弱电源电网低频振荡分析
- 格式:doc
- 大小:26.50 KB
- 文档页数:3
由于在特定情况下系统提供的负阻尼作用抵消了系统电机、励磁绕组和机械等所产生的正阻尼,在欠阻尼的情况下扰动将逐渐被放大,从而引起系统功率的振荡。
还有一种比拟特殊的欠阻尼情况,假设系统阻尼为零或者较小,那么由于扰动的影响,出现不平衡转矩,使得系统的解为一等幅振荡形式,当扰动的频率和系统固有频率相等或接近时,这一响应就会因共振而被放大,从而引起共振型的低频振荡。
这种低频振荡具有起振快、起振后保持同步的等幅振荡和失去振荡源后振荡很快衰减等特点,是一种值得注意的振荡产生机理。
2、模态谐振机理电力系统的线性与模态性质随系统参数的变化而变化,当两个或多个阻尼振荡模态变化至接近或相同状态,以至相互影响,导致其中一个模态变得不稳定,假设此时系统线性化模型是非对角化的,就称之为强谐振状态;反之为弱谐振状态。
强谐振状态是导致发生低频振荡的先导因素。
当出现或接近强谐振状态时,系统模态变得非常敏感,反响在复平面上,随着参数变化,特征值迅速移动,变化接近,这样,对于频率接近的系统特征值在强谐振之后,阻尼很快变得不同,其中一个特征值穿过虚轴,从而引起振荡。
3、发电机的电磁惯性引起的低频振荡由于发电机励磁绕组具有电感,那么由励磁电压在励磁绕组中产生的励磁电流将是一个比它滞后的励磁电流强迫分量,这种滞后将产生一个滞后的控制,而这种滞后的控制在一定条件下将引起振荡。
而且由于发电机的转速变化,引起了电磁力矩变化与电气回路藕合产生机电振荡,其频率为0.2-2 Hz。
4、过于灵敏的励磁调节引起低频振荡为了提高系统稳定,在电力系统中广泛采用了数字式、高增益、强励磁倍数的快速励磁系统,使励磁系统的时间常数大大减小。
这些快速励磁系统可以对系统运行变化快速作出反响,从而对其进行灵敏快速的调节控制,从控制方面来看,过于灵敏的调节,会对较小的扰动做出过大的反响,这些过大的反响将对系统进行超出要求的调节,这种调节又对系统产生进一步的扰动,如此循环,必将导致系统的振荡。
电力系统低频振荡的原因引言电力系统是现代社会不可或缺的基础设施,它为我们提供了稳定的电能供应。
然而,有时候电力系统会出现低频振荡问题,给系统的稳定运行带来困扰。
本文将探讨电力系统低频振荡的原因,以及可能导致这些振荡的因素。
低频振荡概述低频振荡是指电力系统中频率较低的周期性波动。
一般情况下,电力系统的标准工作频率为50Hz或60Hz,而低频振荡往往发生在0.1Hz到1Hz范围内。
这种振荡可能导致电网不稳定、设备损坏甚至停电。
常见原因动力系统负载变化动力系统负载变化是引起低频振荡的常见原因之一。
当负载突然增加或减少时,会导致发电机和负载之间的失衡,从而引起低频振荡。
这种失衡可能是由于大型工业设备启动或停止、大规模用电设备切换等原因引起的。
发电机调节不当发电机是电力系统的核心组成部分,它负责将机械能转换为电能。
发电机调节不当可能导致低频振荡。
如果发电机的调节系统响应缓慢或不灵敏,就会导致频率波动,从而引起低频振荡。
线路参数变化电力系统中的线路参数变化也可能导致低频振荡。
线路的阻抗、电感和电容等参数会受到温度、湿度和环境条件等因素的影响而发生变化。
这些变化可能导致系统的谐振现象,从而引起低频振荡。
控制系统故障控制系统是保持电力系统稳定运行的关键组成部分。
控制系统故障可能导致低频振荡。
自动发电机控制器(AVR)故障可能导致发电机输出功率不稳定,从而引起低频振荡。
高压直流输电系统干扰高压直流输电系统在长距离输送大功率时具有优势,但它也可能对交流输电网产生干扰。
由于高压直流输电系统的存在,可能会引起电力系统中的低频振荡。
振荡的影响低频振荡对电力系统的影响是严重的。
它可能导致设备损坏,包括发电机、变压器和开关设备等。
低频振荡可能导致电网不稳定,从而引起停电和能源供应中断。
低频振荡还可能对用户造成经济损失,并对社会生活产生负面影响。
预防和控制为了预防和控制低频振荡问题,需要采取一系列措施。
应确保发电机和负载之间的平衡。
电力系统的低频振荡问题分析及处理措施发布时间:2022-06-01T07:50:30.742Z 来源:《新型城镇化》2022年10期作者:谢福梅[导读] 现代社会的发展决定了电力资源成为国家经济的重要命脉之一,电力系统是否能够安全稳定运行将直接关乎人民社会生活的健康与可持续发展,因此保证电网正常可靠运行具有重大意义。
然而,大规模跨区互联电网的形成必然将给电网运行方式和结构参数带来巨大变化。
其中,长距离、重负荷输电通道的出现无疑将对电力系统低频振荡问题带来严重影响,加之如今发电机更多地采用高放大倍数和快速励磁控制系统,低频振荡问题将会更加恶化以致严重威胁电网的安全稳定运行。
为此,重点研究电网大规模跨区互联阶段下出现的低频振荡现象迫切并且极具现实意义。
谢福梅国网四川阿坝州电力有限责任公司四川阿坝州 623200摘要:现代社会的发展决定了电力资源成为国家经济的重要命脉之一,电力系统是否能够安全稳定运行将直接关乎人民社会生活的健康与可持续发展,因此保证电网正常可靠运行具有重大意义。
然而,大规模跨区互联电网的形成必然将给电网运行方式和结构参数带来巨大变化。
其中,长距离、重负荷输电通道的出现无疑将对电力系统低频振荡问题带来严重影响,加之如今发电机更多地采用高放大倍数和快速励磁控制系统,低频振荡问题将会更加恶化以致严重威胁电网的安全稳定运行。
