x x x x x x x +-+++-==+-+++; (2)212(2)552222x x x x x -+-==-+++, 当21x +=,即1x =-;当25x +=,即3x =;当21x +=-,即3x =-;当25x +=-,即7x =-,综上,1x =-,3,3-,7-时,分式的值也为整数.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.18.对于平面直角坐标系xOy 中的点(), P a b ,若点P'的坐标为 ,b a ka b k 骣çè+ç+÷÷ø(其中k 为常数,且0k ≠),则称点P'为点P 的“k 之雅礼点”.例如:()1, 4P 的“2之雅礼点”为4'12142()P +?,,即()'3, 6P . (1)①点()1,3P --的 “3之雅礼点”P'的坐标为___________; ②若点P 的“k 之雅礼点” P'的坐标为()2, 2,请写出一个符合条件的点P 的坐标_________;(2)若点P 在x 轴的正半轴上,点P 的“k 之雅礼点”为P'点,且'OPP D 为等腰直角三角形,则k 的值为____________;(3)在(2)的条件下,若关于x 的分式方程32233x mx k x x-++=--无解,求m 的值. 【答案】(1)①()2,6--; ②()1, 1;(2)±1;(3)3m =-或53m =-或1m =-. 【分析】(1)①只需把133a b k =-=-=,,代入 ,b a ka b k 骣çè+ç+÷÷ø即可求出P′的坐标;②由P′(2,2)可求出k=1,从而有a+b=2.任取一个a 就可求出对应的b ,从而得到符合条件的点P 的一个坐标.(2)设点P 坐标为(a ,0),从而有P′(a ,ka ),显然PP′⊥OP ,由条件可得OP=PP′,从而求出k .(3)分1k =和1k =-两种情况,根据方程无解求出m 的值即可.【详解】(1)①∵把133a b k =-=-=,,代入 ,b a ka b k 骣çè+ç+÷÷ø, 得()2,6--,∴P′的坐标为()2,6--;②令k=1,把k=1代入 ,b a ka b k 骣çè+ç+÷÷ø得到a+b=2,当a=1时,b=1,所以点P 的一个坐标()1, 1;(2)∵点P 在x 轴的正半轴上,∴b=0,a >0∴点P 的坐标为(a ,0),P′(a ,ka ),∴PP′⊥OP ,∵'OPP D 为等腰直角三角形,∴OP=PP′,∴a=ka ,±∵a >0,∴k=1±;(3)当1k =时,去分母整理得:()34m x += ∴原方程无解∴①3m =-②3x =,则53m =- 当1k =-时,去分母整理得: ()12m x +=-原方程无解∴①1m =-②3x =,则53m =- 综上,3m =-或53m =-或1m =-. 【点睛】本题考查了坐标系的新定义问题,读懂题目信息,理解“k 之雅礼点”的定义是解题的关键.。
初二竞赛数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个等腰三角形的两边长分别为5和8,那么这个三角形的周长是多少?A. 18B. 21C. 26D. 30答案:B3. 如果一个数的平方等于36,那么这个数是多少?A. 6B. -6C. 6或-6D. 以上都不是答案:C4. 一个圆的半径是3厘米,那么它的面积是多少平方厘米?A. 28.26B. 36C. 9答案:A5. 一个数除以2余1,除以3余2,除以5余4,这个数是多少?A. 29B. 34C. 39D. 44答案:A6. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,那么它的体积是多少立方厘米?A. 24B. 12C. 8D. 6答案:A7. 一个数的立方等于-125,那么这个数是多少?A. -5B. 5C. -5或5D. 以上都不是答案:A8. 一个直角三角形的两个直角边长分别是3和4,那么它的斜边长是多少?A. 5B. 7C. 9D. 129. 一个数的倒数等于它本身,这个数是多少?A. 1B. -1C. 1或-1D. 0答案:C10. 一个数的绝对值等于5,那么这个数是多少?A. 5B. -5C. 5或-5D. 0答案:C二、填空题(每题3分,共30分)1. 一个数的平方根是2,那么这个数是______。
答案:42. 一个数的立方根是-2,那么这个数是______。
答案:-83. 一个数的平方等于64,那么这个数是______。
答案:±84. 一个圆的直径是10厘米,那么它的半径是______厘米。
答案:55. 一个直角三角形的斜边长是13厘米,一个直角边长是5厘米,那么另一个直角边长是______厘米。
6. 一个长方体的体积是48立方厘米,长和宽分别是4厘米和3厘米,那么它的高是______厘米。
答案:47. 一个数除以4余1,除以5余2,除以7余3,那么这个数是______。
2019-2020 年八年级(下)数学比赛试卷及答案班级姓名得分一、(每7 分,共 21 分)1.如,正方形ABCD外有一点 P,P 在 BC外,并在平行AB与 CD之,若 PA=17 ,PB= 2 ,PC= 5 ,PD=()A.25B.19C.32D.172.如,四形ABCD中,∠ A=∠ C= 90°,∠ ABC= 60°, AD= 4, CD= 10, BD的等于()A. 413B.8 3C. 12D.103 3.如,△ ABC中, AB= AC=2, BC上有 10 个不一样的点P1, P2,⋯⋯ P10, M i AP i2P i B P i C(i=1,2,⋯⋯,10),那么M1M 2M 10的()A. 4 C. 40 D.不可以确立(第 1 )(第2)(第3)二、填空(每7 分,共 28 分)1.若一个等腰三角形的三均足方程x2- 6x+8= 0,个等腰三角形的周。
2. 已知:ab1,且5a22010a 8 0 ,8b22010b 5 0 ,a=。
b3. 如,从等三角形内一点向三作垂,已知三条垂段的分1、3、5,个等三角形的。
4. 如, P 正方形ABCD内一点, PA∶PB∶ PC=1∶ 2∶ 3,∠ APD=。
(第 3 )(第4)三、解答以下各(每17 分,共 51 分)1. 已知: m , n 知足 m210m 10 , n 210n10 , 求 n m的值。
m na b822.已知:ab,试求方程, ,c 三实数知足方程组28bx cx aab c3c 48的根。
