【高中数学】2018-2019学年人教B版高中数学-必修4-课时跟踪检测(三)三角函数的定义(可直接打印)
- 格式:doc
- 大小:104.98 KB
- 文档页数:6
姓名,年级:时间:第一章1。
2 1。
2。
1 三角函数的定义课时跟踪检测[A组基础过关]1.设集合A={-1,0,1},B={sin0,cosπ},则A∩B=()A.{0}B。
{1}C.{0,1} D.{-1,0}答案:D2.如果cosθ<0,且tanθ〉0,则θ是()A.第一象限角B。
第二象限角C.第三象限角 D.第四象限角解析:cosθ〈0,θ在第二象限或第三象限,tanθ〉0,θ在第一象限或第三象限,∴θ是第三象限角,故选C。
答案:C3.角α终边过点(1,-2),则sinα=()A.错误!B。
错误!C.-错误!D。
-错误!解析:r=错误!=错误!,∴sinα=错误!=-错误!,故选D。
答案:D4.在△ABC中,若sin A cos B tan C〈0,则△ABC是()A.锐角三角形 B.钝角三角形C.直角三角形D。
锐角或钝角三角形解析:若sin A cos B tan C<0,在△ABC中,sin A>0,则cos B<0,tan C>0或cos B>0,tan C〈0,即B,C中有一个角为钝角,故选B。
答案:B5。
已知角α的终边经过点(3m -9,m +2),且cos α≤0,sin α>0,则m 的取值范围为( )A .(-2,3)B 。
[-2,3)C .(-2,3] D.[-2,3]解析:由cos α≤0,sin α>0可得α的终边在第二象限或y 轴的正半轴, ∴错误!∴-2<m ≤3,故选C 。
答案:C6.若角α的终边经过点P (m ,-3),且cos α=-错误!,则m 的值为________. 解析:由题可知错误!=-错误!,∴m <0,且错误!=错误!,∴m 2=16,∴m =-4.答案:-47.(2017·北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=错误!,则sin β=________.解析:设角α终边上一点为(x ,y ),则(x ,y )关于y 轴的对称点为(-x ,y ), ∵sin α=错误!=错误!,∴sin β=错误!=错误!=错误!。
模块综合检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若sin ,则cos α=()A.-B.-C.D.α=1-2sin2=1-2×.故选C.2.若tan(α-3π)>0,sin(-α+π)<0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角tan α>0,sin α<0,∴α是第三象限角.3.函数f(x)=sin的图象的对称轴方程可以为()A.x=B.x=C.x=D.x=2x+=kπ+(k∈Z),得x=(k∈Z).当k=0时,x=.4.当cos 2α=时,sin4α+cos4α的值是()A.1B.C.D.4α+cos4α=(sin2α+cos2α)2-2sin2αcos2α=1-sin22α=1-×(1-cos22α)=.5.已知a=,b=,c=a+k b,d=a-b,c与d的夹角是,则k的值为()A.-B.-3C.-3或-D.-1=,d=(0,1).cos,解得k=-3或-.6.如图,在直角三角形PBO中,∠PBO=90°,以O为圆心,OB为半径作圆弧交OP于A点,若等分△PBO 的面积,且∠AOB=α,则()A.tan α=αB.tan α=2αC.sin α=2cos αD.2sin α=cos αr,则扇形的面积为αr2,直角三角形PBO中,PB=r tan α,△PBO的面积为r×r tan α,由题意得r×r tan α=2×αr2,∴tan α=2α,故选B.7.已知函数y=A sin(ωx+φ)+m(A>0)的最大值为4,最小值为0,最小正周期为,直线x=是其图象的一条对称轴,则下面各式中符合条件的函数解析式是()A.y=4sinB.y=2sin+2C.y=2sin+2D.y=2sin+2得A=2,m=2.又∵T=,∴ω==4,∴ωx+φ=4x+φ.∵x=是其一条对称轴,∴π+φ=kπ+(k∈Z),∴φ=kπ-π.当k=1时,φ=,∴y=2sin+2.8.已知向量=(2,0),=(0,2),=(cos θ,sin θ),则||的取值范围是()A.[1,2]B.[2,4]C.[2-1,2+1]D.[2,2+1],=(2-cos θ,-2-sin θ),所以||=∈[],即||∈[2-1,2+1].9.已知函数f(x)=A sin,x∈R,A>0,y=f(x)的部分图象如图,P,Q分别为该图象的最高点和最低点,点P的横坐标为1.若点R的坐标为(1,0),∠PRQ=,则A=()A. B.2 C.1 D.2f(x)的周期为T==6,∴Q(4,-A).又∠PRQ=,∴直线RQ的倾斜角为,∴=-,A=.10.已知点A,B,C是直线l上不同的三个点,点O不在l上,则关于实数x的方程x2+x=0的解集为()A.⌀B.{-1}C. D.{-1,0},又,则存在实数λ,使=λ,则=λ()=λ-λ,所以有λ-λ=0,由于不共线,又x2+x=0,所以由于是任意非零向量,则实数λ是任意实数,则等式λ2=λ不一定成立,所以关于x的方程x2+x=0的解集为⌀.11.已知cos α=,cos(α+β)=-,且α,β∈,则cos(α-β)=()A.-B.C.-D.α∈,所以2α∈(0,π).因为cos α=,所以cos 2α=2cos2α-1=-,所以sin 2α=.又α,β∈,所以α+β∈(0,π),所以sin(α+β)=,所以cos(α-β)=cos[2α-(α+β)]=cos 2αcos(α+β)+sin2αsin(α+β)=.12.已知∠A1,∠A2,…,∠A n为凸多边形的内角,且lg sin A1+lg sin A2+…+lg sin A n=0,则这个多边形是()A.正六边形B.梯形C.矩形D.含锐角的菱形A1+lg sin A2+…+lg sin A n=lg(sin A1sin A2…sin A n)=0,则sin A1sin A2…sin A n=1,又∠A1,∠A2,…,∠A n为凸多边形的内角,则∠A1,∠A2,…,∠A n∈(0,π),则0<sin A1≤1,0<sin A2≤1,…,0<sin A n≤1,则sin A1sin A2…sin A n≤1,所以sin A1=sin A2=…=sin A n=1,所以∠A1=∠A2=…=∠A n=,则∠A1+∠A2+…+∠A n==(n-2)π,解得n=4,即这个多边形是矩形.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知(sin x-2cos x)(3+2sin x+2cos x)=0,则的值为.3+2sin x+2cos x=3+2sin≥3-2,∴3+2sin x+2cos x≠0,∴sin x-2cos x=0,sin x=2cos x,∴(2cos x)2+cos2x=1,cos2x=.∴==2cos2x=.14.函数y=3-的定义域为.2cos≥0,得2kπ-≤3x+≤2kπ+(k∈Z),即kπ-≤x≤kπ+(k∈Z).(k∈Z)15.已知tan=2,则的值为.tan=2,得tan x=,∴.16.已知a1+a2+…+a2 015=0,且a n=(3,4)(1≤n≤2 010,n∈N*),则a1+a2+…+a n-1+a n+1+…+a2 015的模为.a1+a2+…+a n-1+a n+1+…+a2 015=-a n=(-3,-4),所以所求模为5.三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(10分)已知sin+sin.(1)求sin α的值;(2)求的值.∵sin+sin,∴sin α=.∴sin α=.(2)∵=,∴原式=.18.(12分)已知电流I与时间t的关系式为I=A sin(ωt+φ).(1)如图是I=A sin(ωt+φ)在一个周期内的图象,根据图中数据求解析式;(2)如果t在任意一段秒的时间内,电流I=A sin(ωt+φ)都能取得最大值和最小值,那么ω的最小正整数值是多少?由图知,A=300,×T=,∴T=,∴ω=,∴π×+φ=0.又|φ|<,∴φ=π,∴I=300sin.(2)∵t在任一段秒内I能取到最大值和最小值,∴I=A sin(ωt+φ)的周期T≤,即,ω≥300π≈943.∴ω的最小正整数值是943.19.(12分)设在平面上有两个向量a=(cos 2α,sin 2α)(0≤α<π),b=,a与b不共线.(1)求证:向量a+b与a-b垂直;(2)当向量a+b与a-b的模相等时,求α的大小.|a|==1,|b|==1,则(a+b)·(a-b)=a2-b2=0,所以a+b与a-b垂直.|a+b|=|a-b|两边平方,得3|a|2+2a·b+|b|2=|a|2-2a·b+3|b|2, ∴2(|a|2-|b|2)+4a·b=0.而|a|=|b|,∴a·b=0.∴cos 2α+sin 2α=0,即sin=0,∴2α+=kπ(k∈Z).又0≤α<π,∴α=或α=.20.(12分)如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B两点,已知A,B两点的横坐标分别为.(1)求tan(α+β)的值;(2)求α+2β的值.cos α=,cos β=.∵α,β为锐角,∴sin α=,sin β=.∴tan α=7,tan β=.(1)tan(α+β)==-3.(2)∵tan 2β=,∴tan(α+2β)==-1.∵α,β为锐角,∴0<α+2β<.∴α+2β=.21.(12分)已知点A,B,C的坐标分别为A(3,0),B(0,3),C(cos α,sin α),α∈.(1)若||=||,求角α的值;(2)若=-1,求的值.∵=(cos α-3,sin α),=(cos α,sin α-3),∴||=,||=.由||=||,得sinα=cos α.又∵α∈,∴α=.(2)由=-1,得(cos α-3)cos α+sin α(sin α-3)=-1.∴sin α+cos α=.①又=2sin αcos α.由①式两边平方,得1+2sin αcos α=,∴2sin αcos α=-.∴=-.22.(12分)如图,已知OPQ是半径为1,圆心角为θ的扇形,A是扇形弧PQ上的动点,AB∥OQ,OP与AB交于点B,AC∥OP,OQ与AC交于点C.(1)当θ=时,求点A的位置,使矩形ABOC的面积最大,并求出这个最大面积;(2)当θ=时,求点A的位置,使平行四边形ABOC的面积最大,并求出这个最大面积.连接OA,设∠AOB=α,则OB=cos α,AB=sin α.∴矩形面积S=OB·AB=sin αcos α.∴S=sin 2α.由于0<α<,∴当2α=,即α=时,S最大=.∴A点在的中点时,矩形ABOC面积最大,最大面积为.精品K12教育教学资料精品K12教育教学资料(2)连接OA,设∠AOP=α,过A点作AH⊥OP,垂足为H.在Rt△AOH中,AH=sin α,OH=cos α.在Rt△ABH中,=tan 60°=,∴BH=sin α.∴OB=OH-BH=cos α-sin α.设平行四边形ABOC的面积为S,则S=OB·AH=sin α=sin αcos α-sin2α=sin 2α-(1-cos 2α)=sin 2α+cos 2α-==sin.由于0<α<,∴当2α+,即α=时,S最大=.∴当A 是的中点时,平行四边形面积最大,最大面积为.。
姓名,年级:时间:必修3 综合测评(时间:120分钟满分:150分)第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.①某高校为了解学生家庭经济收入情况,从来自城镇的150名学生和来自农村的450名学生中抽取100名学生的样本;②某车间主任从100件产品中抽取10件样本进行产品质量检验.Ⅰ.简单随机抽样法;Ⅱ.分层抽样法.上述两问题和两方法配对正确的是( )A.①配Ⅰ,②配ⅡB.①配Ⅱ,②配ⅠC.①配Ⅰ,②配ⅠD.①配Ⅱ,②配Ⅱ答案:B2.在区间[-2,3]上随机选取一个数x,则x≤1的概率为( )A.错误!B.错误!C.错误!D.错误!解析:P=错误!=错误!,故选B.答案:B3.(2017·全国卷Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数解析:刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B.答案:B4.(2017·天津卷)阅读如图所示的程序框图,运行相应的程序,若输入N的值为19,则输出N的值为( )A.0 B.1C.2 D.3解析:第一次循环:N=19-1=18;第二次循环:N=6;第三次循环:N=2,此时2〈3,跳出循环,故输出的值N=2.答案:C5.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形面积和的错误!,且样本容量为140,则中间一组的频数为( )A.28 B.40C.56 D.60解析:设中间一个长方形的面积为x,则其他8个小长方形面积之和为错误!x,则x+错误!x =1,所以x=错误!,所以中间一组的频数为错误!×140=40,故选B.答案:B6.下边茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( )A.错误!B.错误!C.错误!D.错误!解析:∵x甲=错误!=90,错误!乙=错误!=错误!,欲使甲的平均成绩超过乙的平均成绩,x的值为0,1,2,3,4,5,6,7,其概率P=错误!=错误!。
课时跟踪检测(十三)向量的概念]层级一学业水平达标1.下列说法正确的是()AB.长度相等的向量叫做相等向量C.若a=b,b=c,则a=cD.共线向量是在一条直线上的向量解析:选C故A错;相等向量不仅要求长度相等,还要求方向相同,故B错;C显然正确;共线向量可以是在一条直线上的向量,也可以是所在直线互相平行的向量,故D错.2.如图,在圆O()A.有相同起点的向量B.共线向量C.模相等的向量D.相等的向量解析:选CC.3()ABCD.以上说法都不正确解析:选B故选B.4.如图,在▱ABCD中,点E,F分别是AB,CD平行的向量有()A.1个B.2个C.3个D.4个解析:选C3个.5.已知向量a ,b a ,b 同方向的模为1的向量,则下列各式正确的是( )A B .C 1 D解析:选D 由于a 与b A 、B 选项1=C 错D 对.6|=1|=2,若∠ABC =90°________.解析:由勾股定理可知,BC =AC 2-AB 2=3= 3. 答案: 37.如图,四边形ABCD 是边长为3的正方形,把各边三等分后,共有16个交点,从中选取222的向量个数是______.解析:图形中共含4个边长为2的正方形,其对角线长度为22,在其22的向量有2个,所以共8个.答案:88.给出下列四个条件:①a =b ;②|a |=|b |;③a 与b 方向相反;④|a |=0或|b |=0.其中能使a ∥b 成立的条件是________(填序号).解析:若a =b ,则a 与b 大小相等且方向相同,所以a ∥b ;若|a |=|b |,则a 与b 的大小相等,而方向不确定,因此不一定有a ∥b ;方向相同或相反的向量都是平行向量,因此若a 与b 方向相反,则有a ∥b ;零向量与任意向量平行,所以若|a |=0或|b |=0,则a ∥b .答案:①③④9.如图,O 是正方形ABCD 的中心.(1)(2)解:(1)(2)10.一辆消防车从A 地去B 地执行任务,先从A 地向北偏东30°方向行驶2千米到D 地,然后从D 地沿北偏东60°方向行驶6千米到达C 地,从C地又向南偏西30°方向行驶2千米才到达B地.(1)(2)求B地相对于A地的位移.解:(1)(2)所以AD綊BC,则四边形ABCD为平行四边形.B地相对于A地的位移为“在北偏东60°的方向距A地6千米”.层级二应试能力达标1.如图所示,梯形ABCD中,对角线AC与BD交于点P,点E,F分别在两腰AD,BC上,EF过点P,且EF∥AB,则下列等式成立的是()A BC D解析:选D根据相等向量的定义,分析可得:ABCD EF2.下列说法正确的是()A.若a∥b,b∥c,则a∥cB.终点相同的两个向量不共线C.若a≠b,则a一定不与b共线D.零向量的长度为0解析:选D A中,因为零向量与任意向量平行,若b=0,则a与c不一定平行.B中,两向量终点相同,若夹角是0°或180°,则共线.C中,对于两个向量不相等,可能是长度不相等,但方向相同或相反,所以a与b可能共线.3.在△ABC中,点D,E分别为边AB,AC的中点,则如图所示的向量中相等向量有()A.一组B.二组C.三组D.四组解析:选A4.如图,在菱形ABCD中,∠DAB=120°,则以下说法错误的是()A(不含AB)B9个(C模的3倍D解析:选D A A正确;B项,因为AB=BC=CD=DA=AC9个,正确;C项,在Rt△ADO中,∠DAO=60°,则DO=32DA,所以BD=3DA,故C项正确;D项,因为四边形ABCD D项错误,选D.5.四边形ABCD|ABCD是______(填四边形ABCD的形状).解析:∴AD∥BC∴四边形ABCD是平行四边形.ABCD是矩形.答案:矩形6.如图,O是正三角形ABC的中心,四边形AOCD和AOBE均为平行四________________________.(填图中所画出的向量)解析:∵O是正三角形ABC的中心,∴OA=OB=OC,易知四边形AOCD和四边形AOBE7.如图,D ,E ,F 分别是正三角形ABC 各边的中点.(1)长度相等的向量.(2)相等的向量.(3)解:(1)(2)(3)8.如图,已知函数y =x 的图象l 与直线m 平行,A ⎝⎛⎭⎫0,-22,B (x ,y )是m 上的点.求(1)x ,y 0;(2)x ,y =1.解:(1)0,当且仅当点A 与点B 重合,于是⎩⎪⎨⎪⎧ x =0,y =-22. (2)如图,由已知,l ∥m 且点A 的坐标是⎝⎛⎭⎫0,-22,所以B 1点的坐标是⎝⎛⎭⎫22,0.在Rt △AOB 1中,有2+=⎝⎛⎭⎫222+⎝⎛⎭⎫222=1,即 1.同理可得,当B 2的坐标是⎝⎛⎭⎫-22,-2时,|AB 2|=1.综上有,当⎩⎪⎨⎪⎧x =22,y =0或⎩⎪⎨⎪⎧ x =-22,y =-2=1.。