为此,重点研究电网大规模跨区互联阶段下出现的低频振荡现象迫切并且极具现实意义。
关键词:电力系统;低频振荡问题;处理措施目前低频振荡危害已经成为影响电力系统安全稳定运行的首要因素,对日益普遍的电力联网状况提出了更加严峻的挑战。
为了更好地推进西电东送、南北互供、全国联网的电力发展战略,强化对电力系统低频振荡的控制方法的分析,是促进国家电力事业稳定健康发展的关键途径。
1 电网振荡的分类1.1按照相关机组分类(1)地区振荡模式:地区振荡模式为少数机组之间或少数机组对整个电网之间的振荡模式。
电力系统低频振荡分析综述1. 低频振荡概念电力系统在某一正常状态下运行时,系统的状态变量具有一个稳态值,但是电力系统几乎时刻都受到小的干扰影响,如负荷的随机变化或风吹架空线摆动等。
当系统经受扰动后,其运行状态会偏离原来的平衡点,这时希望系统在阻尼的影响下经历一个振荡过程,回到稳定的平衡运行点。
在这一过程中,如果系统的阻尼不足则会出现或观测到电力系统的低频振荡现象。
所谓的低频振荡,一般有如下的定义描述。
电力系统中的发电机经输电线路并列运行时,在某种扰动作用下,发生发电机转子之间的相对摇摆,当系统缺乏正阻尼时会引起持续的振荡,输电线路上的功率也发生相应的振荡。
这种振荡的频率很低,范围一般是0.2-2.5Hz,称其为低频振荡[1]。
在互联电力系统中,低频振荡是广泛存在的现象。
根据当今电力系统中出现过的低频振荡现象来看,功率振荡的频率越低时,涉及到的机组相对地就越多。
研究中,按低频振荡的频率大小和所涉及的范围将其分为两类[2]或者说两种形式。
一种为区域内的振荡模式,涉及同一电厂内的发电机或者电气距离很近的几个发电厂的发电机,它们与系统内的其余发电机之间的振荡,振荡的频率约为0.7-2.0Hz。
另一种为互联系统区域间的振荡模式,是系统的一部分机群相对于另一部分机群的振荡,由于各区域的等值发电机具有很大的惯性常数,因此这种模式的振荡频率要比局部模式低,其频率范围约为0.1-0.7Hz。
关于这两种分类,可以在应用发电机经典二阶模型,并利用小干扰分析法说明低频振荡的过程中,通过讨论机组间的电气距离定性地分析出来,在本文后面的简单数学模型分析中将有说明。
由扰动引发的低频振荡受许多因素的影响,研究认为,当今电力系统发生低频振荡问题大多是由系统的阻尼不足引起。
而一般来说,发电机转子在转动过程中受到机械阻尼作用,转子闭合回路、转子的阻尼绕组会产生电气阻尼作用。
从互联系统自身来看,系统本身具有的自然正阻尼微弱性是发生低频振荡的内在因素。
电力系统低频振荡的原因及抑制方法分析电力系统低频振荡的原因及抑制方法分析随着电力系统低频振荡对系统稳定性危害的逐渐显现,对系统低频振荡的分析越来越受到关注,本文分析了系统低频振荡产生的原因,比拟了常见的抑制低频振荡的措施,比照了优缺点,对柔性交流输电系统技术在抑制低频振荡中的应用进行展望。
【关键词】低频振荡抑制措施电力系统电力系统联网开展初期,发电厂同步发电机联系较为紧密,阻尼绕组会产生足够大的阻尼,抑制振荡开展,低频振荡在那时少有产生。
随着电网规模互联的不断扩大,出现了大型电力系统之间的互联,电力系统联系因而变得越来越密切,世界许多地区电网都发现了0.2Hz至2.5Hz范围内的低频振荡,低频振荡问题逐渐受到业内关注。
电力系统低频振荡一旦发生,如果没有及时抑制,将会导致电网不稳定乃至解列,严重威胁电力系统的稳定平安运行,甚至诱发联锁事故,造成严重后果。
1 低频振荡产生的原因1.1 负阻尼导致低频振荡有文献记载了运用阻尼转矩的方法,针对单机无穷大系统分析低频振荡的原因,最主要的原因是系统中产生负阻尼因素,从而抵消系统自有的正阻尼性,导致系统的总阻尼很小甚至为负值。
如果系统阻尼很小,在受到扰动后,系统中功率振荡始终难以平息,就会造成等幅或减幅的低频振荡。
如果系统阻尼为负值,在受到扰动后,低频振荡会不断积累增加,影响系统稳定。
1.2 发电机电磁惯性导致低频振荡电力系统中励磁控制是通过调整励磁电压来改变励磁电流,从而到达调整发电机运行工况的目的。
控制励磁电流就是在调整气隙合成磁场,它使得发电机机端的电压调整为所需值,同时也调整了电磁转矩。
故改变励磁电流大小便可以调整电磁转矩和机端电压。
在励磁自动控制时,因发电机励磁绕组有电感,励磁电流比励磁电压滞后,故会产生一个滞后的控制,滞后的控制在一定因素下会引起系统低频振荡。
1.3 电力系统非线性奇异现象导致低频振荡依据小扰动分析法,系统的特征根中有一个零根或一对虚根时,系统处在稳定边界;系统的特征根都为负实部时,系统处于稳定的;系统特征根中有一对正实部的复数或一个正实数时,系统处于不稳定。
电力系统中的低频振荡特性研究方法研究电力系统是现代社会运转的核心基础设施之一,它的稳定性和可靠性对于保障国家经济的正常运行至关重要。
然而,电力系统中存在一些不稳定性问题,例如低频振荡,会给电力系统带来一系列的负面影响,如电力设备的损坏、系统能量损耗的增加、供电可靠性下降等。
因此,对电力系统中的低频振荡特性进行科学研究和分析具有重要意义。
低频振荡是指电力系统中频率较低的振荡现象。
当电力系统中存在负荷变化、电力负载突变或线路短路等情况时,系统的频率可能会发生变化,从而引发低频振荡。
低频振荡会导致系统频率的不稳定、电压波动以及功率损耗的增加,严重时甚至会导致系统崩溃。