3.若△ ADE 、△ BEF 、△ CDF 的面积分别为 5、 3、 4,求△ DEF 的面积。
滁州市第五中学八年级数学比赛试卷答案一、选择题1. A2. A3. C 二、填空题1. 6 或 10 或 12;2.8; 3.6 3 ; °。
5三、解答以下各题 1. 当 m n 时,n m 1 2 ,m1n当 mn 时, m , n 是方程 x 210 x 10 0 的两个根,则 m n 10, mn10 。
八年级第二学期数学科竞赛试题一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,1、如果分式x-1有意义,那么x 的取值范围是 A 、x >1B 、x <1C 、x ≠1D 、x =12、己知反比例数xky =的图象过点(2,4),则下面也在反比例函数图象上的点是A 、(2,-4)B 、(4,-2)C 、(-1,8)D 、(16,21)3、一直角三角形两边分别为3和5,则第三边为A 、4B 、34C 、4或34D 、24、用两个全等的等边三角形,可以拼成下列哪种图形A 、矩形B 、菱形C 、正方形D 、等腰梯形 5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为A BC D6、△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有 A .1个 B .2个 C .3个 D .4个7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为A 、120cmB 、360cmC 、60cmD 、cm 320第7题图第8题图第9题图学校: 班级: 姓名: 座号:8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为A 、16B 、14C 、12D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为A 、100B 、150C 、200D 、300 10、下列命题正确的是A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
2019-2020学年湖南师大附中教育集团“攀登杯”八年级(下)竞赛数学试卷解答题241.如图,AD是△ABC的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△DEF的角平分线吗?请说明理由.242.(1)如图1,△ABC中,∠B、∠C的平分线交于O点,过O点作EF∥BC,交AB、AC于E、F.请写出图①中线段EF与BE、CF间的数量关系,并说明理由.(2)如图2,若△ABC中,∠B的平分线BO与△ABC的外角平分线CO交于O,过O点作EF∥BC交AB于E,交AC于F.此时EF与BE、CF的数量关系又如何?请直接写出关系式,不需说明理由.243.如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.244.如图,AB∥CD,∠B=100°,EF平分∠BEC,求∠DEF的度数.245.如图,△ABC中,∠A=70°,外角平分线CE∥AB,求∠B和∠ACB的度数.246.如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.247.如图:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数.248.如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.249.如图,直线AB∥CD,EF⊥CD于F,如果∠GEF=20°,求∠1的度数.250.(1)①如图1,已知AB∥CD,∠ABC=60°,根据可得∠BCD=°;②如图2,在①的条件下,如果CM平分∠BCD,则∠BCM=°;③如图3,在①、②的条件下,如果CN⊥CM,则∠BCN=°.(2)尝试解决下面问题:已知如图4,AB∥CD,∠B=40°,CN是∠BCE的平分线,CN⊥CM,求∠BCM的度数.251.如图,已知直线l1∥l2,且l3和l1、l2分别交于A、B两点,点P在AB上.(1)试找出∠1、∠2、∠3之间的关系并说出理由;(2)如果点P在A、B两点之间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(3)如果点P在A、B两点外侧运动时,试探究∠1、∠2、∠3之间的关系(点P和A、B不重合)252.如图,已知:AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.(证明注明理由)253.如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,求∠ABD的度数.254.如图所示,直线AB∥CD,∠1=75°,求∠2的度数.255.已知:如图,a∥b,∠1=55°,∠2=40°,求∠3和∠4的度数.256.已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论.(1)如图1,AB∥EF,BC∥DE.∠1与∠2的关系是:;(2)如图2,AB∥EF,BC∥DE.∠1与∠2的关系是:;(3)经过上述证明,我们可以得到一个真命题:如果,那么.257.如图,已知∠ABC.请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC边与点P.探究:∠ABC与∠DEF有怎样的数量关系?并说明理由.258.如图,按虚线剪去长方形纸片的相邻两个角,并使∠1=120°,AB⊥BC,试求∠2的度数.259.如图所示,在△ABC中,∠ABC和∠ACB的平分线交于点O,过O点作EF∥BC,交AB于E,交AC于F,若BE =3,CF=2,试求EF的值.260.如图,已知AB∥CD,现在要证明∠B+∠C=180°,请你从下列三个条件中选择一个合适的条件来进行证明.你选择①EC∥FB;②∠AGE=∠B;③∠B+∠EGB=180°(写出证明过程)证明:261.已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.262.如图所示,∠1=∠2,∠3=118°,求∠4的度数.263.如图,已知:∠1=∠2,∠D=50°,求∠B的度数.264.