课时跟踪检测(一) 算法的概念1.下列对算法的理解不正确的是( ) A .算法只能用自然语言来描述 B .算法可以用图形方式来描述C .算法一般是“机械的”,有时要进行大量重复的计算,它的优点是可以解决一类问题D .设计算法要本着简单、方便、可操作的原则 解析:选A 由算法的概念和描述方式知,A 不正确.2.对于一般的二元一次方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2,在写解此方程组的算法时需要我们注意的是( )A .a 1≠0B .a 2≠0C .a 1b 2-a 2b 1≠0D .a 1b 1-a 2b 2≠0解析:选C 应用高斯消去法解方程组其实质是利用加减消元法.首先要将两方程y 的系数化为相同即b 1b 2,此时x 的系数分别为a 1b 2和a 2b 1两式相减得(a 1b 2-a 2b 1)x =c 1b 2-c 2b 1,要得出x 的值,则需注意a 1b 2-a 2b 1≠0.3.阅读下面的算法: S1 输入两个实数a ,b .S2 若a <b ,则交换a ,b 的值,否则执行第三步. S3 输出a .这个算法输出的是( ) A .a ,b 中的较大数 B .a ,b 中的较小数 C .原来的a 的值D .原来的b 的值解析:选A 第二步中,若a <b ,则交换a ,b 的值,那么a 是a ,b 中的较大数;若a <b 不成立,即a ≥b ,那么a 也是a ,b 中的较大数.4.对于算法: S1 输入n .S2 判断n 是否等于2,若n =2,则n 满足条件;若n >2,则执行S3.S3 依次从2到(n -1)检验能不能整除n ,若不能整除n ,则执行S4;若能整除n ,则执行S1.S4 输出n .满足条件的n 是( )A .质数B .奇数C .偶数D .约数解析:选A 从题目的条件可以看出,输出的n 没有约数,因此是质数. 5.给出算法步骤如下: S1 输入x 的值;S2 当x <0时,计算y =x +1,否则执行S3; S3 计算y =-x 2; S4 输出y .当输入x 的值为-2,3时,输出y 的结果分别是______.解析:由算法步骤可知,其算法功能是已知函数y =⎩⎪⎨⎪⎧x +1,x <0,-x 2,x ≥0,当输入x 的值时,求对应的y 值.因为-2<0,所以对应函数解析式为y =x +1,因此y =-2+1=-1;当x =3时,则对应函数解析式为y =-x 2,因此y =-32=-9.答案:-1,-96.使用配方法解方程x 2-4x +3=0的算法的步骤是________(填序号). ①配方得(x -2)2=1; ②移项得x 2-4x =-3; ③解得x =1或x =3; ④开方得x -2=±1.解析:使用配方法的步骤应按移项、配方、开方、得解的顺序进行. 答案:②①④③7.已知直角三角形两条直角边长分别为a ,b (a >b ),写出求两直角边所对的最大角θ的余弦值的算法如下:S1 输入两直角边长a ,b 的值; S2 计算c =a 2+b 2的值; S3 ________________________; S4 输出cos θ.将算法补充完整,横线处应填________________.解析:根据题意知,直角三角形两直角边a ,b (a >b )所对最大角θ的余弦值为bc ,所以应填“计算cos θ=bc 的值”.答案:计算cos θ=bc的值8.某居民区的物业部门每月向居民收取卫生费,计费方法是:3人或3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.设计一个算法,根据输入的人数,计算应收取的卫生费.解:设某户有x 人,根据题意,应收取的卫生费y 是x 的分段函数,即y =⎩⎪⎨⎪⎧5, x ≤3,1.2x +1.4,x >3. 算法如下: S1 输入人数x .S2 如果x ≤3,则y =5;如果x >3,则y =1.2x +1.4. S3 输出应收卫生费y .9.已知直线l 1:3x -y +12=0和直线l 2:3x +2y -6=0,求直线l 1与l 2及y 轴所围成的三角形面积,写出解决本题的一个算法.解:S1 解方程组⎩⎪⎨⎪⎧3x -y +12=0,3x +2y -6=0,得直线l 1,l 2的交点P (-2,6).S2 在方程3x -y +12=0中令x =0,得y =12,从而得到A (0,12). S3 在方程3x +2y -6=0中令x =0,得y =3,得到B (0,3); S4 求出△ABP 的底边长|AB |=12-3=9; S5 求出△ABP 的底边AB 上的高h =2; S6 根据三角形的面积公式计算 S =12|AB |·h =12×9×2=9.课时跟踪检测(二)程序框图1.程序框是程序框图的一个组成部分,下面的对应正确的是()①起、止框,表示一个算法的起始和结束;②输入、输出框,表示一个算法输入和输出的信息;③处理框(执行框),功能是赋值、执行计算语句、结果的传送;④判断框,判断某一条件是否成立,成立时在出口处标明“是”或“Y”,不成立时标明“否”或“N”A.(1)与①,(2)与②,(3)与③,(4)与④B.(1)与④,(2)与②,(3)与①,(4)与③C.(1)与①,(2)与③,(3)与②,(4)与④D.(1)与①,(2)与③,(3)与④,(4)与②解析:选D矩形框表示处理框;菱形框表示判断框;平行四边形框表示输入、输出框;圆角矩形框表示起止框.2.下列关于程序框图的说法正确的是()A.一个程序框图包括表示相应操作的框、带箭头的流程线和必要的文字说明B.输入、输出框只能各有一个C.程序框图虽可以描述算法,但不如用自然语言描述算法直观D.在程序框图中,必须包含判断框解析:选A输入、输出框可以放在算法中任何需要输入、输出的位置,所以不一定各有一个,因此B选项是错误的;相对于自然语言,用程序框图描述算法的优点主要就是直观、形象,容易理解,在步骤表达上简单了许多,所以C选项是错误的;显然D选项错误.3.如图所示的程序框图,已知a1=3,输出的结果为7,则a2的值是()A.9B.10C.11 D.12解析:选C因为输出的结果为7,所以b=7,又b=b2,所以原b=14,即a1+a2=14.又a1=3,所以a2=11.4.给出如图的算法程序框图,该程序框图的功能是()A.求出a,b,c三数中的最大数B.求出a,b,c三数中的最小数C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列解析:选B经判断框中a>b处理后a是a,b中较小者;经判断框a>c处理后,a是a,c中较小者,结果输出a,即三者中最小的数.5.阅读如图所示的程序框图,若输出结果为15,则①处的执行框内应填的是________.解析:先确定①处的执行框是给x赋值,然后倒着推,b=15时,2a-3=15,a=9,当a=9时,2x+1=9,x=3.答案:x=36.图(2)是计算图(1)的阴影部分面积的一个程序框图,则①中应该填________.解析:∵S =x 2-π×⎝⎛⎭⎫x 22=4-π4x 2,∴M =4-π4x 2.答案:M =4-π4x 27.如图是求长方体的体积和表面积的一个程序框图,补充完整,横线处应填______________________.解析:根据题意,长方体的长、宽、高应从键盘输入,故横线处应填写输入框.答案:8.利用梯形的面积公式计算上底为4,下底为6,面积为15的梯形的高.请设计出该问题的算法及程序框图.解:根据梯形的面积公式S =12(a +b )h ,得h =2S a +b ,其中a 是上底,b 是下底,h 是高,S 是面积,只要令a =4,b =6,S =15,代入公式即可.算法如下:第一步,输入梯形的两底a ,b 与面积S 的值. 第二步,计算h =2Sa +b .第三步,输出h .该算法的程序框图如图所示:9.如图所示的程序框图,根据该图和下列各小题的条件回答下面问题.(1)该程序框图解决的是一个什么问题?(2)当输入的x的值为0和4时,输出的值相等,问当输入的x的值为3时,输出的值为多大?(3)在(2)的条件下要想使输出的值最大,输入的x的值应为多大?解:(1)该程序框图解决的是求二次函数f(x)=-x2+mx的函数值的问题.(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4,所以f(x)=-x2+4x.则f(3)=-32+4×3=3,所以当输入的x的值为3时,输出的f(x)值为3.(3)因为f(x)=-x2+4x=-(x-2)2+4,当x=2时,f(x)最大值=4,所以要想使输出的值最大,输入的x的值应为2.课时跟踪检测(三)顺序结构与条件分支结构1.如图是程序框图的一部分,其算法的逻辑结构是( )A .顺序结构B .条件分支结构C .判断结构D .以上都不对解析:选B 此逻辑结构是条件分支结构.2.已知函数f (x )=2x +7,在如图的程序框图中,若输入x =-3,则输出的结果为( )A .-3B .1C .9D .25解析:选D x =-3,y =f (x )=2×(-3)+7=1, f (y )=2×1+7=9,故z =2f (y )+7=25,故z =25.3.已知函数y =⎩⎪⎨⎪⎧log 2x ,x ≥2,2-x ,x <2.图中表示的是给定x 的值,求其对应的函数值y 的程序框图①处应为( )A .x <2B .x >2C .x ≠2D .x =2解析:选A 框图中的①就是分段函数解析式两种形式的判断条件,故①应为x <2,故选A.4.给出一个如图所示的程序框图,若要使输入x 的值与输出y 的值相等,则这样的x 的值的个数是( )A .1B .2C .3D .4解析:选C 当x ≤2时,y =x 2=x ,解得x 1=0,x 2=1;当2<x ≤5时,y =2x -3=x ,解得x 3=3;当x >5时,y =1x =x ,解得x =±1(舍去),故x 的值可以为0,1,3.5.如图的程序框图表示的算法的运行结果是________.解析:p =9, ∴S =9(9-5)(9-6)(9-7)=6 6.答案:6 66.已知函数f (x )=|x -3|,以下程序框图表示的是给定x 值,求其相应函数值的算法.请将该程序框图补充完整.其中①处应填________,②处应填________.解析:由f (x )=|x -3|=⎩⎪⎨⎪⎧x -3,x ≥3,3-x ,x <3及程序框图知,①处可填x <3,②处应填y =x-3.答案:x <3 y =x -37.已知某程序框图如图,若输入的x 的值分别为0,1,2,执行该程序框图后,输出的y 的值分别为a ,b ,c ,则a +b +c =________.解析:该程序框图的作用是计算分段函数y =⎩⎪⎨⎪⎧4x ,x <1,1,x =1,x 2,x >1的函数值.当x =0时,y=40=1;当x =1时,y =1;当x =2时,y =22=4,故a +b +c =1+1+4=6.答案:68.已知函数y =2x +3图象上任一点的横坐标x ,设计一个算法,求该点到坐标原点的距离,并画出程序框图.解:算法如下: S1 输入横坐标的值x ; S2 计算y =2x +3; S3 计算d =x 2+y 2;S4 输出d . 程序框图如图.9.在音乐唱片超市里,每张唱片售价25元,顾客如果购买5张或5张以上10张以下,则按九折优惠;如果顾客购买10张或10张以上,则按八五折优惠.请设计一个完成计费工作的程序框图.解:用c 表示顾客所付的金额,a 表示顾客购买的唱片数量,则c 是a 的一个分段函数:c =⎩⎪⎨⎪⎧25a , a <522.5a , 5≤a <1021.25a , a ≥10程序框图如图所示.课时跟踪检测(四) 循环结构1.按下面的程序框图运行后,所得的值为()A .5B .4C .3D .2解析:选C i 为循环次数,循环3次.2.执行如图所示的程序框图,则输出的y 的值为( )A.12 B .0 C .-1D .2解析:选D 由程序框图知y 的值依次是2,12,-1,2,12,-1,…,输出的y 值呈现的规律是以2,12,-1为一个循环节重复出现,而2 017除以3余1,所以输出的y 值是此数列的第一个数2,故选D.3.如图是一算法的程序框图,若此程序运行结果为S =720,则在判断框中应填入关于k 的判断条件是( )A .k ≥6B .k ≥7C .k ≥8D .k ≥9解析:选C S =10×9×8,10≥8,9≥8,8≥8,判断条件为“是”时进入循环体,7≥8判断条件为“否”时跳出循环,输出S ,故选C.4.执行如图所示的程序框图,输出的S 值为( )A .3B .-6C .10D .-15解析:选C 第一次循环:i =1,S =-1,i =2;第二次循环:S =-1+4=3,i =3;第三次循环:S =3-9=-6,i =4;第四次循环:S =-6+16=10,i =5;第五次循环条件不成立,输出S =10.5.执行如图所示的程序框图,若输出i 的值为2,则输入x 的最大值是________.解析:由题意,可知⎩⎨⎧12x -1>3,12⎝⎛⎭⎫12x -1-2≤3.解得⎩⎪⎨⎪⎧x >8,x ≤22,即8<x ≤22,故x 的最大值为22.答案:226.如图所示,执行程序框图,输出结果是________.解析:第一次循环:s =12,n =4;第二次循环:s =12+14=34,n =6;第三次循环:s =34+16=1112,n =8<8不成立,退出循环,输出结果为1112.答案:11127.某上市公司,投入大量财力和人力搞科技创新,其年产值以20%的增长率增长,如图是计算在今年的基础上至少经过多少年其年产值翻一番的程序框图,其中P 表示年产值,R 表示增长率,n 表示年数,P =1表示今年的产值,n =0表示今年,则图中①处应填________,②处应填________.解析:由题意及图可知,年产值P 的初始值为1,翻一番后应变为2,所以①处判断框内应填P <2;由于表示年数n 的初始值为0,故输出的就是n ,即②处应填n .答案:P <2 n8.在某次田径比赛中,男子100米A 组有8位选手参加预赛,成绩(单位:秒)依次为:9.88,10.57,10.63,9.90,9.85,9.98,10.21,10.86.请设计一个算法,在这些成绩中找出不超过9.90秒的成绩,并画出程序框图.解:算法如下: S1 n =1; S2 输入x ;S3 判断x 与9.90的大小,若x >9.90,则执行S4,否则,输出x ,并执行S4;S4n=n+1;S5判断n与成绩个数8的大小,若n≤8,则返回S2,否则结束.程序框图如图:9.按如图所示的程序框图进行运算.(1)若输入x的值为5,则输出k的值是多少?(2)若输出k的值为3,则输入x的取值范围是什么?解:(1)当x=5时,执行程序后,x与k的值依次为当x=325时,条件x(2)若输入值为x0,则每次程序运行时,x与k的值依次为-26>244,000解得x0>10,3(3x0-2)-2=9x0-8不适合条件x>244,有9x0-8≤244,解得x0≤28,故x0∈(10,28],故输入x的取值范围是(10,28].课时跟踪检测(五)赋值、输入和输出语句1.“x=3*5”,“x=x+1”是某一程序中的先后相邻的两个语句,那么下列说法中,正确的是()①“x=3*5”的意思是“x=3*5=15”.此式与算术中的式子是一样的;②x=3*5是将数值15赋给x;③“x=3*5”可以写为“3*5=x”;④“x=x+1”语句在执行时“=”右边x的值是15,执行后左边x的值是16.A.①③B.②④C.①④D.②解析:选B程序中的等号与算术中的不一样,且在给变量赋值时,赋值号的左边是变量,右边是数值或表达式,左右两边不能交换位置,故①③错.2.以下程序运行后输出结果是()A.58 B.88C.13 D.85解析:选D∵x=58,a为58除以10的整数商,∴a=5.又∵b为58除以10的余数,∴b=8.∴x=10×8+5=85.3.以下程序的含义是()A.求x3+3x2-24x+30=0的根B.输入x后,输出y=x3+3x2-24x+30的值C.求一般三次函数值的程序D.y=x3+3x2-24x+30的作图程序解析:选B本题考查对输入语句x=input(”x=”),赋值语句y=x^3+3]4.给出下列程序:x1=input(”x1=”);y1=input(”y1=”);x2=input(”x2=”);y2=input(”y2=”);a=x1-x2;m=a^2;b=y1-y2;n=b^2;s=m+n;d=sqrt(s);print(%io(2),d);此程序的功能为( )A.求点到直线的距离B.求两点之间的距离C.求一个多项式函数的值D.求输入的值的平方和解析:选B输入的四个实数可作为两个点的坐标,程序中的a,b分别表示两个点的横、纵坐标之差,而m,n分别表示两点横纵坐标之差的平方;s是横、纵坐标之差的平方和,d是平方和的算术平方根,即两点之间的距离,最后输出此距离.5.运行程序:A=2;A=A*5;A=A+8;print(%io(2),A);输出结果为________.解析:首先将2赋给变量A ,然后将2×5的结果再赋给A ,最后这个新的数10加上8,就得到输出的A 的值18.答案:186.已知A (x 1,y 1),B (x 2,y 2)是平面上的两点,试设计一个程序,输入A ,B 两点的坐标,输出其中点的坐标,现已给出程序的一部分,试在横线上填上适当的语句,把程序补充完整.解析:根据题意可知程序中缺中点坐标,由中点坐标公式x =x 1+x 22,y =y 1+y 22可得中点坐标.答案:x =(x 1+x 2)/2;y =(y 1+y2)/2 7.已知一段程序如下:若输入的是3,则运行结果是________.解析:由"N=M",得N=3;由"M=2*6",得M=12;由"P=(M*N)/2",得P=18;由"Q=3*P",得Q=54. 答案:54,18,3,128.根据下列程序框图写出程序.解:程序如下:9.某工种按工时计算工资,每月总工资=每月劳动时间(小时)×每小时工资,从总工资中扣除10%作公积金,剩余的为应发工资,请编写一个输入劳动时间和每小时工资数就能输出应发工资的程序,并画出程序框图.解:算法分析.S1输入每月劳动时间t和每小时工资a.S2求每月总工资y=每月劳动时间t×每小时工资a.S3求应发工资z=每月总工资y×(1-10%).S4输出应发工资z.程序框图如图所示.程序如下:课时跟踪检测(六) 条件语句1.当a =3时,下面的程序段输出的结果是( )A .9B .3C .10D .6解析:选B 此程序段的功能是求分段函数y =⎩⎪⎨⎪⎧a ,a <10,a 2,a ≥10的函数值,当a =3时,y=3.故选B.2.给出以下四个问题,①输入一个数x ,输出它的相反数.②求面积为6的正方形的周长.③求三个数a ,b ,c 中的最大数.④求函数f (x )=⎩⎪⎨⎪⎧x -1,x ≥0,x +2, x <0的函数值.其中不需要用条件语句来描述其算法的有( ) A .1个 B .2个 C .3个D .4个解析:选B ①②直接用顺序结构即可,不需用条件语句;而③需要判断这三个数的大小,④是分段函数求值问题,故需用到条件语句.3.给定程序:x =input (”x =”);if x>0 y =1;elseif x ==0y =0; else y =-1; end end y若输入x =-6,则程序输出的结果是( ) A .1 B .6 C .0D.-1解析:选D该程序实际上是求分段函数y =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0的函数值,当x =-6时,对应的函数值为-1,故选D.4.根据下列算法语句,当输入x 为60时,输出y 的值为( ) A .25 B .30 C .31D .61解析:选C 算法语言给出的是分段函数,y =⎩⎪⎨⎪⎧0.5x ,x ≤50,25+0.6(x -50),x >50,输入x =60时,y =25+0.6×(60-50)=31. 5.某程序如下:当执行此程序时,没有执行语句y =x +1,则输入的x 的范围是________. 解析:没有执行y =x +1,即输入的x 值不满足条件x ≥1,故x <1. 答案:(-∞,1)6.已知函数y =⎩⎪⎨⎪⎧x 2+1,x ≥3,2-4x ,x <3.如图是求该函数值的程序,则横线①②处应填写的语句分别是________,________.解析:由程序可知,y =2-4x 是当条件满足时所执行的内容,亦即当x <3时的函数值,因此①处应填的是条件x <3;在条件语句中,else 后面应该是条件不满足时执行的内容,即y =x *x +1.答案:x <3 y =x *x +1 7.阅读下列程序:如果输入x =-2,则输出结果y =________.解析:本程序是求分段函数y =⎩⎪⎨⎪⎧2x 2+3,x <0,0,x =0,x +5,x >0的函数值,∵x =-2,∴y =8+3=11.答案:118.已知函数f(x)=⎩⎪⎨⎪⎧-x +1,x >0,0,x =0,x +3,x <0,请根据输入的x 值求f (x )的值.画出程序框图,并写出程序语言.解:程序框图如下:算法程序如下: x=input (”x =”);if x>0y =-x +1;elseif x ==0y =0; else y =x +3; end endprint (%io (2),y );9.铁路运输托运行李,从甲地到乙地规定每张客票托运费计算方法是:行李重量不超过50 kg 时,按0.25元/kg ;超过50 kg 而不超过100 kg 时,其超过部分按0.35元/kg ;超过100 kg 时,其超过部分按0.45元/kg .