在研究电力系统中的低频振荡特性时,需要采用一系列科学的研究方法。
首先,我们可以利用仿真模型对电力系统中的低频振荡特性进行分析。
利用计算机软件建立电力系统的仿真模型,并根据实际情况设定系统参数,模拟系统运行过程中的低频振荡情况。
通过分析仿真结果,我们可以深入了解低频振荡产生的原因和机理,以及振荡在系统中的传播规律。
其次,我们可以采用实验方法来研究电力系统中的低频振荡特性。
例如,可以建立实验测量系统,通过监测电力系统中的频率和电压波动等参数的变化,来验证低频振荡的存在并分析其特性。
同时,可以通过实验调整系统的负荷和发电功率等,观察低频振荡的响应情况,揭示其对系统稳定性的影响。
另外,现在还有一些先进的监测装置和算法可以用于电力系统中低频振荡特性的研究。
例如,广泛应用于电力系统的智能传感器网络,可以实时监测系统中的频率、电压、电流等参数,并进行数据采集和分析。
利用这些数据,可以通过数据挖掘和机器学习等方法,深入挖掘低频振荡的形成机制,提高系统的抗振能力。
此外,经验法也是研究电力系统中低频振荡特性的一种重要方法。
通过对历史上发生的低频振荡事件进行分析和总结,总结出一些规律和经验,可以为今后防范低频振荡提供指导。
例如,根据过去低频振荡事件的特征和表现,可以建立一些预警指标和故障诊断模型,及时预测和识别低频振荡的发生。
电网低频振荡现场处置方案电网低频振荡是电力系统稳定性的一种常见故障。
其表现为电力系统中发生频率为0.1到1Hz之间的低频振荡现象,会对电力系统带来影响,进而危及电网的稳定运行。
因此,在低频振荡发生时,必须采取相应的应急处置措施,以保障电力系统的稳定运行。
故障原因与特征电网低频振荡的本质是由于系统的负荷变化引起的电力系统动态稳定性问题。
其主要原因包括负荷突变、抽水蓄能机组失效、输电线路烧毁、逆变器故障等。
一旦低频振荡发生,其特点包括波形半周期增幅较大、持续时间长、频率变化缓慢,且有可能伴随高频振荡等现象。
现场处置方案第一步:急停发电机组一旦发生低频振荡,首先要立即采取措施,急停发电机组。
经实践验证,急停发电机组能够有效减小电力系统中的不稳定因素,避免振荡现象进一步加剧。
具体操作包括:1.手动关闭发电机组断路器,保障发电机组不再向电网输入负荷;2.停止调速器控制,保障发电机组不再调节电网电压和频率;3.减缓发电机组旋转速度,将其逐渐降至静止状态。
第二步:减少负荷在急停发电机组之后,应该立即减少负荷,以减小电力系统的负荷变化,从而尽可能减少低频振荡的影响。
具体操作包括:1.手动关闭负荷断路器,依次将电网中的载荷逐个切断;2.对于无法切断负荷的情况,应该及时启动备用电源,并通过负荷转移等方式减少负荷。
第三步:加固电网硬件设施在减少负荷之后,应该加固电网硬件设施,以保障电力系统的稳定运行。
具体操作包括:1.对电力系统逐一进行巡视和检查,发现电线松动、绝缘子破损等情况应该立即修理;2.对于输电线路烧毁等情况,应该先进行临时补救措施,避免低频振荡加剧;3.加强对电力系统的监测和预警机制,及时发现低频振荡的迹象,避免事故的发生。
总结电网低频振荡是电力系统常见的稳定性故障,发生时必须采取相应的应急措施。
具体的处置方案包括:急停发电机组、减少负荷、加固电网硬件设施等措施,以保障电力系统的正常运行。
同时,我们应该加强对电力系统的预警和监测,提高电力系统的运行安全性,避免低频振荡事故的发生。
电力系统中低频振荡的稳定性分析引言电力系统是现代社会不可或缺的基础设施之一,它的稳定性对于保障供电的可靠性至关重要。
然而,电力系统中常常会出现一些稳定性问题,其中低频振荡是一个常见的现象。
本文将就电力系统中低频振荡的稳定性进行深入的分析。
一、低频振荡的概念在电力系统中,低频振荡指的是频率较低的振荡现象。
通常,频率低于2Hz的振荡被认为是低频振荡。
低频振荡会对电力系统的稳定性产生一定的影响,因此需要进行分析和控制。
二、低频振荡的原因低频振荡通常是由于电力系统中的系统参数失稳或失控所导致的。
下面列举了几个常见的低频振荡原因。
1. 功率系统失稳:当电力系统中的负载功率发生突变时,系统可能会出现低频振荡。
这是因为负载功率的突变会导致系统频率和功角的变化,从而引起系统的不稳定性。
2. 电力系统设备故障:电力系统中的设备故障也可能引发低频振荡。
例如,变压器的短路故障、发电机的失速等都可能导致低频振荡的发生。
3. 控制系统失效:电力系统中的控制系统对于稳定性起着至关重要的作用。
当控制系统失效时,可能会引发低频振荡。
例如,自动电压调节器(AVR)失效、励磁系统故障等都可能导致低频振荡的出现。
三、低频振荡的影响低频振荡对电力系统的影响主要表现在以下几个方面。
1. 频率稳定性影响:低频振荡会导致电力系统中的频率波动,从而影响到电力负荷的正常运行。
如果频率波动过大,可能会导致负载设备的故障甚至损坏。
2. 功率稳定性影响:低频振荡也会引起电力系统中的功率波动,导致电力传输的不稳定性。
这会降低电力系统的传输效率,并可能引发更大范围的电力系统失稳。
3. 控制系统失效:低频振荡如果长时间持续,可能会导致电力系统中的控制系统失效。
这将进一步加剧低频振荡和整个系统的不稳定性。
四、低频振荡的稳定性分析方法为了保证电力系统的稳定性,我们需要对低频振荡进行稳定性分析。
下面介绍几种常用的稳定性分析方法。