如图,∠1+∠2=180°,∠3=108°,求∠4的度数.265.如图,已知直线AB∥CD,求∠A+∠C与∠AEC的大小关系并说明理由.266.如图,CD ∥AB ,∠DCB =70°,∠CBF =20°,∠EFB =130°,问直线EF 与AB 有怎样的位置关系?为什么?267.如图所示,E 在直线DF 上,B 在直线AC 上,若∠AGB =∠EHF ,∠C =∠D ,试判断∠A 与∠F 的关系,并说明理由.268.已知:如图BE ∥CF ,BE 、CF 分别平分∠ABC 和∠BCD ,求证:AB ∥CD证明:∵BE 、CF 分别平分∠ABC 和∠BCD (已知)∴∠1=12∠ ∠2=12∠ ( ) ∵BE ∥CF () ∴∠1=∠2( )∴12∠ABC =12∠BCD 即∠ABC =∠BCD∴AB ∥CD ( )269.完成下列推理说明:如图,已知AB ∥DE ,且有∠1=∠2,∠3=∠4,试说明BC ∥EF .∵AB ∥DE (已知)∴∠1=∠3() ∵∠1=∠2,∠3=∠4(已知) ∴∠2= (等量代换)∴BC ∥EF ()270.如图,已知AB ∥CD ,AE 平分∠BAD ,DF 平分∠ADC ,那么AE 与DF 有什么位置关系?试说明理由.。
x O A y北师大版八年级数学竞赛试题一、选择题(每小题3分,共27分) 1、下列式子正确的是 ( )A 、9)9(2-=-B 、525±=C 、1)1(33-=-D 、2)2(2-=-2、如下是一种电子计分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .3、某校八年级8位同学一分钟跳绳的次数分别为:150,164, 168, 172,176,168,183,185.则由这组数据得到的结论中错误的是( ) A .中位数为170 B .众数为168 C .平均数为170.75 D .平均数为170 4、不能判定四边形ABCD 是平行四边形的是 ( ) A 、AB = CD ,AD = BC B 、AB ∥CD ,AB = CD C 、AD ∥BC ,AB = CD D 、AB ∥CD ,AD ∥BC5、若点P (m+2,m+1)在y 轴上,则点P 的坐标为 ( )A (2,1)B (0,2)C (0,-1)D (1,0)6、若点(m ,n)在函数y =2x +1的图象上,则2m -n 的值是( )A .2B .-2C .1D .-17、如图,函数2y x =和4y ax =+的图象交于点 A (m ,3),则不等式24x ax +< 的解集为( )A .32x <B .3x <C .32x > D .3x >(第7题) ( 第8题)8、如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O 旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A 在丙位置中的对应点A ′的坐标为 ( ) A (3,1) B (1,3) C (3,-1) D (1,1)二、填空题(每小题3分,共21分)学校: 班级: 姓名: 考号:…………………………………………装……………………订………………………线………………………………………9、256的平方根是 ;10、若532+y x ba 与x yb a2425-是同类项,则x= , y = ;11、写出一个y 随着x 的增大而增大的一次函数的解析式:______________12、如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC = 4,则四边形CODE 的周长是(12题) (13题)13、如图:矩形ABCD 的对角线AC =10,BC =8,则图中五个小矩形的周长之和 为_______ .14、 不等式组 的整数解的和是 .15、观察分析下列数据,寻找规律: 0,3,6,3,23,15,32,……那么第10个数据应是 . 三. 解答题(共75分)16、计算(每题5分,共10分) (1)解不等式组:()3228131x x x x -<+⎧⎪⎨-≥--⎪⎩(2)17、(9分)如图,在正方形ABCD 中,对角线AC 、BD 相交于点O ,E 、F 分别在OD 、OC 上,且DE=CF ,连接DF 、AE ,AE 的延长线交DF 于点M . 求证:AM ⊥DF . 18、(6分)长方形ABCD ,长为6,宽为4,建立直角坐标系使其中C 点的坐标x +2>0,x -1≤2 学校: 班级: 姓名: 考号:…………………………………………装……………………订………………………线………………………………………(-3,2),并且写出其它顶点的坐标。
(第6题)八年级“城市杯”初中数学应用能力竞赛【温馨提示】(2)解答书写时不要超过装订线; (3)草稿纸不上交.一、选择题(每小题4分,共40分)1.已知2009222==-=+cb a ,且kc b a 2009=++,则k 的值为( ). A .41 B .4 C .41- D .-42.已知1=abc ,2=++c b a ,3222=++c b a ,则111111-++-++-+b ca a bc c ab 的值为( ).A .1B .21-C .2D .32-3.若x 2 -219x +1 = 0,则441x x +等于( ).A . 411B . 16121C . 1689D . 4274.使分式a xax --1有意义的x 应满足的条件是( ).A .0≠xB .)0(1≠≠a axC .0≠x 或)0(1≠≠a a xD .0≠x 且)0(1≠≠a ax5. 已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过( ). A .第一、第二象限 B .第二、第三象限 C .第三、第四象限D .第一、第四象限6.如图,在△ABC 中,AB = AC ,点D 在AB 上,DE ⊥AC 于E ,EF ⊥BC 于F . 若∠BDE =140º,那么∠DEF 等于( ). A .55°B .60°C .65°D .70°7.如图,已知边长为a 的正方形ABCD ,E 为AD 的中点,P 为CE 的中点, F 为BP 的中点,则△BFD 的面积是( ). A .281a B . 2161a C . 2321a D .2641a 得 分 评卷人8.