编写程序,输入行李重量,计算并输出托运费用.解:设行李重量为x kg ,应付运费为y 元,则运费公式为 y =⎩⎪⎨⎪⎧0.25×x ,x ≤50,0.25×50+0.35(x -50),50<x ≤100,0.25×50+0.35×50+0.45×(x -100),x >100.程序如下:课时跟踪检测(七) 循环语句1.下面的程序运行的结果n 是( ) n =0;i =0;while i<30i =(i +1)*(i +1); n =n +1;endprint (%io (2),n ); A .0 B .3 C .4D .29解析:选C 循环体的执行次数为4次,所以n =4. 2.下列问题可以用循环语句设计程序的有( ) ①求1+3+32+…+39的和; ②比较a, b 两个数的大小;③对于分段函数,要求输入自变量,输出函数值; ④求平方值小于100的最大自然数. A .0个 B .1个 C .2个D .3个解析:选C ①④可以用循环语句设计程序;②③要用条件语句设计程序. 3.如果程序运行后输出的结果是132,那么在程序中while 后面的表达式应为( ) s =1;i =12;while 表达式 s =s*i ; i =i -1;endprint (%io (2),s ); A .i>11 B .i>=11 C .i<=11D .i<11解析:选B 132=12×11,循环体执行了2次,所以表达式为i ≥11,即i>=11. 4.程序如下:以上程序用来( ) A .计算3×10的值 B .计算355的值 C .计算310的值D .计算1×2×3×…×10的值 解析:选B i =1时,S =31×1=31; i =2时,S =32×3=31+2; i =3时,S =33×31+2=31+2+3; i =4时,S =34×31+2+3=31+2+3+4; …i =10时,S =310×31+2+3+…+9=31+2+3+…+10=355.5.已知有下面的程序,如果程序执行后输出的结果是360,则横线上的“条件”为__________.解析:由360=6×5×4×3,知S 中的数乘到3时循环结束,此时i =2,但i =3时,循环继续,故条件为“i>=3(或i>2)”.答案:i>=3(或i>2)6.下面程序的结果是________.s =0;i =2;while i<=18 s =s +i ; i =i +3;endprint (%io (2),s );解析:每次执行循环体时的i 值依次为2,5,8,11,14,17.代入循环式中依次计算,s =2+5+8+11+14+17=57.答案:577.下面程序表示的算法是________.解析:由题意可知符合循环的条件是S <5 000,即只要S <5 000就执行S =S *n .因此表示的应是1×2×3×…×n ≥5 000的最小的n 值.答案:求1×2×3×…×n ≥5 000的n 的最小值8.小明第一天背一个单词,第二天背两个单词,以后每一天比前一天多背一个单词,问:他前十天共背了多少个单词?(写出Scilab 程序)解:程序如下:9.猴子第1天摘下若干个桃子,当即吃一半,还不过瘾,又多吃了一个.第2天早上又将剩下的桃子吃掉一半又多吃了一个.以后每天早上都吃了前一天剩下的一半零一个.到第10天早上想再吃时,见只剩下一个桃子,设计第1天共摘多少个桃子的程序框图,并写出程序.解:程序框图如图所示:程序如图所示:课时跟踪检测(八)中国古代数学中的算法案例1.用更相减损术求459与357的最大公约数,需要做减法的次数为()A.4 B.5C.6 D.7解析:选B459-357=102,357-102=255,255-102=153,153-102=51,102-51=51,所以459与357的最大公约数为51,共做减法5次.2.用秦九韶算法求多项式f(x)=0.5x5+4x4-3x2+x-1, 当x=3时的值时,先算的是()A.3×3 B.0.5×35C.0.5×3+4 D.(0.5×3+4)×3解析:选C 把多项式表示成如下形式:f (x )=((((0.5x +4)x +0)x -3)x +1)x -1, 按递推方法,由内往外,先算0.5x +4的值. 3.4 830与3 289的最大公约数为( ) A .23 B .35 C .11D .13解析:选A 4 830=1×3 289+1 541; 3 289=2×1 541+207; 1 541=7×207+92;207=2×92+23;92=4×23; ∴23是4 830与3 289的最大公约数.4.根据递推公式⎩⎪⎨⎪⎧v 0=a n ,v k =v k -1x +a n -k ,其中k =1,2,…,n ,可得当k =2时,v 2的值为( )A .v 2=a n x +a n -1B .v 2=(a n x +a n -1)x +a n -2C .v 2=(a n x +a n -1)xD .v 2=a n x +a n -1x解析:选B 根据秦九韶算法知v 0=a n ,v 1=a n x +a n -1,v 2=v 1x +a n -2=(a n x +a n -1)x +a n -2.5.用“更相减损之术”求128与48的最大公约数,第一步应为________________. 解析:先求128-48的值,即128-48=80. 答案:128-48=806.117与182的最大公约数等于________.解析:(117,182)→(117,65)→(52,65)→(52,13)→(39,13)→(26,13)→(13,13),所以其最大公约数为13.答案:137.阅读程序框图,利用秦九韶算法计算多项式f (x )=a n x n +a n -1x n -1+…+a 1x +a 0,当x =x 0时,框图中A 处应填入________.解析:f(x)=a n x n+a n-1x n-1+…+a1x+a0,先用秦九韶算法改为一次多项式,f(x)=(…((a n x+a n-1)x+a n-2)x+…+a1)x+a0.f1=a n;k=1,f2=f1x0+a n-1;k=2,f3=f2x0+a n-2;…;归纳得第k次f k+1=f k x0+a n-k.故A处应填a n-k.答案:a n-k8.用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64,当x=2时的值.解:将f(x)改写为f(x)=(((((x-12)x+60)x-160)x+240)x-192)x+64,v0=1,v1=1×2-12=-10,v2=-10×2+60=40,v3=40×2-160=-80,v4=-80×2+240=80,v5=80×2-192=-32,v6=-32×2+64=0.所以f(2)=0,即x=2时,原多项式的值为0.9.现有长度为2.4米和5.6米两种规格的钢筋若干,要焊接一批正方体模型,问怎样设计才能保证正方体的体积最大且不浪费材料?解:为了使所焊接正方体的体积最大,需找出两种规格的钢筋的最大公约数.使用更相减损之术:(5.6,2.4)→(3.2,2.4)→(0.8,2.4)→(0.8,1.6)→(0.8,0.8).因此将正方体的棱长设计为0.8米时,正方体的体积最大且不浪费材料.课时跟踪检测(九)简单随机抽样1.下列抽样方法是简单随机抽样的是()A .从50个零件中一次性抽取5个做质量检验B .从50个零件中有放回地抽取5个做质量检验C .从实数集中随机抽取10个分析奇偶性D .运动员从8个跑道中随机选取一个跑道解析:选D A 不是,因为“一次性”抽取与“逐个”抽取含义不同;B 不是,因为是有放回抽样;C 不是,因为实数集是无限集.2.抽签法中确保样本代表性的关键是( ) A .抽签 B .搅拌均匀 C .逐一抽取D .抽取不放回解析:选B 逐一抽取,抽取不放回是简单随机抽样的特点,但不是确保样本代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算再放回)也不影响样本的代表性,抽签也一样.3.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下面的编号方法①1,2,3,…,100;②001,002,…,100;③00,01,02,…,99;④01,02,03,…,100. 其中正确的序号是( ) A .②③④ B .③④ C .②③D .①②解析:选C 根据随机数表法的步骤可知,①④编号位数不统一,②③正确. 4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性和“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310解析:选A 简单随机抽样中每个个体被抽取的机会均等,都为110.5.高一(1)班有60名学生,学号从01到60,数学老师在上统计课时,利用随机数表法选5名学生提问,老师首先选定从随机数表的倒数第5行(下表为随机数表的最后5行)第6列的“4”开始,向右读依次选学号提问,则被提问的5个学生的学号为________.33021 44709 79262 33116 80907 77689 69696 48420 77713 32822 64679 94095 95735 84535 74703 82890 25853 30963 76729 87613 65538 68978 13157 78834 64145 71516 11716 58309 89501 59717 56086 3745968585 22783 22621 54263 41128 12663 82362 61855解析:依据选号规则,选取的5名学生的学号依次为:44,33,11,09,07,48.答案:44,33,11,09,07,486.某校有50个班,每班50人,现抽查250名同学进行摸底考试,则每位同学被抽到的可能性为________.解析:根据简单随机抽样的特征,总量为50×50=2 500人.∴每位同学被抽到的可能性为2502 500=110. 答案:1107.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有________.①2 000名运动员是总体;②每个运动员是个体;③所抽取的20名运动员是一个样本;④样本容量为20;⑤这个抽样方法可采用随机数法抽样;⑥采用随机数法抽样时,每个运动员被抽到的机会相等.解析:①2 000名运动员不是总体,2 000名运动员的年龄才是总体;②每个运动员的年龄是个体;③20名运动员的年龄是一个样本.答案:④⑤⑥8.上海某中学从40名学生中选1人作为上海男篮拉拉队的成员,采用下面两种选法: 选法一 将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;选法二 将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为拉拉队成员.试问这两种选法是否都是抽签法?为什么?解:选法一满足抽签法的特征是抽签法,选法二不是抽签法,因为抽签法要求所有的号签编号互不相同,而选法二中39个白球无法相互区分.9.某合资企业有150名职工,要从中随机抽出15人去参观学习.请用抽签法和随机数表法进行抽取,并写出过程.解:(抽签法)先把150名职工编号:1,2,3,…,150,把编号分别写在相同的小纸片上,揉成小球,放入一个不透明的袋子中,充分搅拌均匀后,从中逐个不放回地抽取15个小球,这样就抽出了去参观学习的15名职工.(随机数表法)第一步,先把150名职工编号:001,002,003, (150)第二步,从随机数表中任选一个数,如第10行第4列数0.第三步,从选定的数字开始向右读,每次读3个数字,组成一个三位数,把小于或等于150的三位数依次取出(凡不在001~150的数跳过不读,前面已读过也跳过去),直到取完15个号码,与这15个号码相应的职工去参观学习.课时跟踪检测(十)系统抽样1.下列抽样试验中,最适宜用系统抽样法的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.从某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样解析:选C A总体有明显层次,不适宜用系统抽样法;B样本容量很小,适宜用随机数法;D总体容量很小,适宜用抽签法.2.下列抽样不是系统抽样的是()A.体育老师让同学们随机站好,然后按1~5报数,并规定报2的同学向前一步走B.为了调查“地沟油事件”,质检人员从传送带上每隔五分钟抽一桶油进行检验C.五一期间麦当劳的工作人员在门口发放50份优惠券D.《唐山大地震》试映会上,影院经理通知每排(每排人数相等)28号观众留下来座谈解析:选C C中,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的规则入样,所以不是系统抽样.3.学校为了了解某企业1 203名职工对公司餐厅建设的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为()A.40 B.30.1C.30 D.12解析:选C因为1 203除以40不是整数,所以先随机去掉3个人,再除以40,得到每一段有30个人,则分段的间隔k 为30.4.某机构为了了解参加某次公务员考试的12 612名考生的成绩,决定采用系统抽样的方法抽取一个容量为200的样本,那么从总体中随机剔除个体的数目是( )A .2B .12C .612D .2 612解析:选B 因为12 612=200×63+12,系统抽样时分为200组,每组63名,所以从总体中随机剔除个体的数目是12.5.某厂将从64名员工中用系统抽样的方法抽取4名参加2016年职工劳技大赛,将这64名员工编号为1~64,若已知编号为8,24,56的员工在样本中,那么样本中另外一名员工的编号是________.解析:由系统抽样的知识知,将64名员工对应的编号分成4组,每组16个号码,由题意8,24,56在样本中,知8,24,56分别是从第1,2,4组中抽取的,则第3组中抽取的号码是8+2×16=40.答案:406.若总体含有1 645个个体,采用系统抽样的方法从中抽取一个容量为35的样本,则编号后编号应分为________段,分段间隔k =________,每段有________个个体.解析:由N =1 645,n =35,知编号后编号应分为35段,且k =N n =1 64535=47,则分段间隔k =47,每段有47个个体.答案:35 47 477.已知标有1~20号的小球20个,若我们的目的是估计总体号码的平均值,即20个小球号码的平均数.试验者从中抽取4个小球,以这4个小球号码的平均数估计总体号码的平均值,按下面方法抽样(按小号到大号排序):(1)以编号2为起点,系统抽样抽取4个球,则这4个球的编号的平均值为________;(2)以编号3为起点,系统抽样抽取4个球,则这4个球的编号的平均值为________. 解析:20个小球分4组,每组5个.(1)若以2号为起点,则另外三个球的编号依次为7,12,17,4球编号平均值为2+7+12+174=9.5.(2)若以3号为起点,则另外三个球的编号依次为8,13,18,4球编号平均值为3+8+13+184。
第二章 2.32.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律课时跟踪检测[A 组 基础过关]1.下列命题:①若a ≠0,且b ≠0,则a ·b ≠0; ②若a ·b =0,则a ,b 中至少有一个为0; ③若a ≠0,由a ·b =a ·c 可得b =c ;④若a ·b =a ·c ,则b ≠c ,当且仅当a =0时成立. 其中正确命题的个数是( ) A .0个 B.2个 C.3个D.4个解析:①为假命题,因为a 与b 垂直时,a ·b =0;②为假命题,因为a ·b =0也有可能a 与b 垂直但均不为零向量;③为假命题,由a ≠0,a ·b =a ·c ,可得b 与c 在a 方向上的射影相等;④为假命题,例如:a ⊥b ,a ⊥c ,但b ≠c ,且a ≠0,也能使条件a ·b =a ·c 成立,所以四个命题均为假命题.答案:A2.(2018·全国卷Ⅱ)已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( ) A .4 B.3 C.2D.0解析:因为a ·(2a -b )=2a 2-a ·b =2|a |2-(-1)=2+1=3,故选B. 答案:B3.已知向量a ,b ,且a ·b =0,|a|=2,|b |=3,(3a +2b )·(ka -b )=0,则实数k 的值为( )A.32B.-32C.±32D.1解析:利用向量的数量积将(3a +2b )·(ka -b )=0展开可得12k -18=0,∴k =32.答案:A4.在△ABC 中,M 是BC 的中点,AM =1,点P 在AM 上且满足AP →=2PM →,则AP →·(PB →+PC →)等于( )A.49 B.43 C.-43D.-49解析:∵M 是BC 的中点,∴AP →·(PB →+PC →)=AP →·2PM →=AP →·AP →=AP →2=⎝ ⎛⎭⎪⎫23AM →2=49,故选A.答案:A5.已知非零向量a ,b ,若a +2b 和a -2b 互相垂直,则|a ||b |=( ) A.14 B.4 C.12D.2解析:(a +2b )⊥(a -2b ),∴(a +2b )·(a -2b )=a 2-4b 2=0,∴|a |=2|b |,故选D.答案:D6.已知e 1,e 2是两个单位向量,它们的夹角为60°,则(2e 1-e 2)·(-3e 1+2e 2)等于________.解析:∵|e 1|=|e 2|=1且夹角为60°, ∴e 1·e 2=1×1×cos60°=12, ∴(2e 1-e 2)·(-3e 1+2e 2)=-6e 21+4e 1·e 2+3e 2·e 1-2e 22=-6+7e 1·e 2-2=-8+7×12=-92.答案:-927.下列命题正确的是________(把正确的序号填上). ①0·a =0;②(a ·b )·c -(c ·a )·b =0;③(b ·c )·a -(c ·a )·b 与c 的夹角为90°;④若|a +b |=|a -b |,其中a 与b 不共线,则a ⊥b ; ⑤若|a |=|b |,则|a ·c |=|b ·c |. 答案:③④8.已知|a |=|b |=6,向量a 与b 的夹角为π3. (1)求|a +b |,|a -b |; (2)求a +b 与a -b 的夹角.解:(1)a ·b =6×6×cos π3=36×12=18, |a +b |2=a 2+2a ·b +b 2=36+2×18+36=108, ∴|a +b |=63,|a -b |2=a 2-2a ·b +b 2=36-2×18+36=36, ∴|a -b |=6.(2)a +b 与a -b 的夹角为θ,则cos θ=(a +b )·(a -b )|a +b ||a -b |=a 2-b 26×63=36-36363=0.∴θ=π2.[B 组 技能提升]1.设平面上有四个互异的点A ,B ,C ,D ,已知(DB →+DC →-2DA →)·(AB →-AC →)=0,则△ABC 是( )A .直角三角形 B.等腰三角形 C .等腰直角三角形D.等边三角形解析:(DB →+DC →-2DA →)·(AB →-AC →)=[(DB →-DA →)+(DC →-DA →)]·(AB →-AC →)=(AB →+AC →)·(AB →-AC →)=|AB →|2-|AC →|2=0.所以|AB →|=|AC →|.故△ABC 是等腰三角形.答案:B2.(2018·天津卷)在如图的平面图形中,已知OM =1,ON =2,∠MON =120°,BM →=2MA →,CN →=2NA →,则BC →·OM →的值为( )A .-15 B.-9 C .-6D.0解析:如图所示,连接MN ,由BM →=2MA →,CN →=2NA →可知点M ,N 分别为线段AB ,AC 上靠近点A 的三等分点,则BC →=3MN →=3(ON →-OM →),由题意可知,OM →2=12=1,OM →·ON →=1×2×cos120°=-1, 结合数量积的运算法则可得BC →·OM →=3(ON →-OM →)·OM →=3ON →·OM →-3OM →2=-3-3=-6. 故选C. 答案:C3.设e 1,e 2为单位向量,且e 1,e 2的夹角为π3,若a =e 1+3e 2,b =2e 1,则向量a 在b 方向上的射影为________.解析:a ·b =(e 1+3e 2)·2e 1=2e 21+6e 1·e 2=5, ∴a 在b 方向上的射影为|a |·cos 〈a ,b 〉=a ·b |b |=52. 答案:524.边长为4的等边三角形ABC 中,D 、E 分别为BC ,AC 的中点,则AD →·BE →=________.解析:如图,在△ABC 中,AD →·BE →=⎝ ⎛⎭⎪⎫AB→+AC →2·⎝ ⎛⎭⎪⎫BC →+BA →2=14(AB →·BC →+AB →·BA→+AC →·BC →+AC →·BA →)=144×4×⎝ ⎛⎭⎪⎫-12+4×4×(-1)+4×4×12+4×4×⎝ ⎛⎭⎪⎫-12=-6.答案:-65.已知a ,b 是两个单位向量. (1)若|3a -2b |=3,试求|3a +b |的值;(2)若a ,b 的夹角为60°,试求向量m =2a +b 与n =2b -3a 的夹角.解:(1)∵a,b是两个单位向量,∴|a|=|b|=1,又|3a-2b|=3,∴9|a|2-12a·b+4|b|2=9,即a·b=1 3.∴|3a+b|=9|a|2+6a·b+|b|2=9×1+6×13+1=2 3.(2)∵a,b的夹角为60°,∴a·b=12,|m|=(2a+b)2=4|a|2+4a·b+|b|2=4×1+4×12+12=7,|n|=(2b-3a)2=4b2-12b·a+9a2=4-6+9=7,∴m·n=(2a+b)·(2b-3a)=2|b|2+a·b-6|a|2=-7 2,∴cosθ=m·n|m||n|=-727·7=-12,∵0≤θ≤180°,∴夹角θ=120°.6.已知向量a与b的夹角为60°,|a|=3,|b|=2,c=3a+5b,d=ma-b.(1)求a·b的值;(2)若c⊥d,求实数m的值.解:(1)a·b=|a||b|cos60°=3×2×12=3.(2)c⊥d,∴c·d=0,即(3a+5b)·(ma-b)=0,∴3ma2-3a·b+5ma·b-5b2=0,∴27m-9+15m-20=0,∴42m=29,m=29 42.由Ruize收集整理。