1. 功率-角稳定性分析:这种方法通过分析电力系统中发电机的功率-角特性曲线,来判断系统是否存在低频振荡的风险。
电力系统中的低频振荡与稳定性分析研究随着电力系统的规模不断扩大和复杂度的增加,低频振荡和稳定性问题成为了电力系统运行中需要重点关注和解决的难题。
低频振荡是指在电力系统中出现的频率较低的振荡现象,其频率通常在0.1-10赫兹之间。
这种振荡会导致电力系统的不稳定,甚至引发系统失稳和崩溃,对电网的安全稳定运行带来严重威胁。
因此,对低频振荡与稳定性进行深入研究具有重要意义。
低频振荡与稳定性分析是电力系统运行与控制的重要组成部分之一。
分析低频振荡与稳定性的目的在于识别潜在的问题,并提出相应的解决方案来保障电力系统的安全稳定运行。
为了进行低频振荡与稳定性分析研究,我们需要对电力系统的各个方面进行综合考虑。
首先,电力系统的结构与拓扑对于低频振荡与稳定性具有重要影响。
传输线路的长度和参数、发电机的输出特性、负荷的特性以及变压器的耦合等都会影响系统的振荡特性。
因此,在低频振荡与稳定性分析中,需要对电力系统的结构与拓扑进行详细的研究和建模。
通过建立合适的数学模型,可以更好地理解电力系统的振荡机制,并确定系统中可能存在的潜在问题。
其次,电力系统的控制与保护也是低频振荡与稳定性分析的重要因素。
控制系统的设计和设置直接影响着系统的稳定性。
传统的自动稳定控制器可以通过控制发电机的励磁和调节机组的输出来抑制低频振荡。
此外,快速保护装置和过电压保护装置的动作也可能引起低频振荡。
因此,需要对电力系统的控制和保护系统进行全面的分析和评估,以保证系统的稳定性。
另外,低频振荡与稳定性分析还需要考虑负荷特性、电力市场以及电力系统与其他能源系统的耦合等因素。
负荷特性的变化会引起系统的频率变化,而电力市场的竞争与供需平衡也会对系统的稳定性产生重要影响。
此外,电力系统与其他能源系统(如风能、太阳能等)的混合接入,也给低频振荡与稳定性分析带来了新的挑战。
为了对低频振荡与稳定性进行分析和研究,研究人员通常采用数学模型和仿真工具。
其中,常用的数学模型包括传输线路模型、发电机模型、负荷模型等。
精品文档供您编辑修改使用专业品质权威编制人:______________审核人:______________审批人:______________编制单位:____________编制时间:____________序言下载提示:该文档是本团队精心编制而成,希望大家下载或复制使用后,能够解决实际问题。
文档全文可编辑,以便您下载后可定制修改,请根据实际需要进行调整和使用,谢谢!同时,本团队为大家提供各种类型的经典资料,如办公资料、职场资料、生活资料、学习资料、课堂资料、阅读资料、知识资料、党建资料、教育资料、其他资料等等,想学习、参考、使用不同格式和写法的资料,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic materials for everyone, such as office materials, workplace materials, lifestylematerials, learning materials, classroom materials, reading materials, knowledge materials, party building materials, educational materials, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!电力系统低频振荡分析与抑止探究关键词:电力系统;低频振荡;控制系统设计;机组调速控制;电磁环境分析一、引言电力系统是国民经济进步的重要基础设施之一,在电力系统中,低频振荡问题一直是电力系统安全稳定运行中的重要问题,其不仅会影响到电力系统的安全可靠运行,还会对电力质量产生严峻影响,给用户带来不良体验。
云南电网低频振荡事件调查分析报告2008年4月21日 10:28:02~10:34:05 电网发生低频振荡,在南方电网各主要送出断面线路上均不同程度有所反映,振荡持续时间约6分3秒,振荡频率0.36~0.38Hz。
云南电网内振幅最大的线路是500kV罗百双回线(500kV罗马线停运),最大振荡幅值达231.9MW,其次为大唐红河电厂的#2机组,最大振荡幅值达66.6MW。
振荡发生后,立即开展了调查分析,简要情况如下:一、电网运行概况2008年4月21日,云南电网与南方电网通过500kV罗百双线联网运行,500kV 罗马线停运检修。
云南省内500kV网架除500kV宝峰玉溪I回线和玉溪墨江I 回线停运检修外,主网其他500kV线路均正常运行。
10:25分左右,云南全网发电出力约8770MW,省内负荷约7050MW,经500kV 罗百双线送往广东的电力有950MW。
其中,大唐红河电厂开两机运行,分别通过220kV红唐双线并入500kV红河变运行,其中#1机组满负荷300MW运行,#2机组带负荷150MW左右。
云南全网各厂站PSS装置均按要求随机投入运行。
经了解,除大唐红河电厂的#2机组汽轮机阀门控制方式有调整外,云南全网以及各地区电网均无大的操作工作。