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分 …… 如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )A .2005B .2006C .2007D .2008 9.明明用计算器求三个正整数a ,b ,c 的表达式a bc+的值.他依次按了a ,+,b ,÷,c ,=,得到数值11.而当他依次按b ,+,a ,÷,c ,= 时,惊讶地发现得到数值是14.这时她才明白计算器是先做除法再做加法的,于是她依次按(,a ,+,b ,), ÷, c ,= 而得到了正确的结果.这个正确结果是( ) A .5B .6C .7D .810. 设x 、y 、z 是三个实数,且有⎪⎪⎩⎪⎪⎨⎧=++=++.1111,2111222x y xz y x ,则zx yz xy 111++的值是( ). A .1 B .2 C .23D .3二、填空题(每小题5分,共40分)11.已知y =254245222+-----xx x x ,则x 2 + y 2 = .12.如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线b x y +=31恰好将矩形OABC 分成面积相等的两部分,那么b = .13.如图,AD 是△ABC 的中线,∠ADC = 45º.把△ABC 沿直线AD 折过来,点C 落在点C '的位置上,如果BC = 4,那么='C B .14.如图,在四边形ABCD中,∠A =∠C = 90 º,AB = AD .若这个四边形的面积为16,则BC + CD = .15.已知082,043=-+=--z y x z y x ,那么代数式=++++zxyz xy z y x 2222 .16.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家得 分 评卷人(第12题)(第13题)(第14题)得 分 评卷人两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是 . 17.一次函数111+++-=k x k k y (k 为正整数)的图像与x 轴、y 轴的交点是A 、B ,O 为原点.设Rt △ABO 的面积是k S ,则2009321S S S S ++++ = .18.已知62-+x x 是多项式12234-+++-+b a bx ax x x 的因式,则=a ,=b .三、解答题(每题10分,共40分) 19.已知1515153330,0c b a c b a c b a ++=++=++,求的值.20.设关于x 的一次函数11b x a y +=与22b x a y +=,则称函数)(11b x a m y +=x a n 2(+)2b +(其中1=+n m )为这两个函数的生成函数.(1)当x = 1时,求函数1+=x y 与x y 2=的生成函数的值;(2)若函数11b x a y +=与22b x a y +=的图象的交点为P ,判断点P 是否在此两个函数的生成函数的图象上,并说明理由.21.我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售。
八年级(下)数学期末竞赛测试卷一、选择题(每小题3分,共30分)1、下列多项式中能用完全平方公式分解的是( ) A.x 2-x +1 B.1-2xy +x 2y 2 C.a 2+a +21D.-a 2+b 2-2ab 2、不等式组⎩⎨⎧>-≥-04012x x 的整数解为( )A.1个B.2个C.3个D.4个 3、下列各分式中,与分式ba a--的值相等的是 ( ) A 、b a a -- B 、b a a + C 、a b a - D 、-ab a -4、.若分式34922+--x x x 的值为0,则x 的值为( )A . 3-B .3或3-C .3D .无法确定5、某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为82=甲x 分,82=乙x 分;2452=甲s ,1902=乙s ,那么成绩较为整齐的是( ) A .甲班 B .乙班 C .两班一样整齐 D .无法确定6、某天同时同地,甲同学测得1 m 的测竿在地面上影长为0.8 m ,乙同学测得国旗旗杆在地面上的影长为9.6 m ,则国旗旗杆的长为( )A .10 mB .12 mC .13 mD .15 m7、如图,△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,DE =1,BC =3,AB =6,则AD 的长为( )A .1B .1.5C .2D .2.5(第7题图) (第9题图)8、赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A .1421140140=-+x x B .1421280280=++x x C .1421140140=++x x D .1211010=++x x 9、如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2米,桌面距离地面1米.若灯泡距离地面3米,则地面上阴影部分的面积为( )A .0.36π平方米B .0.81π平方米C .2π平方米D .3.24π平方米10.下列从左到右的变形是因式分解的是( ) A.(x+1)(x-1)=x 2-1 B. a 2b =a ·ab C.ab-a-b+1=(a-1)(b-1) D.m 2-2m-3=m(m-2-m3)二、填空题(每小题3分,共24分)11、已知:线段AB=10cm ,C 为AB 有黄金分割点,AC>BC ,则AC=_________. 12、不等式(a -b )x>a -b 的解集是x <1,则a 与b 的大小关系是________. 13、已知x 1,x 2,x 3的标准差是2,则数据2x 1+3,2x 2+3,2x 3+3的方差是 .. 14、计算机生产车间制造a 个零件,原计划每天造x 个,后为了供货需要,每天多造了b 个,则可提前______________天完成。