第一章 1.1 1.1.2 弧度制和弧度制与角度制的换算课时跟踪检测[A 组 基础过关]1.下列与9π4的终边相同的角的表达式中,正确的是( ) A .2k π+45°(k ∈Z) B .k ·360°+9π4(k ∈Z) C .k ·360°-315°(k ∈Z) D .k π+5π4(k ∈Z) 解析:∵9π4=4π-7π4, ∴9π4与-7π4的终边相同,则与9π4的终边相同的角为k ·360°-315°(k ∈Z),故选C. 答案:C2.弧长为6,半径为3的扇形的面积是( ) A .3 B.6 C .18D.9解析:S =12lr =12×6×3=9,故选D. 答案:D3.若α=-3,则角α的终边在( ) A .第一象限 B.第二象限 C .第三象限D.第四象限 解析:∵-π<-3<-π2,∴-3是第三象限角. 答案:C4.已知扇形的半径是2,面积为8,则此扇形的圆心角的弧度数是( ) A .4 B.2 C .8D.1解析:由S =12lr ,得8=12l ·2,∴l =8, ∴扇形的圆心角的弧度数α=l r =82=4,故选A. 答案:A 5.把-11π4表示成θ+2k π(k ∈Z)的形式,使|θ|最小的θ的值是( ) A .-3π4 B.-π4 C .3π4 D.π4答案:A6.已知扇形的周长为8 cm ,圆心角为2弧度,则该扇形的面积为________cm 2.解析:设扇形的半径为r ,弧长为l ,则⎩⎪⎨⎪⎧l =2r ,l +2r =8,∴r =2,l =4,∴扇形的面积为S =12lr =12×4×2=4(cm 2).答案:47.(1)18°=________rad. (2)210°=________rad. (3)310π=________. (4)2 rad =________.解析:由1 rad =⎝ ⎛⎭⎪⎫180π°,1°=π180 rad 代入得出结果.答案:(1)π10 (2)7π6 (3)54° (4)114.6°8.如图,点A ,B ,C 是圆O 上的点,且AB =4,∠ACB =π6,求劣弧AB 的长.解:连接AO ,OB , ∵∠ACB =π6,∴∠AOB =π3,△AOB 为等边三角形,故圆O 的半径r =AB =4,劣弧AB ︵的长为π3×r =4π3.[B 组 技能提升]1.若角α的终边在如图所示的阴影部分,则角α的取值范围是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪π6<α<π3 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2π3<α<7π6 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2π3≤α≤7π6 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+2π3≤α≤2k π+7π6,k ∈Z 答案:D 2.集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =n π+π2,n ∈Z,N =xx =2k π±π2,k ∈Z的关系是( )A .M =N B.M N C .NMD.M ⃘N解析:M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =n π+π2,n ∈Z,表示终边落在y 轴上的角的集合,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =2k π±π2,k ∈Z,表示终边落在y 轴上的角的集合,故M =N .答案:A3.在△ABC 中,若A ∶B ∶C =3∶5∶7,则角A 的弧度数为________. 解析:∵A +B +C =π,由A ∶B ∶C =3∶5∶7,设A =3k ,B =5k ,C =7k ,∴3k +5k +7k =π,∴k =π15,∴A =3k =π5.答案:π54.如图,阴影部分表示的角的集合为(含边界)________(用弧度表示).解析:α在第一象限,α∈⎣⎢⎡⎦⎥⎤2k π,2k π+π3(k ∈Z),α在第三象限,α∈⎣⎢⎡⎦⎥⎤2k π+π,2k π+4π3(k ∈Z),∴⎩⎨⎧α⎪⎪⎪⎭⎬⎫k π≤α≤k π+π3,k ∈Z . 答案:⎩⎨⎧ α⎪⎪⎪⎭⎬⎫k π≤α≤k π+π3,k ∈Z5.写出终边在直线y =x 上的角的集合S ,并把S 中适合不等式-2π≤β<4π的元素β写出来.解:如图所示,在直角坐标系中画出直线y =x ,可以发现它与x 轴的夹角是π4,在[0,2π)范围内,终边在直线y =x 上的角有两个:π4和5π4.所以终边在直线y =x 上的角的集合为S =⎩⎨⎧β⎪⎪⎪⎭⎬⎫β=2k π+π4,k ∈Z ∪⎩⎨⎧β⎪⎪⎪⎭⎬⎫β=2k π+5π4,k ∈Z =⎩⎨⎧ β⎪⎪⎪⎭⎬⎫β=2k π+π4,k ∈Z ∪⎩⎨⎧ β⎪⎪⎪⎭⎬⎫β=(2k +1)π+π4,k ∈Z = ⎩⎨⎧ β⎪⎪⎪⎭⎬⎫β=n π+π4,n ∈Z . 令-2π≤n π+π4<4π,得n =-2,-1,0,1,2,3.∴S 中适合不等式-2π≤β<4π的元素β是-2π+π4=-7π4,-π+π4=-3π4,0×π+π4=π4,π+π4=5π4,2π+π4=9π4,3π+π4=13π4.6.已知扇形的周长为10 cm ,面积为4 cm 2,求扇形圆心角的弧度数. 解:设扇形所对圆心角弧度数为θ(0<θ<2π). 弧长为l ,半径为r .依题意得⎩⎪⎨⎪⎧l +2r =10, ①12lr =4, ②①代入②得r 2-5r +4=0得r 1=1,r 2=4.当r=1 cm时,l=8 cm,此时θ=8 rad>2π rad,舍去.当r=4 cm时,l=2 cm,此时θ=12rad.故扇形圆心角的弧度数为12rad.。
2017-2018学年人教B版高中数学必修四全册课时跟踪检测目录课时跟踪检测(一)角的概念的推广 (1)课时跟踪检测(二)弧度制和弧度制与角度制的换算 (4)课时跟踪检测(三)三角函数的定义 (8)课时跟踪检测(五)同角三角函数的基本关系式 (13)课时跟踪检测(六)诱导公式(一、二、三) (17)课时跟踪检测(七)诱导公式(四) (22)课时跟踪检测(八)正弦函数的图象与性质 (27)课时跟踪检测(九)正弦型函数y= Asin (ωx+φ) (32)课时跟踪检测(十)余弦函数的图象与性质 (37)课时跟踪检测(十一)正切函数的图象与性质 (42)课时跟踪检测(十二)已知三角函数值求角 (47)课时跟踪检测(十三)向量的概念 (51)课时跟踪检测(十四)向量的加法 (56)课时跟踪检测(十五)向量的减法数乘向量 (60)课时跟踪检测(十六)向量共线的条件与轴上向量坐标运算 (65)课时跟踪检测(十七)平面向量基本定理 (70)课时跟踪检测(十八)向量的正交分解与向量的直角坐标运算 (75)课时跟踪检测(十九)用平面向量坐标表示向量共线条件 (80)课时跟踪检测(二十)向量数量积的物理背景与定义向量数量积的运算律84 课时跟踪检测(二十一)向量数量积的坐标运算与度量公式 (89)课时跟踪检测(二十二)向量在几何中的应用向量在物理上的应用 (94)课时跟踪检测(二十三)两角和与差的余弦 (99)课时跟踪检测(二十四)两角和与差的正弦 (104)课时跟踪检测(二十五)两角和与差的正切 (109)课时跟踪检测(二十六)倍角公式 (115)课时跟踪检测(二十七)半角的正弦、余弦和正切 (121)课时跟踪检测(二十八)三角函数的积化和差与和差化积 (126)阶段质量检测(一)基本初等函数(Ⅱ) (131)阶段质量检测(二)平面向量 (139)课时跟踪检测(一)角的概念的推广层级一学业水平达标1.-215°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:选B由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.2.下面各组角中,终边相同的是()A.390°,690°B.-330°,750°C.480°,-420°D.3 000°,-840°解析:选B∵-330°=-360°+30°,750°=720°+30°,∴-330°与750°终边相同.3.若α=k·180°+45°,k∈Z,则α所在的象限是()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限解析:选A由题意知α=k·180°+45°,k∈Z,当k=2n+1,n∈Z,α=2n·180°+180°+45°=n·360°+225°,在第三象限,当k=2n,n∈Z,α=2n·180°+45°=n·360°+45°,在第一象限.∴α是第一或第三象限的角.4.终边在第二象限的角的集合可以表示为()A.{α|90°<α<180°}B.{α|90°+k·180°<α<180°+k·180°,k∈Z}C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z}解析:选D终边在第二象限的角的集合可表示为{α|90°+k·360°<α<180°+k·360°,k∈Z},而选项D 是从顺时针方向来看的,故选项D正确.5.将-885°化为α+k·360°(0°≤α<360°,k∈Z)的形式是()A.-165°+(-2)×360°B.195°+(-3)×360°C.195°+(-2)×360°D.165°+(-3)×360°解析:选B-885°=195°+(-3)×360°,0°≤195°<360°,故选B.6.在下列说法中:①时钟经过两个小时,时针转过的角是60°; ②钝角一定大于锐角;③射线OA 绕端点O 按逆时针旋转一周所成的角是0°; ④-2 000°是第二象限角.其中错误说法的序号为______(错误说法的序号都写上).解析:①时钟经过两个小时,时针按顺时针方向旋转60°,因而转过的角为-60°,所以①不正确. ②钝角α的取值范围为90°<α<180°,锐角θ的取值范围为0°<θ<90°,因此钝角一定大于锐角,所以②正确.③射线OA 按逆时针旋转一周所成的角是360°,所以③不正确.④-2 000°=-6×360°+160°与160°终边相同,是第二象限角,所以④正确. 答案:①③7.α满足180°<α<360°,5α与α有相同的始边,且又有相同的终边,那么α=________. 解析:5α=α+k ·360°,k ∈Z ,∴α=k ·90°,k ∈Z. 又∵180°<α<360°,∴α=270°. 答案:270°8.若角α=2 016°,则与角α具有相同终边的最小正角为________,最大负角为________. 解析:∵2 016°=5×360°+216°,∴与角α终边相同的角的集合为{α|α=216°+k ·360°,k ∈Z},∴最小正角是216°,最大负角是-144°.答案:216° -144°9.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角: (1)549°;(2)-60°;(3)-503°36′.解:(1)549°=189°+360°,而180°<189°<270°,因此,549°角为第三象限角,且在0°~360°范围内,与189°角有相同的终边.(2)-60°=300°-360°,而270°<300°<360°,因此,-60°角为第四象限角,且在0°~360°范围内,与300°角有相同的终边.(3)-503°36′=216°24′-2×360°,而180°<216°24′<270°,因此,-503°36′角是第三象限角,且在0°~360°范围内,与216°24′角有相同的终边.10.已知角的集合M ={α|α=30°+k ·90°,k ∈Z},回答下列问题: (1)集合M 中大于-360°且小于360°的角是哪几个? (2)写出集合M 中的第二象限角β的一般表达式.解:(1)令-360°<30°+k ·90°<360°,则-133<k <113,又∵k ∈Z ,∴k =-4,-3,-2,-1,0,1,2,3,∴集合M 中大于-360°且小于360°的角共有8个,分别是-330°,-240°,-150°,-60°,30°,120°,210°,300°.(2)∵集合M 中的第二象限角与120°角的终边相同,∴β=120°+k·360°,k∈Z.层级二应试能力达标1.给出下列四个结论:①-15°是第四象限角;②185°是第三象限角;③475°是第二象限角;④-350°是第一象限角.其中正确的个数为()A.1B.2C.3 D.4解析:选D①-15°是第四象限角;②180°<185°<270°是第三象限角;③475°=360°+115°,而90°<115°<180°,所以475°是第二象限角;④-350°=-360°+10°是第一象限角,所以四个结论都是正确的.2.若角2α与240°角的终边相同,则α=()A.120°+k·360°,k∈ZB.120°+k·180°,k∈ZC.240°+k·360°,k∈ZD.240°+k·180°,k∈Z解析:选B角2α与240°角的终边相同,则2α=240°+k·360°,k∈Z,则α=120°+k·180°,k∈Z.选B.3.若α与β终边相同,则α-β的终边落在()A.x轴的非负半轴上B.x轴的非正半轴上C.y轴的非负半轴上D.y轴的非正半轴上解析:选A∵α=β+k·360°,k∈Z,∴α-β=k·360°,k∈Z,∴其终边在x轴的非负半轴上.4.设集合M={α|α=45°+k·90°,k∈Z},N={α|α=90°+k·45°,k∈Z},则集合M与N的关系是() A.M∩N=∅B.M NC.N M D.M=N解析:选C对于集合M,α=45°+k·90°=45°+2k·45°=(2k+1)·45°,即M={α|α=(2k+1)·45°,k ∈Z};对于集合N,α=90°+k·45°=2×45°+k·45°=(k+2)·45°,即N={α|α=(k+2)·45°,k∈Z}={α|α=n·45°,n∈Z}.∵2k+1表示所有的奇数,而n表示所有的整数,∴N M,故选C.5.从13:00到14:00,时针转过的角为________,分针转过的角为________.解析:经过一小时,时针顺时针旋转30°,分针顺时针旋转360°,结合负角的定义可知时针转过的角为-30°,分针转过的角为-360°.答案:-30°-360°6.已知角2α的终边在x轴的上方,那么α是第______象限角.解析:由题意知k·360°<2α<180°+k·360°(k∈Z),故k·180°<α<90°+k·180°(k∈Z),按照k的奇偶性进行讨论.当k=2n(n∈Z)时,n·360°<α<90°+n·360°(n∈Z),∴α在第一象限;当k=2n+1(n∈Z)时,180°+n·360°<α<270°+n·360°(n∈Z),∴α在第三象限.故α是第一或第三象限角.答案:一或三7.试写出终边在直线y=-3x上的角的集合S,并把S中适合不等式-180°≤α<180°的元素α写出来.解:终边在直线y=-3x上的角的集合S={α|α=k·360°+120°,k∈Z}∪{α|α=k·360°+300°,k∈Z}={α|α=k·180°+120°,k∈Z},其中适合不等式-180°≤α<180°的元素α为-60°,120°.8.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OB上;(2)终边落在直线OA上;(3)终边落在阴影区域内(含边界).解:(1)终边落在射线OB上的角的集合为S1={α|α=60°+k·360°,k∈Z}.(2)终边落在直线OA上的角的集合为S2={α|α=30°+k·180°,k∈Z}.(3)终边落在阴影区域内(含边界)的角的集合为S3={α|30°+k·180°≤α≤60°+k·180°,k∈Z}.课时跟踪检测(二)弧度制和弧度制与角度制的换算层级一学业水平达标1.把50°化为弧度为()A.50 B. 5π18C. 185π D.9 000π解析:选B50°=50×π180=5π18.2.扇形的周长是16,圆心角是2弧度,则扇形的面积是() A.16πB.32πC.16 D.32解析:选C弧长l=2r,4r=16,r=4,得l=8,即S =12lr =16.3.角α的终边落在区间⎝⎛⎭⎫-3π,-5π2内,则角α所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选C -3π的终边在x 轴的非正半轴上,-5π2的终边在y 轴的非正半轴上,故角α为第三象限角.4.时钟的分针在1点到3点20分这段时间里转过的弧度为( ) A. 143π B .-143π C. 718π D .-718π解析:选B 显然分针在1点到3点20分这段时间里,顺时针转过了73周,转过的弧度为-73×2π=-143π. 5.下列表示中不正确的是( )A .终边在x 轴上的角的集合是{α|α=k π,k ∈Z}B .终边在y 轴上的角的集合是⎩⎨⎧⎭⎬⎫α|α=π2+k π,k ∈ZC .终边在坐标轴上的角的集合是⎩⎨⎧⎭⎬⎫α|α=k ·π2,k ∈Z D .