二、低频振荡事件过程及振荡模式分析本次低频振荡通过对云南电网WAMS系统中的低频振荡安全预警及辅助决策数据和分析结果,以及到大唐红河电厂的现场调查收集到的DCS系统中的阀门调节趋势图等资料,分析如下:1、云南电网内各500kV线路和发电厂机组的振荡波形分析振荡过程中,振幅比较明显的线路有:罗百双回线、七罗双回线、大唐红河电厂的唐红II回线(2号机),大理和平双回线振荡不明显。
振荡波形图如图2-1~图2-6所示,振荡过程中振幅变化量值如表1所示。
图2-1线路有功功率振荡波形图2-2、 罗百I 回线和大唐红河#2机组波形图(10:27~10:34:50分)图2-3、 罗百I回线和大唐红河#2机组波形图(10:29分时段)图2-4、 罗百I回线和红河七甸I回线波形图(10:29:00~10:34:30分)图2-5、 红河七甸I回线和大唐红河#2机组波形图(10:27:30~10:35:50分)图2-6、 罗百I回线和大理和平I回线波形图(10:28~35分)表1、云南电网内各500kV线路和发电厂机组的波动变化量振荡线路最大波动值最小波动值最大波动变化量罗→马停运停运停运116.1398.1罗→百I回 514.2396.3 115.8 罗→百II回 512.1大唐红河#2机 187.6 121.0 66.6罗→七I回 158.797.8 60.9101.4 63.3 罗→七II回 164.7振荡线路最大波动值最小波动值最大波动变化量红河→七甸I回 232.8 183 49.8红河→七甸II回 232.8 183 49.8罗平→曲靖I回 16.5 -23.4 39.9曲靖→罗平II回 16.5 -23.7 40.2160.331.6七→宝I回 193158.3 31.9七→宝II回 190.28.1滇→罗I回 696.9688.8690.6 7.5滇→罗II回 698.1七甸→厂口I回 44.6 31.2 13.424.468.7草→宝线 93和平→草铺I回线 94.1 63.1 3110.3157.9宝→玉I回 168.2大理→和平I回 126.3 115.8 10.5大理→和平II回 144.9 133.2 11.7217.726.1 漫昆I回 243.726.4219.4漫昆II回 245.819.9 大宝I回 196.7176.819.9177.8大宝II回 197.7273.77.7小龙潭#7 281.5246.47.4小龙潭#8 253.84174巡检司#6 1783128巡检司#7 3202、振荡过程中的主导模式分析分析此次振荡中振幅较大的罗百I回线、唐红II回线(红河#2机组)的波形,振荡起始阶段为负阻尼, 中间阶段基本为0阻尼,然后逐渐平息,平息过程中罗百双回线路潮流略有上升。
电力系统低频震荡问题分析及处理措施探究摘要:随着电力工业的快速发展和电力系统互联规模的扩大,电网的运行越来越接近稳定极限。
本文阐述了低频振荡的机理,分析了影响低频振荡的因素,并针对不同的振荡模式提出了相应的抑制措施。
关键词:电力系统;低频振荡;机制;影响因素前言随着输电容量的增加和输电成本的大幅降低,一些问题对互联电网的稳定性产生了不利影响。
在电力供应中,电力系统的过度危害越来越受到人们的重视。
我们必须提前制定对策,提高效率,为我国电力系统的稳定高效运行做出贡献。
1、电力系统低频震荡研究背景早在20 世纪 60 年代美国的西北联合系统与西南联合系统进行互联运行时,就出现了严重的功率增幅震荡现象。
电力增长和低频振荡成为影响电力系统稳定运行的重要问题之一。
电力系统出现低频振荡,一种情况是发电机转子之间的振荡,这种情况一般在一段时间后会逐渐减小。
另一种情况是发电机转子间的相对摇摆平息得很慢甚至持续增大,以致破坏了互联系统的静态稳定,最终导致互联系统的解裂。
随着电力的规模的不断扩大,电力系统中的低频震荡问题引起了相关专家的关注,成为急需解决的电力问题之一。
2、低频震荡对电力系统的危害及研究的必要性2.1电力系统低频震荡的危害如果电网的功率、电压和电流继续波动,将严重影响供电质量,电网相关部分的发展趋势将超过输电极限,导致控制系统故障,影响电网稳定运行。
从而造成电源故障和设备损坏。
2.2研究电力系统低频振荡的必要性电网互联将带来电网调峰、水电互补、电力应急保障等一系列经济效益。
电力生产和传输的效率和可靠性大大提高。
电网互联互通发展迅速,但也带来了新的问题,例如:电网内部趋势控制、电力系统安全运行、电网互联的稳定性控制和系统互联引起的区域低频振荡已成为威胁电网安全稳定运行的重要因素之一。
3、电力系统低频振荡的分类3.1地区振荡模式区域振荡模式是指同一发电厂或附近的发电机与系统中其他发电机之间的节距损失。
由于发电机转子惯性时间常数小,振动频率高达0.7~2.0Hz。
电力系统低频振荡分析与抑制技术研究引言电力系统的稳定运行对保障社会经济发展起着至关重要的作用。
然而,在实际运行中,电力系统可能会出现低频振荡现象,对系统的可靠性和稳定性带来威胁。
因此,对电力系统低频振荡进行深入分析与抑制技术研究具有重要意义。
一、低频振荡的原因分析低频振荡通常是由于电力系统中存在的失稳因素引起的。
这些因素包括机械振荡、电气振荡、负载变化、系统失衡等。
1. 机械振荡机械振荡是电力系统低频振荡的主要原因之一。
当发电机组和负荷系统之间出现机械共振或不适当的机械耦合时,容易引发低频振荡。
2. 电气振荡电气振荡是电力系统低频振荡的另一个重要原因。
电力系统中存在的电抗器、电容器等元件,以及线路的电感和电容耦合,都可能导致电气振荡。