CD八年级数学竞赛试题一、选择题:1.方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ).2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ). (A ) 14 (B ) 16 (C )18 (D )20 3.已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx恰有一个公共实数根,则222a b c bc ca ab++的值为( ). (A ) 0 (B )1 (C )2 (D )3 4.若3210x x x +++=,则2627--+x x+ … +x x ++-11+ … +2726x x +的值是( )(A )1 (B )0 (C )-1 (D )25.若a b c t b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( ) (A )第一、二象限 (B )第一、二、三象限 (C )第二、三、四象限 (D )第三、四象限6.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )(A)1个 (B) 2个 (C) 3个 (D)无穷多个8.如图在四边形ABCD 中,∠DAB=∠BCD=90°,AB=AD ,若这个四边形的面积是10,则BC+CD 等于( ) A .54 B .102 C .64D .289.线段a x y +-=21(1≤x ≤3,),当a 的值由-1增加到2时,该线段运动所经过的平面区域的面积为 ( )A .6B .8C .9D .1010.四条直线两两相交,且任意三条不交于同一点,则这四条直线共可构成的同位角有( ) (A )24组 (B )48组 (C )12组 (D )16组 11、如图,P 是△ABC 内一点,BP ,CP ,AP 的延长线分别与 AC ,AB ,BC 交于点E ,F ,D 。
八年级(下)数学竞赛试卷一、选择题(共40分,每题4分)1.在277,355,544,633这四个数中,最大的数是()A.277B.355C.544D.6332.若(ax+3y)2=4x2﹣12xy+by2,则a,b的值分别为()A.2,9 B.2,﹣9 C.﹣2,9 D.﹣4,93.一次函数y=(m2﹣4)x+(1﹣m)和y=(m+2)x+(m2﹣3)的图象分别与y轴交于点P 和Q,这两点关于x轴对称,则m的值是()A.2 B.2或﹣1 C.1或﹣1 D.﹣14.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280 B.140 C.70 D.1965.化简(a﹣1)的结果是()A.B.C.﹣D.﹣6.方程组的解的个数是()A.1 B.2 C.3 D.47.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.8.若a,b,c都是负数,并且,则a、b、c中()A.a最大B.b最大C.c最大D.c最小9.如图,一个凸六边形的六个内角都是120°,六条边的长分别为a,b,c,d,e,f,则下列等式中成立的是()A.a+b+c=d+e+f B.a+c+e=b+d+f C.a+b=d+e D.a+c=b+d10.10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是()A.2 B.﹣2 C.4 D.﹣4二、填空题(共40分,每题5分)11.若n是正整数,且x2n=5,则(2x3n)2÷(4x2n)=.12.若关于x的分式方程有整数解,m的值是.13.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是.14.设x1,x2是方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值为.15.已知:a2﹣4ab+5b2﹣2b+1=0,则以a,b为根的一元二次方程为.16.如图1是一个正三角形,分别连接这个正三角形各边上的中点得到图2,再连接图2中间的小三角形各边上的中点得到图3,按此方法继续下去.前三个图形中三角形的个数分别是1个,5个,9个,那么第5个图形中三角形的个数是个;第n个图形中三角形的个数是个.17.在一个圆形时钟的表面,OA表示秒针,OB表示分针(O为两针的旋转中心)若现在时间恰好是12点整,则经过秒钟后,△OAB的面积第一次达到最大.18.已知a1•a2•a3•…•a2007是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),那么M与N的大小关系是M N.三、解答题(共20分,每题10分)19.解方程:|x﹣2|+|x﹣3|=2.20.甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?参考答案与试题解析一、选择题(共40分,每题4分)1.在277,355,544,633这四个数中,最大的数是()A.277B.355C.544D.633【考点】幂的乘方与积的乘方.【分析】分别把277,355,544,633这四个数变为(27)11,(35)11,(54)11,(63)11,比较它们的底数的大小即可求解.【解答】解:∵277,355,544,633这四个数变为(27)11,(35)11,(54)11,(63)11,而27=128,35=243,54=625,63=216,∴最大的数是544.故选C.2.若(ax+3y)2=4x2﹣12xy+by2,则a,b的值分别为()A.2,9 B.2,﹣9 C.﹣2,9 D.﹣4,9【考点】完全平方公式.【分析】根据完全平方公式把(ax+3y)2展开,再根据对应项系数相等列出方程求解即可.【解答】解:∵(ax+3y)2=a2x2+6axy+9y2,∴a2x2+6axy+9y2=4x2﹣12xy+by2,∴6a=﹣12,b=9,解得a=﹣2,b=9.故选C.3.一次函数y=(m2﹣4)x+(1﹣m)和y=(m+2)x+(m2﹣3)的图象分别与y轴交于点P 和Q,这两点关于x轴对称,则m的值是()A.2 B.2或﹣1 C.1或﹣1 D.﹣1【考点】一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】根据函数解析式求出P、Q的坐标,再由P点和Q点关于x轴对称列出等式解得m 的值.【解答】解:由两函数解析式可得出:P(0,1﹣m),Q(0,m2﹣3),又∵P点和Q点关于x轴对称,∴可得:1﹣m=﹣(m2﹣3),解得:m=2或m=﹣1.∵y=(m2﹣4)x+(1﹣m)是一次函数,∴m2﹣4≠0,∴m≠±2,∴m=﹣1.故选D.4.