终边在直线y =x 上的角的集合是⎩⎨⎧⎭⎬⎫α|α=π4+2k π,k ∈Z解析:选D 终边在直线y =x 上的角的集合应是⎩⎨⎧⎭⎬⎫α|α=π4+k π,k ∈Z .6.-135°化为弧度为________,11π3化为角度为________. 解析:-135°=-135×π180=-34π,113π=113×180°=660°. 答案:-34π 660°7.扇形的半径是6,圆心角是60°,则该扇形的面积为________. 解析:60°=π3,扇形的面积公式为S 扇形=12αr 2=12×π3×(6)2=π.答案:π8.设集合M =⎩⎨⎧⎭⎬⎫α|α=k π2-π3,k ∈Z ,N ={α|-π<α<π},则M ∩N =________.解析:由-π<k π2-π3<π,得-43<k <83.∵k ∈Z ,∴k =-1,0,1,2, ∴M ∩N =⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π.答案:⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π9.一个扇形的面积为1,周长为4,求圆心角的弧度数. 解:设扇形的半径为R ,弧长为l ,则2R +l =4. 根据扇形面积公式S =12lR ,得1=12l ·R .联立⎩⎪⎨⎪⎧2R +l =4,12l ·R =1,解得R =1,l =2,∴α=l R =21=2.10.将下列各角化成弧度制下的角,并指出是第几象限角. (1)-1 725°;(2)-60°+360°·k (k ∈Z).解:(1)-1 725°=75°-5×360°=-5×2π+5π12=-10π+5π12,是第一象限角.(2)-60°+360°·k =-π180×60+2π·k =-π3+2k π(k ∈Z),是第四象限角. 层级二 应试能力达标1.下列转化结果错误的是( ) A .60°化成弧度是π3B .-103π化成度是-600°C .-150°化成弧度是-76πD.π12化成度是15° 解析:选C 对于A,60°=60×π180=π3;对于B ,-103π=-103×180°=-600°;对于C ,-150°=-150×π180=-56π;对于D ,π12=112×180°=15°.故C 错误. 2.集合⎩⎨⎧⎭⎬⎫α|k π+π4≤α≤k π+π2,k ∈Z 中角的终边所在的范围(阴影部分)是( )解析:选C 当k =2m ,m ∈Z 时,2m π+π4≤α≤2m π+π2,m ∈Z ;当k =2m +1,m ∈Z 时,2m π+5π4≤α≤2m π+3π2,m ∈Z ,所以选C.3.若角α与角x +π4有相同的终边,角β与角x -π4有相同的终边,那么α与β间的关系为( )A .α+β=0B .α-β=0C .α+β=2k π(k ∈Z)D .α-β=2k π+π2(k ∈Z)解析:选D ∵α=x +π4+2k 1π(k 1∈Z),β=x -π4+2k 2π(k 2∈Z),∴α-β=π2+2(k 1-k 2)·π(k 1∈Z ,k 2∈Z).∵k 1∈Z ,k 2∈Z ,∴k 1-k 2∈Z. ∴α-β=π2+2k π(k ∈Z).4.圆弧长度等于其所在圆内接正三角形的边长,则该圆弧所对圆心角的弧度数为( ) A. π3 B.2π3C. 3D .2解析:选C 如图,设圆的半径为R ,则圆的内接正三角形的边长为3R ,所以圆弧长度为3R 的圆心角的弧度数α=3RR= 3. 5.若角α的终边与85π角的终边相同,则在[0,2π]上,终边与α4角的终边相同的角是____________.解析:由题意,得α=8π5+2k π,∴α4=2π5+k π2(k ∈Z).令k =0,1,2,3,得α4=2π5,9π10,7π5,19π10.答案:2π5,9π10,7π5,19π106.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的________. 解析:设原来圆的半径为r ,弧长为l ,圆心角为α,则l =αr .设将圆的半径变为原来的3倍后圆心角为α1,则α1=l 3r =αr 3r =α3,故α1α=13.答案:137.已知α=1 690°,(1)把α写成2k π+β(k ∈Z ,β∈[0,2π))的形式; (2)求θ,使θ与α终边相同,且θ∈(-4π,4π). 解:(1)1 690°=4×360°+250°=4×2π+2518π.(2)∵θ与α终边相同,∴θ=2k π+2518π(k ∈Z).又θ∈(-4π,4π),∴-4π<2k π+2518π<4π. 解得-9736<k <4736(k ∈Z),∴k =-2,-1,0,1.∴θ的值是-4718π,-1118π,2518π,6118π.8.已知扇形AOB 的圆心角为120°,半径长为6,求: (1)弧AB 的长;(2)扇形所含弓形的面积. 解:(1)因为120°=120180π=23π,所以l =α·r =23π×6=4π,所以弧AB 的长为4π.(2)因为S 扇形AOB =12lr =12×4π×6=12π,如图所示,过点O 作OD ⊥AB ,交AB 于D 点,于是有S △OAB =12AB ·OD =12×2×6cos 30°×3=9 3.所以弓形的面积为S 扇形AOB -S △OAB =12π-9 3.课时跟踪检测(三) 三角函数的定义层级一 学业水平达标1.若α=2π3,则α的终边与圆x 2+y 2=1的交点P 的坐标是( ) A.⎝⎛⎭⎫12,32 B. ⎝⎛⎭⎫-12,32 C. ⎝⎛⎭⎫-32,12 D.⎝⎛⎭⎫12,-32解析:选B 设P (x ,y ),∵角α=2π3在第二象限, ∴x =-12,y =1-⎝⎛⎭⎫-122=32,∴P ⎝⎛⎭⎫-12,32. 2.若角α的终边上一点的坐标为(1,-1),则cos α等于( )A.1 B.-1C.22D.-22解析:选C∵角α的终边上一点的坐标为(1,-1),它与原点的距离r=12+(-1)2=2,∴cos α=xr=12=22.3.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为()A.锐角三角形B.钝角三角形C.直角三角形D.以上三种情况都可能解析:选B∵sin αcos β<0,α,β∈(0,π),∴sin α>0,cos β<0,∴β为钝角.4.代数式sin 120°cos 210°的值为()A.-34 B.34C.-32 D.14解析:选A利用三角函数定义易得sin 120°=32,cos 210°=-32,∴sin 120°cos 210°=32×⎝⎛⎭⎫-32=-34,故选A.5.若角α的终边在直线y=-2x上,则sin α等于()A.±15B.±55C.±255D.±12解析:选C在α的终边上任取一点(-1,2),则r=1+4=5,所以sin α=yr=25=255.或者取P(1,-2),则r=1+4=5,所以sin α=yr=-25=-255.6.计算:tan π6=________,cscπ6=________.解析:∵α=π6,在α的终边上取一点P(3a,a),∴r=2a.∴tan π6=33,cscπ6=2.答案:33 27.已知角α的终边过点P (5,a ),且tan α=-125,则sin α+cos α=________.解析:∵tan α=a 5=-125,∴a =-12.∴r =25+a 2=13.∴sin α=-1213,cos α=513.∴sin α+cos α=-713.答案:-7138.若角α的终边落在直线x +y =0上,则sin α|cos α|+|sin α|cos α=________.解析:当α在第二象限时,sin α|cos α|+|sin α|cos α=-sin αcos α+sin αcos α=0;当α在第四象限时,sin α|cos α|+|sin α|cos α=sin αcos α-sin αcos α=0.综上,sin α|cos α|+|sin α|cos α=0. 答案:09.已知角θ终边上有一点P (-3,m ),且sin θ=24m (m ≠0),试求cos θ与tan θ的值. 解:点P (-3,m )到坐标原点O 的距离r =3+m 2,由三角函数的定义,得sin θ=yr =m 3+m 2=24m ,解得m =±5.∴r =2 2.当m =5时,cos θ=x r =-322=-64,tan θ=y x =5-3=-153.当m =-5时,cos θ=x r =-322=-64,tan θ=y x =-5-3=153.10.已知点M 是圆x 2+y 2=1上的点,以射线OM 为终边的角α的正弦值为-22,求cos α和tan α的值.解:设点M 的坐标为(x 1,y 1). 由题意,可知sin α=-22,即y 1=-22. ∵点M 在圆x 2+y 2=1上,∴x 21+y 21=1, 即x 21+⎝⎛⎭⎫-222=1,解得x 1=22或x 2=-22.∴cos α=22或cos α=-22,∴tan α=-1或tan α=1.层级二 应试能力达标1.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3)D .[-2,3]解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴上,所以有⎩⎪⎨⎪⎧3a -9≤0,a +2>0, 即-2<a ≤3.2.设a <0,角α的终边与圆x 2+y 2=1的交点为P (-3a,4a ),那么sin α+2cos α的值等于( ) A. 25 B .-25C. 15D .-15解析:选A ∵点P 在圆x 2+y 2=1上,则|OP |=1. 即(-3a )2+(4a )2=1,解得a =±15.∵a <0,∴a =-15.∴P 点的坐标为⎝⎛⎭⎫35,-45. ∴sin α=-45,cos α=35.∴sin α+2cos α=-45+2×35=25.3.若tan x <0,且sin x -cos x <0,则角x 的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D ∵tan x <0,∴角x 的终边在第二、四象限,又sin x -cos x <0,∴角x 的终边在第四象限.4.已知角α的终边经过点P (m ,-6),且cos α=-45,则m =( )A .8B .-8C .4D .-4解析:选B 由题意r =|OP |=m 2+(-6)2=m 2+36,故cos α=m m 2+36=-45,解得m =-8.5.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.<0及P (4,y )是角θ终边上一点,可知θ为第四象限角,∴y =-8.答案:-86.设0≤θ<2π,若sin θ<0且cos 2θ<0,则θ的取值范围是________. 解析:因为0≤θ<2π且sin θ<0,所以π<θ<2π.又cos 2θ<0,所以2k π+π2<2θ<2k π+3π2,k ∈Z ,所以k π+π4<θ<k π+3π4,k ∈Z.因为π<θ<2π,所以k =1,即θ的取值范围是5π4<θ<7π4. 答案:⎝⎛⎭⎫5π4,7π47.求下列函数的定义域: (1)f (x )=2+log 12x +tan x ;(2)f (x )=cos x .解:(1)由题意得⎩⎨⎧2+log 12x ≥0,x ≠k π+π2(k ∈Z ),即⎩⎪⎨⎪⎧0<x ≤4,x ≠k π+π2(k ∈Z ). 解得0<x <π2或π2<x ≤4,所以原函数的定义域为⎝⎛⎭⎫0,π2∪⎝⎛⎦⎤π2,4. (2)若使函数有意义,则需满足cos x ≥0, 即2k π-π2≤x ≤2k π+π2,k ∈Z.∴函数的定义域为⎣⎡⎦⎤2k π-π2,2k π+π2,k ∈Z.8.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限.(2)若角α的终边上一点是M ⎝⎛⎭⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值. 解:(1)由1|sin α|=-1sin α,所以sin α<0, 由lg(cos α)有意义,可知cos α>0, 所以α是第四象限角.(2)因为|OM |=1,所以⎝⎛⎭⎫352+m 2=1, 得m =±45.又α为第四象限角,故m <0, 从而m =-45,sin α=y r =m |OM |=-451=-45.课时跟踪检测(五) 同角三角函数的基本关系式层级一 学业水平达标1.(福建高考)若sin α=-513,且α为第四象限角,则tan α的值等于( ) A. 125 B .-125C.512D .-512解析:选D 因为sin α=-513,且α为第四象限角, 所以cos α=1213,所以tan α=-512,故选D.2.若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为( )A .3B .-3C .1D .-1解析:选B ∵α为第三象限角, ∴原式=cos α-cos α+2sin α-sin α=-3.3.下列四个结论中可能成立的是( ) A .sin α=12且cos α=12B .sin α=0且cos α=-1C .tan α=1且cos α=-1D .α是第二象限角时,tan α=-sin αcos α解析:选B 根据同角三角函数的基本关系进行验证,因为当α=π时,sin α=0且cos α=-1,故B 成立,而A 、C 、D 都不成立.A .-35B .-15C. 15D. 35解析:选A sin 4α-cos 4α=(sin 2α+cos 2α)(sin 2α-cos 2α)=sin 2α-(1-sin 2α)=2sin 2α-1=2×⎝⎛⎭⎫552-1=-35.5.若α是三角形的最大内角,且sin α-cos α=35,则三角形是( )A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形解析:选B 将sin α-cos α=35两边平方,得1-2sin αcos α=925,即2sin αcos α=1625.又α是三角形的内角,∴sin α>0,cos α>0,∴α为锐角.6.若sin θ=-22,tan θ>0,则cos θ=________. 解析:由已知得θ是第三象限角, 所以cos θ=-1-sin 2θ=- 1-⎝⎛⎭⎫-222=-22.答案:-227.化简:1-2sin 40°cos 40°=________. 解析:原式=sin 240°+cos 240°-2sin 40°cos 40° =(sin 40°-cos 40°)2=|cos 40°-sin 40°|=cos 40°-sin 40°. 答案:cos 40°-sin 40°8.已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α=________.解析:1+2sin αcos αsin 2α-cos 2α=(sin α+cos α)2sin 2α-cos 2α=sin α+cos αsin α-cos α=tan α+1tan α-1=-12+1-12-1=12-32=-13.答案:-139.化简:(1)cos 36°-1-cos 236°1-2sin 36°cos 36°;(2)sin θ-cos θtan θ-1.解:(1)原式=cos 36°-sin 236°sin 236°+cos 236°-2sin 36°cos 36°=cos 36°-sin 36°(cos 36°-sin 36°)2=cos 36°-sin 36°|cos 36°-sin 36°|=cos 36°-sin 36°cos 36°-sin 36°=1.(2)原式=sin θ-cos θsin θcos θ-1=cos θ(sin θ-cos θ)sin θ-cos θ=cos θ.10.已知sin α+cos α=33,求tan α+1tan α及sin α-cos α的值. 解:将sin α+cos α=33两边平方,得sin αcos α=-13. ∴tan α+1tan α=1sin αcos α=-3, (sin α-cos α)2=1-2sin αcos α=1+23=53,∴sin α-cos α=±153. 层级二 应试能力达标1.已知tan α=12,且α∈⎝⎛⎭⎫π,3π2,则sin α的值是( ) A .-55B.55C.255 D .-255解析:选A ∵α∈⎝⎛⎭⎫π,3π2,∴sin α<0. 由tan α=sin αcos α=12,sin 2α+cos 2α=1,得sin α=-55. 2.化简⎝⎛⎭⎫1sin α+1tan α(1-cos α)的结果是( ) A .sin α B .cos α C .1+sin αD .1+cos α解析:选A ⎝⎛⎭⎫1sin α+1tan α(1-cos α)=⎝⎛⎭⎫1sin α+cos αsin α·(1-cos α)=(1+cos α)sin α·(1-cos α)=1-cos 2αsin α=sin 2αsin α=sin α. 3.已知θ是第三象限角,且sin 4θ+cos 4θ=59,则sin θcos θ的值为( )C. 13 D .-13解析:选A 由sin 4θ+cos 4θ=59,得(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59.∴sin 2θcos 2θ=29.∵θ是第三象限角,∴sin θ<0,cos θ<0,∴sin θcos θ=23. 4.已知sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( )A. 34 B .±310C. 310D .-310解析:选C 由条件得sin θ+cos θ=2sin θ-2cos θ, 即3cos θ=sin θ,tan θ=3, ∴sin θcos θ=sin θcos θsin 2θ+cos 2θ=tan θ1+tan 2θ=31+32=310. 5.已知sin αcos α=18,且π<α<5π4,则cos α-sin α=________.解析:因为π<α<5π4,所以cos α<0,sin α<0.利用三角函数线,知cos α<sin α,所以cos α-sin α<0,所以cos α-sin α=-(cos α-sin α)2=-1-2×18=-32.答案:-326.若sin α+cos α=1,则sin n α+cos n α(n ∈Z)的值为________. 解析:∵sin α+cos α=1,∴(sin α+cos α)2=1,又sin 2α+cos 2α=1, ∴sin αcos α=0,∴sin α=0或cos α=0,当sin α=0时,cos α=1,此时有sin n α+cos n α=1; 当cos α=0时,sin α=1,也有sin n α+cos n α=1, ∴sin n α+cos n α=1. 答案:17.已知tan 2α1+2tan α=13,α∈⎝⎛⎭⎫π2,π. (1)求tan α的值;(2)求sin α+2cos α5cos α-sin α的值.解:(1)由tan 2α1+2tan α=13,得3tan 2α-2tan α-1=0, 即(3tan α+1)(tan α-1)=0, 解得tan α=-13或tan α=1.因为α∈⎝⎛⎭⎫π2,π,所以tan α<0,所以tan α=-13.(2)由(1),得tan α=-13,所以sin α+2cos α5cos α-sin α=tan α+25-tan α=-13+25-⎝⎛⎭⎫-13=516.8.求证:cos α1+sin α-sin α1+cos α=2(cos α-sin α)1+sin α+cos α.