3. 负载变化负载变化也是引起低频振荡的常见原因。
当负载的突变或不稳定性变化时,容易引发电力系统的低频振荡。
4. 系统失衡电力系统中存在的不对称负载、不平衡电压等因素,也会导致系统的失衡,进而引起低频振荡。
二、低频振荡的危害分析低频振荡对电力系统的稳定运行和设备运行安全带来很大的威胁。
1. 设备损坏低频振荡会导致电力系统中的设备频繁振动,加速设备的老化过程,甚至引发设备损坏,给电力系统带来巨大经济损失。
2. 电压不稳定低频振荡会导致电压的剧烈波动,这不仅对电力设备的运行稳定性造成威胁,还可能影响用户的用电质量,给社会带来负面影响。
3. 系统失效如果低频振荡得不到及时有效的控制和抑制,可能会导致系统失效,引发电力中断事故,给电力系统的安全稳定运行带来极大隐患。
三、电力系统低频振荡的分析方法为了深入研究电力系统低频振荡,并采取相应的抑制措施,有必要运用一些分析方法以明确振荡特征和原因。
1. 功率谱分析法功率谱分析法是一种常用的电力系统低频振荡分析方法,通过对信号频谱的分析,可以得到系统中的谐波与低频振荡成分。
2. 模拟实验法模拟实验法是通过搭建电力系统的模型,模拟系统振荡和失稳情况,来分析低频振荡的原因和特征。
电力系统中的低频振荡与稳定性分析低频振荡是电力系统中一种常见的稳定性问题,其对电力系统运行的稳定性和可靠性产生重大影响。
因此,对低频振荡的分析与研究具有重要的意义。
本文将探讨电力系统中低频振荡的原因和稳定性分析方法,以及预防和控制低频振荡的措施。
低频振荡,也称为低频电力振荡、大范围振荡或系统振荡,是电力系统在满足供电负荷需求的前提下,出现频率低于50Hz(或者相邻区间内)的电力波动。
这种振荡可能导致电压和频率的异常波动,甚至引发电力系统崩溃。
低频振荡主要由两个因素引起:一是电力系统参数变化,例如负荷变动、发电机变动等;二是电力系统的固有振荡模态,例如低频振荡模态、换流变换模态等。
低频振荡的表现形式有电压振荡、功率振荡和系统频率波动等。
为了分析和评估电力系统中的低频振荡稳定性,需要基于电力系统的动态数学模型进行建模和仿真。
对于大型的电力系统,通常采用特征发电机模型和等值系统模型进行仿真。
特征发电机模型是一种简化的发电机模型,它将发电机的复杂动态特性转化为少量的参数,能够反映发电机的基本运行特性。
等值系统模型是对整个电力系统进行化简和归纳,通过减小系统规模和简化系统结构,使得仿真计算更为高效。
稳定性分析是电力系统中低频振荡问题的核心,能够帮助我们理解电力系统的动态行为和振荡机制,并提供评估和控制电力系统稳定性的方法。
稳定性分析方法主要包括:暂态稳定性分析、动态稳定性分析和静态稳定性分析。
暂态稳定性分析主要研究大范围的系统振荡,即低频振荡的起始过程,它考虑了电力系统在故障发生后的动态响应。
通过计算和模拟系统在故障后的电压和频率响应,可以评估电力系统在故障后的稳定性。
动态稳定性分析主要研究电力系统短时间内的振荡行为,例如发电机转子振荡和电压振荡等。
采用特征发电机模型和等值系统模型,可以计算和模拟电力系统的动态响应,以评估电力系统的稳定性。
静态稳定性分析主要研究电力系统在稳态条件下的振荡行为,例如电压振荡和功率振荡等。
电力系统中的低频振荡监测与分析研究随着电力系统规模的不断扩大和复杂度的增加,低频振荡问题逐渐成为影响系统稳定运行的重要因素之一。
低频振荡是指电力系统中频率范围低于2Hz的振荡现象,其主要表现为功角振荡和电压振荡。
这些振荡对电力系统的稳定性和可靠性产生重要影响,因此对其进行监测与分析研究显得尤为重要。
低频振荡导致的电力系统运行问题主要包括电压不稳、电能质量下降、设备损坏以及系统崩溃等。
因此,为了确保电力系统的可靠运行,需要进行低频振荡的监测与分析,以提前预警和采取相应的措施。
低频振荡的监测是指利用传感器和监测设备对电力系统中的电压、电流和功角等参数进行实时采集和监测。
目前,常用的监测手段包括广域测量系统(WAMS)、相量测量系统(PMUs)和振荡特征提取等。
这些监测手段可以提供实时的电力系统状态信息,为低频振荡的分析与研究提供数据支持。
低频振荡的分析是指对监测到的数据进行处理,识别并分析振荡现象的原因与特征。
这一过程通常包括数据处理、特征提取、频域分析、时域分析和模型建立等步骤。
其中,特征提取是关键的一步,通过提取振荡信号的频率、阶次、幅值等特征参数,可以判断振荡的类型和特性,并进一步分析其形成机理和影响因素。
在低频振荡的分析过程中,常用的方法包括小波变换、谱分析、模态分析等。
小波变换是一种时频分析方法,可以将信号分解为不同频率和时间的成分,从而揭示出振荡信号的时变特性。
谱分析则通过计算信号的功率谱密度来分析频率成分的分布和强度。
模态分析是一种振动力学理论方法,可以对电力系统进行模态分析,得到系统的振动模态和振荡频率。
除了传统的分析方法,近年来机器学习和人工智能等技术也在低频振荡的分析中得到应用。
通过训练算法模型,可以识别和预测不同类型的振荡,并对其进行预防和控制。
这些新兴技术的引入,为低频振荡的监测与分析提供了更多的可能性和潜力。
低频振荡监测与分析的研究对电力系统的安全稳定运行具有重要意义。
通过实时监测和准确分析,可以及时判断系统的健康状况,预测潜在的问题,并采取相应的措施进行调整和控制。