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280 B.140 C.70 D.196【考点】二元一次方程组的应用.【分析】等量关系为:5个小矩形的宽等于2个小矩形的长;6个小矩形的宽加一个小矩形的长等于大长方形周长的一半.【解答】解:设小长方形的长、宽分别为x、y,依题意得:,解得:,则矩形ABCD的面积为7×2×5=70.故选C.5.化简(a﹣1)的结果是()A.B.C.﹣ D.﹣【考点】二次根式的性质与化简.【分析】代数式(a﹣1)有意义,必有1﹣a>0,由a﹣1=﹣(1﹣a),把正数(1﹣a)移到根号里面.【解答】解:原式=﹣=﹣.故选D.6.方程组的解的个数是()A.1 B.2 C.3 D.4【考点】解二元一次方程组.【分析】分类讨论x与y的正负,利用绝对值的代数意义化简,求出方程组的解,即可作出判断.【解答】解:当x>0,y>0时,方程组变形得:,无解;当x>0,y<0时,方程组变形得:,①+②得:2x=14,即x=7,②﹣①得:2y=﹣6,即y=﹣3,则方程组的解为;当x<0,y>0时,方程组变形得:,①+②得:﹣2y=14,即y=﹣7<0,不合题意,舍去,把y=﹣7代入②得:x=﹣3,此时方程组无解;当x<0,y<0时,方程组变形得:,无解,综上,方程组的解个数是1,故选A7.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.【考点】一元一次不等式组的整数解.【分析】先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值.【解答】解:由于不等式组有解,则,必定有整数解0,∵,∴三个整数解不可能是﹣2,﹣1,0.若三个整数解为﹣1,0,1,则不等式组无解;若三个整数解为0,1,2,则;解得.故选B.8.若a,b,c都是负数,并且,则a、b、c中()A.a最大B.b最大C.c最大D.c最小【考点】分式的混合运算.【分析】根据不等式的性质,在不等式两边同时加上同一个数,不等号的方向不变和分式的加法法则计算即可.【解答】解:∵,∴,∴<<,又a、b、c都是负数,∴a+b<b+c<c+a,∴b<a<c,故选:C.9.如图,一个凸六边形的六个内角都是120°,六条边的长分别为a,b,c,d,e,f,则下列等式中成立的是()A.a+b+c=d+e+f B.a+c+e=b+d+f C.a+b=d+e D.a+c=b+d【考点】三角形的面积.【分析】分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.可得△APF、△BGC、△DHE、△GHP都是等边三角形,求得答案.【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APF、△BGC、△DHE、△GHP都是等边三角形.∴P A=PF=AF=b,BG=CG=BC=f,DH=EH=DE=d,∴a+b+f=f+e+d=d+c+b,∴a+b=e+d,f+e=c+b,a+f=d+c.故选C.10.10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是()A.2 B.﹣2 C.4 D.﹣4【考点】规律型:数字的变化类.【分析】先设报3的人心里想的数,利用平均数的定义表示报5的人心里想的数;报7的人心里想的数;抱9的人心里想的数;报1的人心里想的数,最后建立方程,解方程即可.【解答】解:设报3的人心里想的数是x,则报5的人心里想的数应是8﹣x,于是报7的人心里想的数是12﹣(8﹣x)=4+x,报9的人心里想的数是16﹣(4+x)=12﹣x,报1的人心里想的数是20﹣(12﹣x)=8+x,报3的人心里想的数是4﹣(8+x)=﹣4﹣x,所以得x=﹣4﹣x,解得x=﹣2.故选B.二、填空题(共40分,每题5分)11.若n是正整数,且x2n=5,则(2x3n)2÷(4x2n)=25.【考点】整式的除法;幂的乘方与积的乘方.【分析】根据积的乘方得出4x6n÷(4x2n),根据单项式除以单项式法则得出x4n,根据幂的乘方得出(x2n)2,代入求出即可.【解答】解:∵n是正整数,且x2n=5,∴(2x3n)2÷(4x2n)=4x6n÷(4x2n)=(4÷4)x6n﹣2n=x4n=(x2n)2=52=25.故答案为:25.12.若关于x的分式方程有整数解,m的值是4或3或0.【考点】解分式方程.【分析】首先化分式方程为整式方程,然后解整式方程,最后讨论整数解即可求解.【解答】解:,∴mx﹣1﹣1=2(x﹣2),∴x=﹣,而分式方程有整数解,∴m﹣2=1,m﹣2=﹣1,m﹣2=2,m﹣2=﹣2,但是m﹣2=﹣1时,x=2,是分式方程的增根,不合题意,舍去∴m﹣2=1,m﹣2=2,m﹣2=﹣2,∴m=4,m=3,m=0.故答案为:m=4,m=3,m=0.13.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是(﹣b,a).【考点】坐标与图形性质.【分析】本题用三角函数解答,由A和A1向坐标轴作垂线即可得解.【解答】解:如图,从A、A1向x轴作垂线,设A1的坐标为(x,y),设∠AOX=α,∠A1OD=β,A1坐标(x,y)则α+β=90°sinα=cosβcosα=sinβsinα==cosβ=同理cosα==sinβ=所以x=﹣b,y=a,故A1坐标为(﹣b,a).14.设x1,x2是方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值为0.【考点】根与系数的关系;一元二次方程的解.【分析】因为x13=x1•x12=x1•(3﹣x1)=3x1﹣x12=3x1﹣3+x1=4x1﹣3,x22=3﹣x2,所以x13﹣4x22+19=4x1﹣3﹣12+4x2+19=4(x1+x2)﹣15+19.【解答】解:∵x1,x2是方程x2+x﹣3=0的两个实数根,∴x1+x2=﹣1;又∵x13=x1x12=x1(3﹣x1)=3x1﹣x12=3x1﹣3+x1=4x1﹣3,x22=3﹣x2,∴x13﹣4x22+19=4x1﹣3﹣12+4x2+19=4(x1+x2)﹣15+19=﹣4﹣15+19=0.故答案为:0.15.已知:a2﹣4ab+5b2﹣2b+1=0,则以a,b为根的一元二次方程为x2﹣3x+2=0.【考点】根与系数的关系;非负数的性质:偶次方;配方法的应用.【分析】根据非负数的性质,求出a+b、ab的值,再由根与系数的关系,写出以a,b为根的一元二次方程即可.