证明:左边=cos α(1+cos α)-sin α(1+sin α)(1+sin α)(1+cos α)=cos 2α-sin 2α+cos α-sin α1+sin α+cos α+sin αcos α =(cos α-sin α)(cos α+sin α+1)12(cos α+sin α)2+sin α+cos α+12=2(cos α-sin α)(cos α+sin α+1)(sin α+cos α+1)2=2(cos α-sin α)1+sin α+cos α=右边.所以原等式成立.课时跟踪检测(六) 诱导公式(一、二、三)层级一 学业水平达标1.sin 600°的值是( ) A. 12 B .-12C.32D .-32解析:选D sin 600°=sin(360°+240°)=sin 240° =sin(180°+60°)=-sin 60°=-32. 2.若sin(π+α)=-12,则sin(4π-α)的值是( )A. 12 B .-12C .-32D.32解析:选B 由题知,sin α=12,所以sin(4π-α)=-sin α=-12.3.如图所示,角θ的终边与单位圆交于点P ⎝⎛⎭⎫-55,255,则cos(π-θ)的值为( )A .-255B .-55C.55D.255解析:选C ∵r =1,∴cos θ=-55, ∴cos(π-θ)=-cos θ=55. 4.已知tan ⎝⎛⎭⎫π3-α=13,则tan ⎝⎛⎭⎫2π3+α=( ) A. 13 B .-13C. 233D .-233解析:选B tan ⎝⎛⎭⎫2π3+α=tan ⎣⎡⎦⎤π+⎝⎛⎭⎫-π3+α =tan ⎝⎛⎭⎫-π3+α=-tan ⎝⎛⎭⎫π3-α=-13. 5.设tan(5π+α)=m ,则sin (α+3π)+cos (π+α)sin (-α)-cos (π+α)的值等于( )A. m +1m -1B.m -1m +1C .-1D .1解析:选A ∵tan(5π+α)=tan [4π+(π+α)] =tan(π+α)=tan α,∴tan α=m ,∴原式=sin (π+α)-cos α-sin α+cos α=-sin α-cos α-sin α+cos α=tan α+1tan α-1=m +1m -1,故选A. 6.求值:(1)cos 29π6=______;(2)tan(-855°)=______. 解析:(1)cos29π6=cos ⎝⎛⎭⎫4π+5π6=cos 5π6=cos ⎝⎛⎭⎫π-π6=-cos π6=-32. (2)tan(-855°)=-tan 855°=-tan(2×360°+135°)=-tan 135°=-tan(180°-45°)=tan 45°=1. 答案:(1)-32(2)1 7.已知sin(π-α)=log 814,且α∈⎝⎛⎭⎫-π2,0,则tan(2π-α)的值为________. 解析:sin(π-α)=sin α=log 814=-23,又α∈⎝⎛⎭⎫-π2,0, 所以cos α=1-sin 2α=53,tan(2π-α)=tan(-α)=-tan α=-sin αcos α=255. 答案:2558.已知cos(508°-α)=1213,则cos(212°+α)=________.解析:由于cos(508°-α)=cos(360°+148°-α)=cos(148°-α)=1213, 所以cos(212°+α)=cos(360°+α-148°)=cos(α-148°)=cos(148°-α)=1213. 答案:12139.求下列各三角函数值:(1)sin ⎝⎛⎭⎫-8π3;(2)cos 23π6;(3)tan 37π6. 解:(1)sin ⎝⎛⎭⎫-8π3=sin ⎝⎛⎭⎫-4π+4π3=sin 4π3 =sin ⎝⎛⎭⎫π+π3=-sin π3=-32. (2)cos 23π6=cos ⎝⎛⎭⎫4π-π6=cos ⎝⎛⎭⎫-π6=cos π6=32.10.若cos α=23,α是第四象限角,求sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)的值.解:由已知cos α=23,α是第四象限角得sin α=-53, 故sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)=sin α-sin αcos α-cos α+cos 2α=52. 层级二 应试能力达标1.已知cos(π-α)=-35,且α是第一象限角,则sin(-2π-α)的值是( )A. 45 B .-45C .±45D. 35解析:选B ∵cos(π-α)=-cos α,∴cos α=35.∵α是第一象限角,∴sin α>0, ∴sin α=1-cos 2α=1-⎝⎛⎭⎫352=45.∴sin(-2π-α)=sin(-α)=-sin α=-45.2.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β∈R ,若f (2 015)=5,则f (2 016)等于( ) A .4 B .3 C .-5D .5解析:选C ∵f (2 015)=a sin(2 015π+α)+b cos(2 015π+β)=-a sin α-b cos β=5,∴f (2 016)=a sin(2 016π+α)+b cos(2 016π+β)=a sin α+b cos β=-5.3.若α,β的终边关于y 轴对称,则下列等式成立的是( ) A .sin α=sin β B .cos α=cos β C .tan α=tan βD .sin α=-sin β解析:选A 法一:∵α,β的终边关于y 轴对称, ∴α+β=π+2k π或α+β=-π+2k π,k ∈Z , ∴α=2k π+π-β或α=2k π-π-β,k ∈Z , ∴sin α=sin β.法二:设角α终边上一点P (x ,y ),则点P 关于y 轴对称的点为P ′(-x ,y ),且点P 与点P ′到原点的距离相等,设为r ,则sin α=sin β=yr .4.下列三角函数式:①sin ⎝⎛⎭⎫2n π+3π4;②cos ⎝⎛⎭⎫2n π-π6;③sin ⎝⎛⎭⎫2n π+π3;④cos ⎣⎡⎦⎤(2n +1)π-π6; ⑤sin ⎣⎡⎦⎤(2n -1)π-π3. 其中n ∈Z ,则函数值与sin π3的值相同的是( )A .①②B .①③④C .②③⑤D .①③⑤解析:选C ①中sin ⎝⎛⎭⎫2n π+3π4=sin 3π4≠sin π3;②中,cos ⎝⎛⎭⎫2n π-π6=cos π6=sin π3;③中,sin ⎝⎛⎭⎫2n π+π3=sin π3;④中,cos ⎣⎡⎦⎤(2n +1)π-π6=cos ⎝⎛⎭⎫π-π6=-cos π6≠sin π3;⑤中,sin ⎣⎡⎦⎤(2n -1)π-π3=sin ⎝⎛⎭⎫-π-π3=-sin ⎝⎛⎭⎫π+π3=sin π3. 5.化简:cos (-585°)sin 495°+sin (-570°)的值是________.解析:原式=cos (360°+225°)sin (360°+135°)-sin (210°+360°)=cos 225°sin 135°-sin 210°=cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-cos 45°sin 45°+sin 30°=-2222+12=2-2. 答案:2-26.已知f (x )=⎩⎪⎨⎪⎧sin πx , x <0,f (x -1)-1, x >0,则f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116的值为________. 解析:因为f ⎝⎛⎭⎫-116=sin ⎝⎛⎭⎫-11π6 =sin ⎝⎛⎭⎫-2π+π6=sin π6=12; f ⎝⎛⎭⎫116=f ⎝⎛⎭⎫56-1=f ⎝⎛⎭⎫-16-2 =sin ⎝⎛⎭⎫-π6-2=-12-2=-52. 所以f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116=-2. 答案:-2 7.计算与化简(1)tan (2π-θ)sin (2π-θ)cos (6π-θ)(-cos θ)sin (5π+θ);(2)sin 420°cos 330°+sin(-690°)cos(-660°).解:(1)原式=tan (-θ)sin (-θ)cos (-θ)(-cos θ)sin (π+θ)=tan θsin θcos θcos θsin θ=tan θ.(2)原式=sin(360°+60°)cos(360°-30°)+sin(-2×360°+30°)cos(-2×360°+60°) =sin 60°cos 30°+sin 30°cos 60°=32×32+12×12=1.8.已知1+tan (θ+720°)1-tan (θ-360°)=3+22,求:[cos 2(π-θ)+sin(π+θ)·cos(π-θ)+2sin 2(θ-π)]·1cos 2(-θ-2π)的值.解:由1+tan (θ+720°)1-tan (θ-360°)=3+22,得(4+22)tan θ=2+22, 所以tan θ=2+224+22=22,故原式=(cos 2θ+sin θcos θ+2sin 2θ)·1cos 2θ=1+tan θ+2tan 2θ =1+22+2×⎝⎛⎭⎫222 =2+22.课时跟踪检测(七) 诱导公式(四)层级一 学业水平达标1.若sin ⎝⎛⎭⎫π2+θ<0,且cos ⎝⎛⎭⎫π2-θ>0,则θ是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:选B 由于sin ⎝⎛⎭⎫π2+θ=cos θ<0,cos ⎝⎛⎭⎫π2-θ=sin θ>0,所以角θ的终边落在第二象限,故选B.2.已知sin θ=15,则cos(450°+θ)的值是( )A. 15 B .-15C .-265D.265解析:选B cos(450°+θ)=cos(90°+θ)=-sin θ=-15.3.已知cos ⎝⎛⎭⎫π2+φ=32,且|φ|<π2,则tan φ等于( ) A .-33B.33C .- 3 D. 3解析:选C 由cos ⎝⎛⎭⎫π2+φ=-sin φ=32,得sin φ=-32.又|φ|<π2,∴φ=-π3,∴tan φ=- 3. 4.已知tan θ=2,则sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2+θ-sin (π-θ)=( )A .2B .-2C .0D. 23解析:选B sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2+θ-sin (π-θ)=cos θ+cos θcos θ-sin θ=21-tan θ=21-2=-2.5.若角A ,B ,C 是△ABC 的三个内角,则下列等式中一定成立的是( ) A .cos(A +B )=cos C B .sin(A +B )=-sin C C .cos A +C2=sin BD .sin B +C 2=cos A2解析:选D ∵A +B +C =π,∴A +B =π-C , ∴cos(A +B )=-cos C ,sin(A +B )=sin C ,故A ,B 错. ∵A +C =π-B ,∴A +C 2=π-B2, ∴cos A +C 2=cos ⎝⎛⎭⎫π2-B 2=sin B2,故C 错. ∵B +C =π-A ,∴sin B +C 2=sin ⎝⎛⎭⎫π2-A 2=cos A2,故D 正确. 6.sin 95°+cos 175°的值为________.解析:sin 95°+cos 175°=sin(90°+5°)+cos(180°-5°) =cos 5°-cos 5°=0. 答案:07.若sin ⎝⎛⎭⎫π2+θ=35,则cos 2θ-sin 2θ=________. 解析:sin ⎝⎛⎭⎫π2+θ=cos θ=35,从而sin 2θ=1-cos 2θ=1625,所以cos 2θ-sin 2θ=-725. 答案:-7258.化简:sin(-α-7π)·cos ⎝⎛⎭⎫α-3π2=________. 解析:原式=-sin(7π+α)·cos ⎝⎛⎭⎫3π2-α =-sin(π+α)·⎣⎡⎦⎤-cos ⎝⎛⎭⎫π2-α =sin α·(-sin α) =-sin 2α. 答案:-sin 2α9.已知sin(π+α)=-13.求:(1)cos ⎝⎛⎭⎫α-3π2; (2)sin ⎝⎛⎭⎫π2+α. 解:∵sin(π+α)=-sin α=-13,∴sin α=13.(1)cos ⎝⎛⎭⎫α-3π2=cos ⎝⎛⎭⎫3π2-α=-sin α=-13. (2)sin ⎝⎛⎭⎫π2+α=cos α,cos 2α=1-sin 2α=1-19=89. ∵sin α=13,∴α为第一或第二象限角.①当α为第一象限角时,sin ⎝⎛⎭⎫π2+α=cos α=223. ②当α为第二象限角时,sin ⎝⎛⎭⎫π2+α=cos α=-223. 10.已知cos ⎝⎛⎭⎫π2+α=13, 求值:sin ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫π2-αcos (π+α)+sin (π-α)cos ⎝⎛⎭⎫3π2+αsin (π+α).解:原式=cos αsin α-cos α+sin αsin α-sin α=-sin α-sin α=-2sin α. 又cos ⎝⎛⎭⎫π2+α=13,所以-sin α=13.所以原式=-2sin α=23.层级二 应试能力达标1.若sin(π+α)+cos ⎝⎛⎭⎫π2+α=-m ,则cos ⎝⎛⎭⎫3π2-α+2sin(6π-α)的值为( ) A .-23mB .-32mC. 23m D. 32m 解析:选B ∵sin(π+α)+cos ⎝⎛⎭⎫π2+α=-m , 即-sin α-sin α=-2sin α=-m ,从而sin α=m2,∴cos ⎝⎛⎭⎫3π2-α+2sin(6π-α)=-sin α-2sin α=-3sin α=-32m . 2.已知f (x )=sin x ,下列式子成立的是( ) A .f (x +π)=sin x B .f (2π-x )=sin x C .f ⎝⎛⎭⎫x -π2=-cos x D .f (π-x )=-f (x )解析:选C f (x +π)=sin(x +π)=-sin x ; f (2π-x )=sin(2π-x )=sin(-x )=-sin x ; f ⎝⎛⎭⎫x -π2=sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x ; f (π-x )=sin(π-x )=sin x =f (x ),故选C.3.已知α为锐角,2tan(π-α)-3cos ⎝⎛⎭⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是( ) A. 355 B. 377C. 31010D. 13解析:选C 由已知可得-2tan α+3sin β+5=0,tan α-6sin β-1=0.∴tan α=3,又tan α=sin αcos α,∴9=sin 2αcos 2α=sin 2α1-sin 2α,∴sin 2α=910,∵α为锐角,∴sin α=31010,选C. 4.已知cos(60°+α)=13,且-180°<α<-90°,则cos(30°-α)的值为( )A .-223B. 223 C .-23D. 23解析:选A 由-180°<α<-90°,得-120°<60°+α<-30°,又cos(60°+α)=13>0,所以-90°<60°+α<-30°,即-150°<α<-90°,所以120°<30°-α<180°,cos(30°-α)<0,所以cos(30°-α)=sin(60°+α)=-1-cos 2(60°+α)=-1-⎝⎛⎭⎫132=-223. 5.tan(45°+θ)·tan(45°-θ)=________. 解析:原式=sin (45°+θ)cos (45°+θ)·sin (45°-θ)cos (45°-θ)=sin (45°+θ)cos (45°+θ)·sin[90°-(45°+θ)]cos[90°-(45°+θ)]=sin (45°+θ)cos (45°+θ)cos (45°+θ)sin (45°+θ)=1.答案:16.sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°+sin 290°的值为________. 解析:∵sin 21°+sin 289°=sin 21°+cos 21°=1, sin 22°+sin 288°=sin 22°+cos 22°=1,sin 2x °+sin 2(90°-x °)=sin 2x °+cos 2x °=1(1≤x ≤44, x ∈N),∴原式=(sin 21°+sin 289°)+(sin 22°+sin 288°)+…+(sin 244°+sin 246°)+sin 290°+sin 245°=45+⎝⎛⎭⎫222=912. 答案:9127.已知f (α)=sin (α-3π)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-π-α)sin (-π-α).(1)化简f (α);(2)若α是第三象限的角,且cos ⎝⎛⎭⎫α-3π2=15, 求f (α)的值.解:(1)f (α)=sin (α-3π)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-π-α)sin (-π-α)=(-sin α)·cos α·(-cos α)(-cos α)·sin α=-cos α.(2)因为cos ⎝⎛⎭⎫α-3π2=-sin α,所以sin α=-15. 又α是第三象限的角, 所以cos α=- 1-⎝⎛⎭⎫-152=-265. 所以f (α)=265.。