110KV供电网络低频振荡分析及抑制方法(廊坊供电公司,河北廊坊065000)随着供电网络的日趋复杂,低频振荡对供电安全和电力设备造成了严重的威胁。
在分析低频振荡产生的原因的基础上,对其主要的分析及抑制方法进行了探讨。
标签:低频振荡;分析;抑制1 低频振荡产生的原因低频振荡产生的原因是由于电力系统的负阻尼效应,常出现在弱联系、远距离、向系统倒送负荷输电线路上,在采用快速、高放大倍数励磁系统的条件下更容易发生。
目前分析出的低频振荡发生的原因主要有:(1)缺乏阻尼而引起低频振荡。
低频振荡是由于在特定情况下系统提供的负阻尼抵消了系统电机、励磁绕组和机械等所产生的正阻尼,在欠阻尼的情况下扰动将逐渐被放大,从而引起系统功率的振荡。
这种低频振荡具有起振快、起振后保持同步的等幅振荡和失去振荡源后振荡很快衰减等特点;(2)发电机的电磁惯性引起低频振荡;(3)过于灵敏的励磁调节引起低频振荡;(4)电力系统的非线性奇异现象引起增幅性振荡的发生;(5)不适当的控制方式导致低频振荡;(6)其他原因如联络线负载、运行方式、负载、性质、静止补偿器的影响等。
这几种说法都从不同角度解释了低频振荡发生的机理,但是现在人们还在不断对低频振荡发生的根本原因进行研究。
2 低频振荡主要分析方法2.1 低频振荡的自激分析法自激分析法的基本思想是在被研究的系统中任选一机作为自激机,将其状态变量作为保留变量,而将系统的其余部分进行等效,这样就得到一个等效的“二阶”系统,从而可以通过迭代求解的方法比较容易地求出此“二阶”系统的特征根。
自激法可以有效地解决电力系统的“维数灾”问题,但其收敛性相对SMA法要差,而且在多机系统中的一个模式同时和几台机强相关时,并在这几台机作为自激机时,会由于都收敛于这一模式而产生丢根现象:另外,若多机系统的一台机和几个机电模式相关,则用此机做自激机时,只能收敛到其中一个强相关模式,此时也会导致结果失去完整性。
2.2 时域分析法时域分析法要点是:首先建立系统的微分方程式或传递函数;其次选择典型的输入信号,求系统输出随时间而变化的关系,即求系统输出的时间响应;最后根据这种时间响应确定系统的性能指标,包括暂态指标与稳态指标,看这些指标是否符合要求。
电力系统中的低频振荡稳定控制研究电力系统中的低频振荡问题一直是电力系统稳定运行的一个难题。
低频振荡不但会影响到电网的稳定性,而且会给电网带来严重的安全隐患。
因此,在现代电力系统中,低频振荡的稳定控制一直是电力系统研究的重点之一。
在本文中,将介绍电力系统中的低频振荡现象及其稳定控制研究。
一、电力系统中的低频振荡现象电力系统中的低频振荡问题是指电网中出现低频振荡信号。
这些信号往往具有低频、宏观及长期的特点,能够影响电力系统的稳定性和可靠性。
低频振荡主要来自于以下几方面的因素:1. 电力系统中的振荡器:如发电机、电容器、电抗器、变压器及线路等。
2. 网络结构导致的振荡:如线路距离、线路阻抗、负载分布和附加电容、电抗等因素。
3. 控制系统:如发电机调速系统、电力系统动态响应系统等。
低频振荡不但会影响到电网的稳定性,同时会带来种种安全风险,如:1. 会导致电力系统稳定性下降,造成系统的崩溃;2. 会导致电力系统频率的变化,造成电力系统稳定性降低;3. 会影响电力系统的电压,过低或过高都会对电力设备产生不良的影响。
因此,低频振荡的控制是电力系统运行中必须解决的问题之一。
二、电力系统的低频振荡稳定控制研究为了保证电力系统能够正常、稳定地运行,在电力系统的运行和控制中,低频振荡的稳定控制显得尤为重要。
在电力系统中,低频振荡主要通过以下几种控制方式进行控制:1. 发电机自动稳定控制系统发电机自动稳定控制系统是一种常用的低频振荡控制方法。
通过对发电机进行调整,对电力系统中存在的低频振荡进行控制。
通过发电机自动稳定控制系统,可以减少低频振荡的影响,提高电力系统的稳定性和可靠性。
在现代电力系统中,发电机自动稳定控制系统已经被广泛地应用于电力系统的运行和控制中。
2. 多参数过程控制系统多参数过程控制系统是一种较为先进的低频振荡稳定控制方法,可以高效地进行低频振荡的控制。
该系统通过机器学习、数据挖掘等技术,对电力系统中的低频振荡信号进行建模和分析,预测和诊断电力系统中存在的低频振荡问题。
弱电源电网低频振荡分析
分析了弱电源电网低频振荡问题的形成机理,论述了振荡现象出现的原因,并如何防范和解决振荡问题,提出了相应的解决对策。
标签:低频振荡;分析;防范
随着电力系统的快速发展,远距离、负荷重输电系统已逐步投入运行,快速自动励磁调节器与快速励磁系统的应用与普及,使得电力系统面临着各类低频振荡问题,对电力系统的运行造成了很大影响。
深入分析和探索电网低频振荡问题,对于电力系统的可靠运行有着极大的现实意义。
1 低频振荡的形成机理
电力系统中,发电机经输电线路处于并列运行状态时,在扰动的影响下,发电机转子间会出现互相摇摆的现象,且在缺乏弱阻尼或是负阻尼时,其振荡频率将保持在0. 2-2. 5H,一般也叫低频振荡。
与此同时,在输电线路上,同样也会出现这样的振荡现象。
发电机电磁力矩通常可分为同步力矩(PE)与阻尼力矩两种类型,前者和转子角度变化率的相位相同,而后者则与转速偏差(也就是转子速度变化率)的相位相同。
假如同步力矩不够,则可能出现滑行失步现象;而如阻尼力矩过小,则可能引起振荡失步。