【解答】解:∵a2﹣4ab+5b2﹣2b+1=0,∴a2﹣4ab+4b2+b2﹣2b+1=0,∴(a﹣2b)2+(b﹣1)2=0,∴a=2,b=1,∴a+b=2,ab=1,∴以a,b为根的一元二次方程为x2﹣3x+2=0.故答案为:x2﹣3x+2=0.16.如图1是一个正三角形,分别连接这个正三角形各边上的中点得到图2,再连接图2中间的小三角形各边上的中点得到图3,按此方法继续下去.前三个图形中三角形的个数分别是1个,5个,9个,那么第5个图形中三角形的个数是17个;第n个图形中三角形的个数是4n﹣3个.【考点】规律型:图形的变化类.【分析】把前面一个图形当成后一个图形的中间部分,就会发现后面的图形比前一个图形多4个三角形,从而得出变化规律,根据变换规律找出第n个图形中三角形的个数,套入数据即可得出结论.【解答】解:观察图形发现规律:后一个图形比前一个图形多4个三角形,∵第一个图形中只有一个三角形,∴第n个图形中有4(n﹣1)+1=4n﹣3个三角形.令n=5,则4×5﹣3=17(个).故答案为:17;4n﹣3.17.在一个圆形时钟的表面,OA表示秒针,OB表示分针(O为两针的旋转中心)若现在时间恰好是12点整,则经过秒钟后,△OAB的面积第一次达到最大.【考点】三角形的面积;钟面角.【分析】设OA边上的高为h,则h≤OB,所以,当OA⊥OB 时,等号成立,此时△OAB的面积最大.【解答】解:设经过t秒时,OA与OB第一次垂直,又因为秒针1秒钟旋转6度,分针1秒钟旋转0.1度,于是(6﹣0.1)t=90,解得t=.故经过秒钟后,△OAB的面积第一次达到最大.故答案为:.18.已知a1•a2•a3•…•a2007是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),那么M与N的大小关系是M>N.【考点】整式的混合运算.【分析】利用M﹣N与0大小的比较来比较M、N的大小.【解答】解:M﹣N=(a1+a2+…+a2006)(a2+a3+…+a2007)﹣(a1+a2+…+a2007)(a2+a3+…+a2006)=(a1+a2+…+a2006)(a2+a3+…+a2006)+(a1+a2+…+a2006)a2007﹣(a1+a2+…+a2006)(a2+a3+…+a2006)﹣a2007(a2+a3+…+a2006)=(a1+a2+…+a2006)a2007﹣a2007(a2+a3+…+a2006)=a1a2007>0∴M>N三、解答题(共20分,每题10分)19.解方程:|x﹣2|+|x﹣3|=2.【考点】含绝对值符号的一元一次方程.【分析】根据分类讨论:x<2,2≤x<3,x≥3,可化简绝对值,根据解方程,可得答案.【解答】解:①当x<2时,原方程等价于2﹣x+3﹣x=2,解得;②当2≤x≤3时,原方程等价于x﹣2+3﹣x=2无解;③当x≥3时,原方程等价于x﹣2+x﹣3=2,解得,综上所述:方程的解是x=,x=.20.甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?【考点】一次函数的应用.【分析】(1)由图知,可设甲车由A地前往B地的函数解析式为s=kt,把将(2.4,48)代入即可求出此一次函数的表达式,再根据图中S=30即可求出t的值;(2)可设乙车由A地前往B地函数的解析式为s=pt+m,将(1.0,0)和(1.5,30)代入即可求出此表达式,进而可求出t的值,同理设乙车由B地返回A地的函数的解析式为s=﹣30t+n,把将(1.8,48)代入即可求解;(3)求出乙车返回到A地时所需的时间及乙车的速度即可.【解答】解:(1)由图知,可设甲车由A地前往B地的函数解析式为s=kt,将(2.4,48)代入,解得k=20,所以s=20t,由图可知,在距A地30千米处,乙车追上甲车,所以当s=30千米时,(小时).即甲车出发1.5小时后被乙车追上,(2)由图知,可设乙车由A地前往B地函数的解析式为s=pt+m,将(1.0,0)和(1.5,30)代入,得,解得,所以s=60t﹣60,当乙车到达B地时,s=48千米.代入s=60t﹣60,得t=1.8小时,又设乙车由B地返回A地的函数的解析式为s=﹣30t+n,将(1.8,48)代入,得48=﹣30×1.8+n,解得n=102,所以s=﹣30t+102,当甲车与乙车迎面相遇时,有﹣30t+102=20t解得t=2.04小时代入s=20t,得s=40.8千米,即甲车与乙车在距离A地40.8千米处迎面相遇;(3)当乙车返回到A地时,有﹣30t+102=0,解得t=3.4小时,甲车要比乙车先回到A地,速度应大于(千米/小时).。
初二全国数学竞赛试题
初二全国数学竞赛试题
备考期间,考生可以适当放松,同时也要静下心来做好接下来的复习。
下面小编为你整理了初二全国数学竞赛试题,希望能帮到你!
初二全国数学竞赛试题1
初二全国数学竞赛试题2
初二全国数学竞赛试题3
数学竞赛对于开发学生智力,开拓视野,促进教学改革,提高教学水平,发现和培养数学人才都有着积极的作用。
目前我国中学生数学竞赛日趋规范化和正规化,为了使全国数学竞赛活动健康、持久地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《初中数学竞赛大纲(修订稿)》以适应当前形势的需要。
本大纲是在国家教委制定的九年义务教育制“初中数学教学大纲”精神的基础上制定的。
《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性。
”具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的.数学才能”,“要重视能力的培养……,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。
同时,要重视培养学生的独立思考和自学的能力”。
《教学大纲》中所列出的内容,是教学的要求,也是竞赛的要求。
除教学大纲所列内容外,本大纲补充列出以下内容。
这些课外讲授的内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,处理好普及与提高的关系,这样才能加强基础,不断提高。
5.如图,过正方形ABCD 的顶点A 作AE 交BC 于点E ,且使∠BAE =30o ,则AE 分正方形成两部分的面积之比S △AEB :S 四边形ADCE =_______.