课时跟踪检测(三) 三角函数的定义层级一 学业水平达标1.若α=2π3,则α的终边与圆x 2+y 2=1的交点P 的坐标是( ) A.⎝⎛⎭⎫12,32 B. ⎝⎛⎭⎫-12,32 C. ⎝⎛⎭⎫-32,12 D.⎝⎛⎭⎫12,-32解析:选B 设P (x ,y ),∵角α=2π3在第二象限, ∴x =-12,y =1-⎝⎛⎭⎫-122=32,∴P ⎝⎛⎭⎫-12,32. 2.若角α的终边上一点的坐标为(1,-1),则cos α等于( ) A .1 B .-1 C.22D .-22解析:选C ∵角α的终边上一点的坐标为(1,-1),它与原点的距离r =12+(-1)2=2,∴cos α=x r =12=22.3.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( ) A .锐角三角形 B .钝角三角形 C .直角三角形D .以上三种情况都可能解析:选B ∵sin αcos β<0,α,β∈(0,π), ∴sin α>0,cos β<0,∴β为钝角. 4.代数式sin 120°cos 210°的值为( ) A .-34B.34C .-32D. 14解析:选A 利用三角函数定义易得sin 120°=32, cos 210°=-32,∴sin 120°cos 210°=32×⎝⎛⎭⎫-32=-34,故选A. 5.若角α的终边在直线y =-2x 上,则sin α等于( ) A .±15B .±55C .±255D .±12解析:选C 在α的终边上任取一点(-1,2),则r =1+4=5,所以sin α=y r =25=255.或者取P (1,-2),则r =1+4=5,所以sin α=y r =-25=-255.6.计算:tan π6=________,csc π6=________.解析:∵α=π6,在α的终边上取一点P (3a ,a ),∴r =2a .∴tan π6=33,csc π6=2.答案:332 7.已知角α的终边过点P (5,a ),且tan α=-125,则sin α+cos α=________. 解析:∵tan α=a 5=-125,∴a =-12.∴r =25+a 2=13. ∴sin α=-1213,cos α=513. ∴sin α+cos α=-713. 答案:-7138.若角α的终边落在直线x +y =0上,则sin α|cos α|+|sin α|cos α=________.解析:当α在第二象限时,sin α|cos α|+|sin α|cos α=-sin αcos α+sin αcos α=0;当α在第四象限时,sin α|cos α|+|sin α|cos α=sin αcos α-sin αcos α=0.综上,sin α|cos α|+|sin α|cos α=0. 答案:09.已知角θ终边上有一点P (-3,m ),且sin θ=24m (m ≠0),试求cos θ与tan θ的值.解:点P (-3,m )到坐标原点O 的距离r =3+m 2,由三角函数的定义,得sin θ=y r =m 3+m 2=24m ,解得m =±5.∴r =2 2.当m =5时,cos θ=x r =-322=-64,tan θ=y x =5-3=-153.当m =-5时,cos θ=x r =-322=-64,tan θ=y x =-5-3=153.10.已知点M 是圆x 2+y 2=1上的点,以射线OM 为终边的角α的正弦值为-22,求cos α和tan α的值.解:设点M 的坐标为(x 1,y 1). 由题意,可知sin α=-22,即y 1=-22. ∵点M 在圆x 2+y 2=1上,∴x 21+y 21=1, 即x 21+⎝⎛⎭⎫-222=1,解得x 1=22或x 2=-22.∴cos α=22或cos α=-22, ∴tan α=-1或tan α=1.层级二 应试能力达标1.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴上,所以有⎩⎪⎨⎪⎧3a -9≤0,a +2>0,即-2<a ≤3.2.设a <0,角α的终边与圆x 2+y 2=1的交点为P (-3a,4a ),那么sin α+2cos α的值等于( )A. 25 B .-25C. 15D .-15解析:选A ∵点P 在圆x 2+y 2=1上,则|OP |=1. 即(-3a )2+(4a )2=1,解得a =±15.∵a <0,∴a =-15.∴P 点的坐标为⎝⎛⎭⎫35,-45. ∴sin α=-45,cos α=35.∴sin α+2cos α=-45+2×35=25.3.若tan x <0,且sin x -cos x <0,则角x 的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D ∵tan x <0,∴角x 的终边在第二、四象限,又sin x -cos x <0,∴角x 的终边在第四象限.4.已知角α的终边经过点P (m ,-6),且cos α=-45,则m =( )A .8B .-8C .4D .-4解析:选B 由题意r =|OP |=m 2+(-6)2=m 2+36,故cos α=m m 2+36=-45,解得m =-8.5.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.解析:|OP |=42+y 2.根据任意角三角函数的定义得,y 42+y2=- 255,解得y =±8.又∵sin θ=-255<0及P (4,y )是角θ终边上一点,可知θ为第四象限角,∴y =-8.答案:-86.设0≤θ<2π,若sin θ<0且cos 2θ<0,则θ的取值范围是________. 解析:因为0≤θ<2π且sin θ<0,所以π<θ<2π.又cos 2θ<0,所以2k π+π2<2θ<2k π+3π2,k ∈Z ,所以k π+π4<θ<k π+3π4,k ∈Z.因为π<θ<2π,所以k =1,即θ的取值范围是5π4<θ<7π4.答案:⎝⎛⎭⎫5π4,7π47.求下列函数的定义域: (1)f (x )=2+log 12x +tan x ;(2)f (x )=cos x .解:(1)由题意得⎩⎨⎧2+log 12x ≥0,x ≠k π+π2(k ∈Z ),即⎩⎪⎨⎪⎧0<x ≤4,x ≠k π+π2(k ∈Z ). 解得0<x <π2或π2<x ≤4,所以原函数的定义域为⎝⎛⎭⎫0,π2∪⎝⎛⎦⎤π2,4. (2)若使函数有意义,则需满足cos x ≥0, 即2k π-π2≤x ≤2k π+π2,k ∈Z.∴函数的定义域为⎣⎡⎦⎤2k π-π2,2k π+π2,k ∈Z.8.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限.(2)若角α的终边上一点是M ⎝⎛⎭⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.解:(1)由1|sin α|=-1sin α,所以sin α<0, 由lg(cos α)有意义,可知cos α>0, 所以α是第四象限角.(2)因为|OM |=1,所以⎝⎛⎭⎫352+m 2=1, 得m =±45.又α为第四象限角,故m <0, 从而m =-45,sin α=y r =m |OM |=-451=-45.。
第二章 2.2 2.2.3 用平面向量坐标表示向量共线条件课时跟踪检测[A 组 基础过关]1.若三点A (1,1),B (2,-4),C (x ,-9)共线,则( ) A .x =-1 B.x =3 C .x =92D.x =5解析:AB →=(1,-5),AC →=(x -1,-10), ∵AB →与AC →共线, ∴-10=-5(x -1), ∴x =3,故选B. 答案:B2.下列各组向量中,共线的是( ) A .a =(-2,3),b =(4,6) B .a =(2,3),b =(3,2) C .a =(1,-2),b =(7,14) D .a =(-3,2),b =(6,-4)解析:∵(-3)×(-4)-2×6=0,∴D 中a ,b 共线. 答案:D3.已知向量a =(2,3),b =(-1,2),若ma +nb 与a -2b 共线,则mn 等于( ) A.12 B.2 C .-12D.-2解析:ma +nb =(2m,3m )+(-n,2n )=(2m -n,3m +2n ),a -2b =(2,3)-(-2,4)=(4,-1),-2m +n =12m +8n . ∴14m =-7n .∴m n =-714=-12. 答案:C4.已知向量a =(1,3),b =(2,1),若a +2b 与3a +λb 平行,则λ的值等于( ) A .-6 B.6 C .2D.-2解析:a +2b =(5,5),3a +λb =(3+2λ,9+λ), ∵(a +2b )∥(3a +λb ), ∴5(9+λ)=5(3+2λ), ∴λ=6,故选B. 答案:B5.若向量a =(1,1),b =(-1,1),c =(4,2)满足(ka +b )∥c ,则k =( ) A .3 B.-3 C.13D.-13解析:ka +b =(k -1,k +1),∴2(k -1)-4(k +1)=0, ∴k =-3,故选B. 答案:B6.已知向量a =(k,1),b =(6,-2),若a 与b 平行,则实数k =________. 解析:由题得:-2k -6=0,∴k =-3. 答案:-37.已知M (3,-2),N (-5,-1),MP →=12MN →,则P 点坐标为________. 解析:∵MN →=ON →-OM →=(-5,-1)-(3,-2)=(-8,1). ∴12MN →=⎝ ⎛⎭⎪⎫-4,12=MP →.设P (x ,y ),即OP →=(x ,y ).∴MP →=OP →-OM →=(x ,y )-(3,-2)= (x -3,y +2)=⎝ ⎛⎭⎪⎫-4,12.从而⎩⎪⎨⎪⎧x -3=-4,y +2=12,解得⎩⎪⎨⎪⎧x =-1,y =-32,∴P ⎝ ⎛⎭⎪⎫-1,-32.答案:⎝ ⎛⎭⎪⎫-1,-328.已知A (1,1),B (3,-1),C (a ,b ). (1)若A ,B ,C 三点共线,求a ,b 的关系式; (2)若AC →=2AB →,求点C 的坐标.解:(1)若A ,B ,C 三点共线,则AB →与AC →共线. ∵AB →=(3,-1)-(1,1)=(2,-2), AC →=(a ,b )-(1,1)=(a -1,b -1), ∴2(b -1)-(-2)(a -1)=0,∴a +b =2. (2)若AC →=2AB →,则(a -1,b -1)=(4,-4), ∴⎩⎨⎧ a -1=4,b -1=-4,∴⎩⎨⎧a =5,b =-3. ∴点C 的坐标为(5,-3).[B 组 技能提升]1.下列各项中,错误的是( )A .若i ,j 分别是与平面直角坐标系中x 轴,y 轴正方向同向的单位向量,则|i +j |=|i -j |B .若a ∥b ,a =(x 1,y 1),b =(x 2,y 2),则有x 1y 1=x 2y 2C .零向量的坐标表示为(0,0)D .一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点坐标 解析:当y 1或y 2为零时,x 1y 1=x 2y 2没意义,故B 错.答案:B2.已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,sin B =1,向量p =(a ,b ),q =(1,2).若p ∥q ,则C 的大小为( )A.π6B.π3C.π2D.2π3解析:由sin B =1,得B =π2,所以在△ABC 中,cos C =ab .又由p =(a ,b ),q =(1,2),p ∥q ,得2a -b =0,a =b 2,故cos C =12,所以C =π3.答案:B3.设向量a =(1,2),b =(2,3),若向量λa +b 与向量c =(-4,-7)共线,则λ=________.解析:∵a =(1,2),b =(2,3),∴λa +b =(λ,2λ)+(2,3)=(λ+2,2λ+3). ∵λa +b 与c =(-4,-7)共线, ∴-7(λ+2)+4(2λ+3)=0,∴λ=2. 答案:24.已知向量AB →=(6,1),BC →=(x ,y ),CD →=(-2,-3),当BC →∥DA →时,则实数x ,y 应满足的关系为________.解析:由题意,得DA →=-AD →=-(AB →+BC →+CD →)=-[(6,1)+(x ,y )+(-2,-3)]=(-x -4,-y +2),BC →=(x ,y ). 又∵BC →∥DA →,∴x (-y +2)-y (-x -4)=0,解得x +2y =0, 即x ,y 应满足的关系为x +2y =0. 答案:x +2y =05.已知向量a =(3,2),b =(-1,2),c =(4,1). (1)求3a +b -2c ;(2)求满足a =mb +nc 的实数m ,n ; (3)若(a +kc )∥(2b -a ),求实数k .解:(1)3a +b -2c =3(3,2)+(-1,2)-2(4,1)=(0,6).(2)由a =mb +nc ,得(3,2)=m (-1,2)+n (4,1), ∴⎩⎨⎧-m +4n =3,2m +n =2,∴⎩⎪⎨⎪⎧m =59,n =89.(3)由(a +kc )∥(2b -a ),a +kc =(4k +3,k +2),2b -a =(-5,2), ∴2(4k +3)=-5(k +2),得k =-1613.6.在平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OC →=λOA →+μOB →,其中λ+μ=1,求点C 的轨迹方程.解:设点C 的坐标为(x ,y ). ∵OC →=λOA →+μOB →, ∴(x ,y )=λ(3,1)+μ(-1,3), ∴⎩⎨⎧x =3λ-μ,y =λ+3μ,∴⎩⎪⎨⎪⎧λ=3x +y 10,μ=3y -x10.∵λ+μ=1,∴3x +y 10+3y -x10=1,整理得x +2y -5=0, ∴点C 的轨迹方程为x +2y -5=0.由Ruize收集整理。
阶段质量检测(三)(时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ,b ∈R +且a +b =16,则1a +1b的最小值是( )A.14 B.18 C.116D.12解析:选A (a +b )⎝ ⎛⎭⎪⎫1a +1b ≥⎝ ⎛⎭⎪⎫a ·1a +b ·1b 2=4,∴1a +1b ≥14.当且仅当a ·1b=b ×1a,即a =b =8时取等号.2.已知x +3y +5z =6,则x 2+y 2+z 2的最小值为( ) A.65 B.635C.3635D .6解析:选 C 由柯西不等式,得x 2+y 2+z 2=(12+32+52)(x 2+y 2+z 2)×112+32+52≥ (x +3y +5z )2×135=62×135=3635,当且仅当x =y 3=z 5时等号成立.3.已知a ,b ,c 为正数且a +b +c =32,则a 2+b 2+b 2+c 2+c 2+a 2的最小值为( )A .4B .4 2C .6D .6 2解析:选C ∵a ,b ,c 为正数. ∴ 2 a 2+b 2=1+1 a 2+b 2≥a +b . 同理 2 b 2+c 2≥b +c , 2 c 2+a 2≥c +a ,相加得 2 (a 2+b 2+b 2+c 2+c 2+a 2)≥2(b +c +a )=62, 即a 2+b 2+b 2+c 2+c 2+a 2≥6,当且仅当a =b =c =2时取等号. 4.设a ,b ,c 均大于0,a 2+b 2+c 2=3,则ab +bc +ca 的最大值为( ) A .0B .1C .3 D.333解析:选C 设a ≥b ≥c >0,由排序不等式得a 2+b 2+c 2≥ab +bc +ac , 所以ab +bc +ca ≤3,故选C. 5.已知a ,b ,c 为正数,则(a +b +c )⎝ ⎛⎭⎪⎫1a +b +1c 的最小值为( )A .1 B. 3 C .3D .4解析:选D (a +b +c )⎝⎛⎭⎪⎫1a +b +1c=[(a +b )2+(c )2]⎣⎢⎡⎦⎥⎤1a +b 2+⎝ ⎛⎭⎪⎫1c 2 ≥⎝⎛⎭⎪⎫a +b ·1a +b +c ·1c 2=22=4.当且仅当a +b =c 时取等号.6.已知(x -1)2+(y -2)2=4,则3x +4y 的最大值为( ) A .21 B .11 C .18D .28解析:选A 根据柯西不等式得[(x -1)2+(y -2)2][32+42]≥[3(x -1)+4(y -2)]2=(3x +4y -11)2, ∴(3x +4y -11)2≤100. 可得3x +4y ≤21,当且仅当x -13=y -24=25时取等号.7.设a ,b ,c 为正数,a +b +4c =1,则a +b +2c 的最大值是( ) A. 5 B. 3 C .2 3 D.32解析:选B ∵1=a +b +4c =(a )2+(b )2+(2c )2=13[(a )2+(b )2+(2c )2]·(12+12+12) ≥(a +b +2c )2·13,∴(a +b +2c )2≤3,当且仅当a =b =4c 时等式成立, 故a +b +2c 的最大值为 3.8.函数f (x )=1-cos 2x +cos x ,则f (x )的最大值是( ) A. 3 B. 2 C .1 D .2解析:选A 因为f (x )=1-cos 2x +cos x , 所以f (x )= 2 sin 2x +cos x ≤+2x +cos 2x=3,当且仅当cos x =33时取等号. 9.若5x 1+6x 2-7x 3+4x 4=1,则3x 21+2x 22+5x 23+x 24的最小值是( ) A.78215B.15782 C .3 D.253解析:选B ∵⎝⎛⎭⎪⎫253+18+495+16[3x 21+2x 22+5(-x 3)2+x 24]≥(5x 1+6x 2-7x 3+4x 4)2=1,即3x 21+2x 22+5x 23+x 24≥15782.10.已知a ,b ,c ∈R +,则a 2(a 2-bc )+b 2(b 2-ac )+c 2(c 2-ab )的正负情况是( ) A .大于零 B .大于等于零 C .小于零D .小于等于零解析:选B 设a ≥b ≥c >0,所以a 3≥b 3≥c 3, 根据排序不等式,得a 3·a +b 3·b +c 3·c ≥a 3b +b 3c +c 3a . 又ab ≥ac ≥bc ,a 2≥b 2≥c 2,所以a 3b +b 3c +c 3a ≥a 2bc +b 2ca +c 2ab . 所以a 4+b 4+c 4≥a 2bc +b 2ca +c 2ab , 即a 2(a 2-bc )+b 2(b 2-ac )+c 2(c 2-ab )≥0.二、填空题(本大题共4小题,每小题5分,共20分.把正确答案填写在题中横线上) 11.设a ,b ,c 是正实数,且a +b +c =9,则2a +2b +2c的最小值为________.解析:∵(a +b +c )⎝ ⎛⎭⎪⎫2a +2b +2c =[(a )2+(b )2+(c )2]⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2a 2+⎝⎛⎭⎪⎫2b 2+⎝ ⎛⎭⎪⎫2c 2≥⎝⎛⎭⎪⎫a ·2a+b ·2b+c ·2c 2=18,∴2a +2b +2c ≥2,当且仅当a =b =c =3时等号成立.∴2a +2b +2c的最小值为2. 答案:212.已知A ,B ,C 是三角形三个内角的弧度数,则1A +1B +1C的最小值是________.解析:(A +B +C )⎝ ⎛⎭⎪⎫1A +1B +1C ≥(1+1+1)2=9,而A +B +C =π,故1A +1B +1C ≥9π,当且仅当A =B =C =π3时,等号成立. 答案:9π13.设有两组实数:a 1,a 2,a 3,…,a n 与b 1,b 2,b 3,…,b n ,且它们满足:a 1≤a 2≤a 3≤…≤a n ,b 1≤b 2≤b 3≤…≤b n ,若c 1,c 2,c 3,…,c n 是b 1,b 2,b 3,…,b n 的任意一个排列,则a 1b 1+a 2b 2+…+a n b n ≥a 1c 1+a 2c 2+…+a n c n ≥a 1b n +a 2b n -1+…+a n b 1,反序和与顺序和相等的条件是________.解析:反序和与顺序和相等,则两组数至少有一组相等. 答案:a 1=a 2=…=a n 或b 1=b 2=…=b n14.设a ,b ,c 为正数,且a +2b +3c =13,求3a +2b +c 的最大值为________. 解析:∵(a +2b +3c )⎣⎢⎡⎦⎥⎤32+12+⎝⎛⎭⎪⎫132≥⎝⎛⎭⎪⎫a ·3+2b ·1+3c ·132=(3a+2b +c )2,∴(3a +2b +c )2≤1323.∴3a +2b +c ≤1333.当且仅当a3=2b 1=3c 13时取等号. 又a +2b +3c =13, ∴a =9,b =32,c =13时,3a +2b +c 有最大值1333.答案:1333三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)已知实数a ,b ,c ,d 满足a +b +c +d =3,a 2+2b 2+3c 2+6d 2=5,求实数a 的取值范围.解:由柯西不等式,得:(2b 2+3c 2+6d 2)⎝ ⎛⎭⎪⎫12+13+16≥(b +c +d )2,即2b 2+3c 2+6b 2≥(b +c +d )2.由条件可得5-a 2≥(3-a )2,解得1≤a ≤2. 所以实数a 的取值范围为[1,2].16.(本小题满分12分)求函数y =1-sin x +4sin x -1的最大值. 解:由1-sin x ≥0,4sin x -1≥0, 得14≤sin x ≤1, 则y 2=⎝ ⎛⎭⎪⎫1-sin x +2sin x -142≤(1+4)⎝ ⎛⎭⎪⎫1-sin x +sin x -14 =154,即y ≤152, 当且仅当4(1-sin x )=sin x -14,即sin x =1720时等号成立,所以函数y =1-sin x +4sin x -1的最大值为152. 17.(本小题满分12分)设a 1,a 2,…,a n 是1,2,…,n 的一个排列,求证:12+23+…+n -1n ≤a 1a 2+a 2a 3+…+a n -1a n. 证明:设b 1,b 2,…,b n -1是a 1,a 2,…,a n -1的一个排列,且b 1<b 2<…<b n -1;c 1,c 2,…,c n -1是a 2,a 3,…,a n 的一个排列,且c 1<c 2<…<c n -1, 则1c 1>1c 2>…>1c n -1且b 1≥1,b 2≥2,…,b n -1≥n -1,c 1≤2,c 2≤3,…,c n -1≤n .利用排序不等式,有a 1a 2+a 2a 3+…+a n -1a n ≥b 1c 1+b 2c 2+…+b n -1c n -1≥12+23+…+n -1n.∴原不等式成立.18.(本小题满分14分)已知函数f(x)=|x-2|-3.(1)若f(x)<0,求x的取值范围;(2)在(1)的条件下,求g(x)=3x+4+4|x-6|的最大值.解:(1)因为f(x)<0⇔|x-2|<3⇔-3<x-2<3⇔-1<x<5,所以x的取值范围是(-1,5).(2)由(1)知g(x)=3x+4+46-x.由柯西不等式得(32+42)[(x+4)2+(6-x)2]≥(3x+4+46-x)2,所以g(x)≤250=510,当且仅当x+43=6-x4,即x=-25时,g(x)取得最大值510.。