现有的研究大多表明:低频振荡的形成机理,即在某种特定情形下,系统所具有的负阻尼作用与系统电机、机械以及励磁绕组等方面的正阻尼相互抵消,导致系统总阻尼变小甚至为负,当系统阻尼较大时,自发振荡很少会出现,且在扰动后会很快消失;当系统阻尼>零,阻尼相对偏小的情况下(弱阻尼),受扰动影响,振荡可能需要较长时间后方可平息如果振荡平息前又发生了新的扰动,那么我们观察到的持续振荡现象可能会时大时小:当系统阻尼<0(负阻尼),则可能会形成自发振荡,且幅值还会慢慢上升。
2 电力系统低频振荡原因分析
迄今为止,对于低频振荡的诱因尚无确切定论,最广泛接受的是欠阻尼机理。
然而,该机理仍无法解释系统出现的各种异常动态行为。
为此,近年来强迫振荡机理和谐振机理等其他机理解释重新成为人们讨论的热点。
一是模态谐振机理,电力系统的线性和模态随参数的变化而变化,当两个或多个阻尼振荡模态变化至接近或者相同的状态,由于相互影响导致一个状态变得不稳定。
若此时系统的线性化模型是非对角化的,就称之为强谐振状态;反之,为弱谐振状态。
二是共振(强迫谐振)机理。
电力系统强迫振荡的理论指出,持续的周期性小扰动会引起系统的强迫振荡,当扰动频率接近系统固有频率时。
会引起频率谐振,导致大幅度的强迫功率振荡。
研究表明,水电厂和电网两者间之所以会出现低频振荡现象,其诱因大体有下列几种:1)水电厂和电网间产生了弱连接;2)送电距离过长;3)水电厂发电机组大多采用自并励快速励磁方式;4)在汛期满负荷时,水电厂发电时间相
对较为集中;5)快速增、无功负荷,或是大容量发电、变电设备被切除,环状电网系统骤然开环等。
上述分析的原因,在弱电源电网振荡事件中得到了有效印证;例如,贵州“H .9’’ 振荡出现前,黔江地区水电和主网知识通过220KV秀山变电站进行电气供电,且220 KV秀山变电站与150 km距离较为接近,属于距离长、弱联系送电,网架结构相对比较薄弱,振荡当天,秀山变电站1台主变检修,导致电气联系迅速被弱化,我们分析这种弱电网低频振荡现象,可能是由于快速调增发电机有功负荷所引起。
上饶地区小水电装机众多,容量小且点多分散,与主网的多是弱联系。
应注意采取低频振荡抑制措施。
3 低频振荡的抑制措施
3.1技术措施
3.1.1电力系统稳定器(SPS)
电力系统稳定器(SPS)属于发电机励磁中的附加控制单元,可在保证励磁系统电压环性能不变的基础上,有效增强系统阻尼,其对励磁系统所拥有的暂态特性也不会造成影响。
SPS具有设备少、操作简单、效果明显等优势,且因PSS和快速励磁系统的频率特性有很好的匹配性,使得SPS能获得更好的效果。
基于此,SPS对于快速励磁的小水电发电机组而言更为适宜,它能有效抑制系统的低频振荡。
3.1.2加装FACTS装置
在电网系统中,FA CTS巧元件对于维持某点的电压水平,使电力系统保持暂态稳定性,以及消除系统功率振荡问题等方面,有很好的应用效果。
因FACTS 调节迅速且较为灵活,因此其元件常被用于抑制低频振荡。
以往的FACST控制方式,多是以维持系统中某节点电压等为标准,不过在电压控制较强的情况下,能有效削弱FACTS向系统提供阻尼的能力。
基于此,FACST的控制目标还应确保其能为系统提供正阻尼,从而不断提高系统的暂态稳定性。
3.1.3高压直流输电系统(HVDC)调制
VH DC实质上是对SPS的一种有效补充。
在交直流输电线路联合运行的状态下,直流输电的功率也能得到有效控制。
基于此,我们将交流输电线路控制回路上的低频功率振荡信号迁入到直流输电线路的控制回路中,可削弱和减少低频振荡。
例如,使用双侧频率调制,则可有效提高互联电网的动态稳定性。
3.2管理措施
首先,应该推进特高压电网建设。
增设网架,缩短重负荷输电线路、缩短送和受电端两者间的电气距离。
其次,认真分析和计算地区电网动态稳定性。
了解电网主要振荡模式及其稳定水平,尤其是要认真计算分析主要电源线路检修或某些特殊的运行方式,及时制定和实施相应的运行控制与事故处理预案,为电网的
安全运行提供及时有效的指导。
在分析和计算地区电网动态稳定的前提下,还应根据地区电网主断面与电厂送出的实际控制需求,实施相应的运行方案,避免超极限运行。
值得一提的是,部署运行方式时,应尽可能避免选择大容量的单线路送电方式。
再者,探索地区电网和主网两者间的同步振荡解列措施,如地区电网同主网间出现了低频振荡现象,可通过安装振荡解列装置,或采取解列措施来将振荡源切断,将低频振荡的影响降至最低。
4 结论
远距离弱联系输电和机组快速励磁的励磁系统,都可能会带来低频振荡问题。
同样,某些运行方式的选择,也可能诱发低频振荡的发生。
我们应深入分析和探索电力系统低频振荡的发生规律,优化提升电网运行管理,采取经济有效的技术手段抑制电网低频振荡,从而避免因低频振荡而出现大范围停电现象,为保障国家安全和社会经济的发展提供稳定的电力供应。
参考文献:
[1] 徐衍会,贺仁睦,韩志勇,电力系统共振机理低频振荡扰动源分析[J].中国电机工程学报,2007,27(17):83—87.
[2] 吴复霞. 电力系统低频振荡的分析和控制[D].浙江大学,2007
[3] 薛禹胜,郝思鹏,刘俊勇,Gerard LEDWICH. 关于低频振荡分析方法的评述[J].电力系统自动化. 2009(03)
[4] 贺仁睦,韩志勇,周密,徐衍会,马进. 互联电力系统未知机理低频振荡分析[J]. 华北电力大学学报(自然科学版),2009(01)。