6.如图6,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是_______. 7.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取一只球,取到黄球的概率是_____.
8.扑克牌游戏小明背对小亮,让小亮按下列四个步骤操作:
第一步 分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同; 第二步 从左边一堆拿出两张,放入中间一堆; 第三步 从右边一堆拿出一张,放入中间一堆;
第四步 左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆. 这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是 .
9.如图,△ABC 为等边三角形,边长为2cm ,D 为BC 中点,△AEB 是△ADC 绕点A 旋转60°得到的,则∠ABE =____度;BE =__。
若连结DE ,
第2题
则△ADE 为_____三角形。
10、如图,直角⊿ABC 绕着C 点按逆时针方向旋转到⊿DEC 位置。
那么点A 的对应点是:
二、选择题(每题4分,计40分)
11
ABCD 中,∠
A :∠B=7
:
2,则∠
C 、∠
D 的度数分别为(
) A .70°和20° B .280°和80° C .140°和40° D .105°和30°
12ABCD 中,若∠B+∠D=200°,°则∠A 等于( ) A .70° B .80° C .90° D .100° 13.给出下列说法:
(1)平行四边形的对边平行;(2)平行四边形的对边相等; (3)平行四边形的对角相等;(4)平行四边形的对角线互相平分。
其中是平行四边形的特征的有( )
A .1种
B .2种
C .3种
D .4种 14.下列说法中错误的是( )
A . 平行四边形的对角线互相平分 B.对角线互相平分的四边形是平行四边形 C.平行四边形对边相等 D .对边相等的四边形是平行四边形 15.如图,正方形EFGH 是由正方形ABCD 平移得到的, 则有( )
A. 点E 和B 对应
B. 线段AD 和EH 对应
C. 线段AC 和FH 对应
D. ∠B 和∠D 对应 16.如图,共有5个正三角形,从位置来看,( )是由 左边第一个图平移得到的.
A B
C D
17.如图,四边形EFGH 是由四边形ABCD 平移
得到的,已知AD=5,∠B=700,则( )
A. FG=5, ∠G=700
B. EH=5, ∠F=700
C. EF=5, ∠F=700
D. EF=5. ∠E=700 18. 如图,所给的图案由ΔABC 绕点O 顺时针 旋转( )前后的图形组成的.
E
A H
B D C
H
A D
E O G
B C
F
E
4
图3
1 A. 450、900、1350 B. 900、1350、1800 C.450、900、1350、1800、2250
D.450、1350、2250、2700. 19.将图
形按顺时针方向旋转900后的图形是
A B C D
20.图3是一个经过改造的台球桌面的示意图,图中四个角上的阴影
部分分别表示四个入球孔.如果一个球按图中所示的方向被击出
(球可以经过多反射),那么该球最后将落入的球袋是 A .1 号袋 B .2 号袋 C .3 号袋 D .4 号袋 三、解答题:(56分)
21. (4分)分析图6①,②,④中阴影部分的分布规律,按此规律在图6③中画出其中的阴影部分.
22. (本小题满分8分)
观察下面的点阵图和相应的等式,探究其中的规律: (1)在④和⑤后面的横线上分别写出相应的等式;
操作与探究
……
……
①1=12; ②1+3=22; ③1+2+5=32; ④ ; ⑤ ;
图23—3
图23—2 23. (本小题满分12分)
探索下列问题:
(1)在图23—1
给出的四个正方形中,各画出一 条直线(依次是:水平方向的直线、竖直方向的直线、与水平方向成45°角的直线和任意的直线),将每个正方形都分割成面积相等的两部分;
(2
)一条竖直方向的直线m 以及任意的直线n , 在由左向右平移的过程中,将正六边形分成 左右两部分,其面积分别记为S 1
和S 2. ①请你在图23—2中相应图形下方的横线上 分别填写S 1与S 2的数量关系式(用“<”,“=”,“>”连接);
②请你在图23—3中分别画出反映S 1与S 2三种大小关系的直线n ,并在相应图形下 方的横线上分别填写S 1与S 2的数量关系 式(用“<”,“=”,“>”连接).
(3)是否存在一条直线,将一个任意的平面图 形(如图23—4)分割成面积相等的两部分, 请简略说出理由.
24.(8分)如图,ABCD 是一张矩形纸片,点O 为矩形对角线的交点.直线MN 经过点
O 交AD 于M ,交BC 于N .
操作:先沿直线MN 剪开,并将直角梯形MNCD 绕点O 旋
转 度后(填入一个你认为正确的序号:○190; ②180;○3270;○4360),恰与直角梯形NMAB 完全重
合;再将重合后的直角梯形MNCD 以直线MN 为轴翻转180 后所得到的图形是下列中的 .(填写正确图形的代号)
25、(8分)如图,将一个长方形ABCD 绕BC 边的中点O 旋转900后得到矩形EFGH.已知AB=5cm,BC=10cm,求图中阴影部分面积.
图23—1
图23—4 A E H(D)
B C
F G
C
D
(第24题)
(A )
(B )
(C )
(D )
26.(8分)如图:已知在△ABC 中,AB=AC ,D 为BC 上任意一点,DE ∥AC 交AB 于E ,
DF ∥AB 交AC 于F ,说明:DE+DF=AC
27.(8分)如图:AD 是△ABC 的角平分线,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F 。
说明:AD ⊥EF 。