姓名,年级:时间:必修4综合测评(时间:120分钟 满分:150分) 第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若点错误!在角α的终边上,则sin α的值为( ) A .-错误! B.-错误! C 。
12D.错误!解析:∵sin 2错误!+cos 2错误!=1,∴sin α=错误!=cos 错误!=-错误!,故选A. 答案:A2.函数y =tan 错误!-x -错误!≤x ≤错误!,且x ≠0的值域是( ) A .[-1,1] B.(-∞,-1]∪[1,+∞) C .(-∞,1)D.[-1,+∞)解析:∵-π4≤x ≤错误!,且x ≠0,∴错误!≤错误!-x ≤错误!,且错误!-x ≠错误!,当错误!≤错误!-x <错误!时,y ≥1,当错误!〈错误!-x ≤错误!时,y ≤-1,∴函数y =tan 错误!的值域为(-∞,-1]∪[1,+∞),故选B 。
答案:B3.设a =sin17°cos45°+cos17°sin45°,b =2cos 213°-1,c =错误!,则有( )A .c 〈a <bB 。
b <c 〈aC .a 〈b 〈cD 。
b 〈a <c解析:a =sin(17°+45°)=sin62°,b =2cos 213°-1=cos26°=sin64°,c =错误!=sin60°,又sin60°<sin62°<sin64°,∴c<a<b,故选A.答案:A4.已知向量a,b满足|a|=1,|b|=2,且a在b方向上的投影与b在a方向上的投影相等,则|a-b|等于( )A.错误!B。
3C。
错误! D.5解析:设a与b的夹角为θ,则|a|cosθ=|b|cosθ,∵|a|≠|b|,∴cosθ=0,∴|a-b|2=a2-2a·b+b2=1+2=3,∴|a-b|=错误!,故选A。
阶段质量检测(三)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π4-cos ⎝⎛⎭⎪⎫x -π4是( )A .周期为π的偶函数B .周期为2π的偶函数C .周期为π的奇函数D .周期为2π的奇函数解析:选D 因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π4-cos ⎝ ⎛⎭⎪⎫x -π4=⎝ ⎛⎭⎪⎫22cos x -22sin x -⎝ ⎛⎭⎪⎫22cos x +22sin x =-2sin x ,所以函数f (x )的最小正周期为2π1=2π.又f (-x )=-2sin(-x )=2sin x =-f (x ),所以函数f (x )为奇函数,故选D.2.sin 45°·cos 15°+cos 225°·sin 15°的值为( ) A .-32 B .-12C.12D.32解析:选C sin 45°cos 15°+cos 225°sin 15° =sin 45°cos 15°-cos 45°sin 15°=sin(45°-15°) =sin 30°=12.3.已知α是第二象限角,且cos α=-35,则cos ⎝ ⎛⎭⎪⎫π4-α的值是( )A.210 B .-210 C.7210 D .-7210解析:选A 由题意,sin α=45,cos ⎝ ⎛⎭⎪⎫π4-α=cos π4cos α+sin π4sin α=210. 4.若sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝⎛⎭⎪⎫2π3+2α等于( )A .-79B .-13C.13D.79解析:选A cos 2π3+2α=cos π-2π6-α=-cos2π6-α=2sin 2⎝ ⎛⎭⎪⎫π6-α-1=-79.5.已知tan(α+β)=14,tan α=322,那么tan(2α+β)等于( )A.25B.14 C.1318 D.1322解析:选A tan(2α+β)=α+β+tan α1-α+βα=25.6.已知3sin x +cos x =2a -3,则a 的取值范围是( ) A.⎣⎢⎡⎦⎥⎤12,52 B.⎝⎛⎦⎥⎤-∞,12C.⎝ ⎛⎭⎪⎫52,+∞D.⎣⎢⎡⎦⎥⎤-52,12解析:选A 由3sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π6=2a -3,得sin ⎝ ⎛⎭⎪⎫x +π6=a -32,∴⎪⎪⎪⎪⎪⎪a -32≤1,即12≤a ≤52.7.在△ABC 中,已知tanA +B2=sin C ,则△ABC 的形状为( )A .正三角形B .等腰三角形C .直角三角形D .等腰直角三角形 解析:选C 在△ABC 中,tanA +B2=sin C =sin(A +B )=2sinA +B2cosA +B2,∴2cos2A +B2=1,∴cos(A +B )=0,从而A +B =π2,即△ABC 为直角三角形.8.若θ∈⎝ ⎛⎭⎪⎫0,π2,sin θ-cos θ=22,则cos 2θ等于( )A.32 B .-32 C .±32 D .±12解析:选B 由sin θ-cos θ=22两边平方得,sin 2θ=12,又θ∈⎝⎛⎭⎪⎫0,π2,且sin θ>cos θ,所以π4<θ<π2,所以π2<2θ<π,因此,cos 2θ=-32,故选B.9.已知函数f (x )=sin ⎝⎛⎭⎪⎫2x -π6,若存在α∈(0,π),使得f (x +α)=f (x -α)恒成立,则α的值是( )A.π6B.π3C.π4 D.π2解析:选D ∵f (x +α)=f (x -α),∴函数f (x )的周期为T =2α,而函数f (x )=sin ⎝⎛⎭⎪⎫2x -π6的周期为T =2π2=π,∴2α=π,∴α=π2. 10.已知tan θ和tan ⎝ ⎛⎭⎪⎫π4-θ是方程x 2+ax +b =0的两个实数根,那么a ,b 间的关系是( )A .a +b +1=0B .a +b -1=0C .a -b +1=0D .a -b -1=0解析:选C 由条件得tan θ+tan ⎝ ⎛⎭⎪⎫π4-θ=-a ,tan θtan π4-θ=b ,∴tan π4=1=tan θ+π4-θ=tan θ+tan ⎝ ⎛⎭⎪⎫π4-θ1-tan θtan ⎝ ⎛⎭⎪⎫π4-θ=-a1-b ,∴-a =1-b ,即a -b +1=0.11.设a =22(sin 17°+cos 17°),b =2cos 213°-1,c =sin 37°·sin 67°+sin 53°sin 23°,则( )A .c <a <bB .b <c <aC .a <b <cD .b <a <c解析:选A a =cos 45°sin 17°+sin 45°cos 17°=sin 62°,b =cos 26°=sin 64°,c =sin 37°cos 23°+cos 37°sin 23°=sin 60°,故c <a <b .12.在△ABC 中,A ,B ,C 是其三个内角,设f (B )=4sin B ·cos 2⎝ ⎛⎭⎪⎫π4-B 2+cos 2B ,当f (B )-m <2恒成立时,实数m 的取值范围是( )A .m <1B .m >-3C .m <3D .m >1解析:选D f (B )=4sin B cos 2⎝ ⎛⎭⎪⎫π4-B 2+cos 2B=4sin B ·1+cos ⎝ ⎛⎭⎪⎫π2-B 2+cos 2B=2sin B (1+sin B )+(1-2sin 2B )=2sin B +1. ∵f (B )-m <2恒成立,∴2sin B +1-m <2恒成立,即m >2sin B -1恒成立. ∵0<B <π,∴0<sin B ≤1. ∴-1<2sin B -1≤1,故m >1.二、填空题(本大题共4小题,每小题5分,共20分)13.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55,则tan 2α=________. 解析:因为sin α=55,α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α=-1-sin 2α=-255.所以tan α=sin αcos α=-12,所以tan 2α=2tan α1-tan 2α=-11-14=-43. 答案:-4314.已知等腰△ABC 的腰为底的2倍,则顶角A 的正切值是________.解析:由题意,sin A 2=14,∴cos A 2=154,∴tan A 2=1515.∴tan A =2tanA21-tan2A 2=157.答案:15715.化简sin(x +60°)+2sin(x -60°)-3cos(120°-x )的结果是________. 解析:原式=12sin x +32cos x +sin x -3cos x +32cos x -32sin x =0.答案:016.已知函数f (x )=3sin 2x +2cos 2x +m 在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为3,则m =________.解析:f (x )=3sin 2x +2cos 2x +m =3sin 2x +1+cos 2x +m =2sin ⎝ ⎛⎭⎪⎫2x +π6+m +1.因为0≤x ≤π2,所以π6≤2x +π6≤7π6,所以-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1,所以f (x )max =2+m +1=3+m =3,所以m =0.答案:0三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分 )已知cos θ=1213,θ∈(π,2π),求sin ⎝ ⎛⎭⎪⎫θ-π6以及tan ⎝ ⎛⎭⎪⎫θ+π4的值. 解:因为cos θ=1213,θ∈(π,2π),所以sin θ=-513,tan θ=-512,所以sin ⎝ ⎛⎭⎪⎫θ-π6=sin θcos π6-cos θsin π6 =-513×32-1213×12=-53+1226,tan ⎝ ⎛⎭⎪⎫θ+π4=tan θ+tan π41-tan θtan π4=-512+11-⎝ ⎛⎭⎪⎫-512×1=717.18.(12分)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4+cos ⎝⎛⎭⎪⎫x -3π4,x ∈R .(1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.解:(1)∵f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4-2π+sin ⎝ ⎛⎭⎪⎫x -3π4+π2 =sin ⎝ ⎛⎭⎪⎫x -π4+sin ⎝ ⎛⎭⎪⎫x -π4=2sin ⎝⎛⎭⎪⎫x -π4,∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45.两式相加得2cos βcos α=0. ∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin2π4-2=0.19.(12分)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎢⎡⎦⎥⎤0,π2.(1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值. 解:(1)由|a|2=(3sin x )2+(sin x )2=4sin 2x , |b |2=(cos x )2+(sin x )2=1, 及|a |=|b |,得4sin 2x =1.又x ∈⎣⎢⎡⎦⎥⎤0,π2,从而sin x =12,所以x =π6.(2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎪⎫2x -π6+12,当x =π3∈⎣⎢⎡⎦⎥⎤0,π2时,sin ⎝ ⎛⎭⎪⎫2x -π6取最大值1,此时f (x )取得最大值,最大值为32.20.(12分)已知向量a =(3,cos 2ωx ),b =(sin 2ωx,1)(ω>0),令f (x )=a·b ,且函数f (x )的最小正周期为π.(1)求函数f (x )的解析式;(2)若x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )+m ≤3,求实数m 的取值范围. 解:(1)f (x )=a·b =3sin 2ωx +cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx +π6.∵函数f (x )的最小正周期为π,∴ω=1,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6. (2)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,∴f (x )∈[-1,2]. 由f (x )+m ≤3,得f (x )max +m ≤3, ∴2+m ≤3,∴m ≤1.21.(12分)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫x ∈R ,A >0,ω>0,|φ|<π2的部分图象如图所示.(1)试确定函数f (x )的解析式; (2)若f ⎝ ⎛⎭⎪⎫α2π=13,求cos 2π3-α的值.解:(1)由图象知,A =2,设函数f (x )的最小正周期为T ,则T 4=56-13=12,∴T =2,∴ω=2πT =2π2=π,故函数f (x )=2sin(πx +φ).∵f ⎝ ⎛⎭⎪⎫13=2sin ⎝ ⎛⎭⎪⎫π3+φ=2,∴sin ⎝ ⎛⎭⎪⎫π3+φ=1. 又∵|φ|<π2,即-π2<φ<π2,∴-π6<π3+φ<5π6,故π3+φ=π2,解得φ=π6,∴f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π6.(2)∵f ⎝⎛⎭⎪⎫α2π=13,∴2sin ⎝ ⎛⎭⎪⎫π·α2π+π6=2sin ⎝ ⎛⎭⎪⎫α2+π6=13,∴sin ⎝ ⎛⎭⎪⎫α2+π6=16,∴cos ⎝ ⎛⎭⎪⎫π3-α2=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6+α2=sin ⎝ ⎛⎭⎪⎫π6+α2=16,∴cos ⎝⎛⎭⎪⎫2π3-α=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3-α2=2cos 2π3-α2-1=2×⎝ ⎛⎭⎪⎫162-1=-1718.22.(12分)已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R ).(1)求函数f (x )的最小正周期及在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值;(2)若f (x 0)=65,x 0∈⎣⎢⎡⎦⎥⎤π4,π2,求cos 2x 0的值.解:(1)由f (x )=23sin x cos x +2cos 2x -1,得f (x )=3(2sin x cos x )+(2cos 2x -1)=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6.∴函数f (x )的最小正周期为π.∵f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6在区间⎣⎢⎡⎦⎥⎤0,π6上为增函数,在区间⎝ ⎛⎦⎥⎤π6,π2上为减函数,又f (0)=1,f ⎝ ⎛⎭⎪⎫π6=2,f ⎝ ⎛⎭⎪⎫π2=-1, ∴函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为2,最小值为-1.(2)由(1)可知f (x 0)=2sin ⎝ ⎛⎭⎪⎫2x 0+π6.又∵f (x 0)=65,∴sin ⎝ ⎛⎭⎪⎫2x 0+π6=35. 由x 0∈⎣⎢⎡⎦⎥⎤π4,π2,得2x 0+π6∈⎣⎢⎡⎦⎥⎤2π3,7π6.从而cos ⎝⎛⎭⎪⎫2x 0+π6=-1-sin 2⎝⎛⎭⎪⎫2x 0+π6=-45.∴cos 2x 0=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x 0+π6-π6=cos ⎝ ⎛⎭⎪⎫2x 0+π6cos π6+sin ⎝ ⎛⎭⎪⎫2x 0+π6sin π6=3-4310.。
最新人教版高中数学必修四课时跟踪测试(全册共24课时附解析共122页)课时跟踪检测(一)任意角层级一学业水平达标1.-215°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:选B由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.2.下面各组角中,终边相同的是()A.390°,690°B.-330°,750°C.480°,-420°D.3 000°,-840°解析:选B∵-330°=-360°+30°,750°=720°+30°,∴-330°与750°终边相同.3.若α=k·180°+45°,k∈Z,则α所在的象限是()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限解析:选A由题意知α=k·180°+45°,k∈Z,当k=2n+1,n∈Z,α=2n·180°+180°+45°=n·360°+225°,在第三象限,当k=2n,n∈Z,α=2n·180°+45°=n·360°+45°,在第一象限.∴α是第一或第三象限的角.4.终边在第二象限的角的集合可以表示为()A.{α|90°<α<180°}B.{α|90°+k·180°<α<180°+k·180°,k∈Z}C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z}解析:选D终边在第二象限的角的集合可表示为{α|90°+k·360°<α<180°+k·360°,k∈Z},而选项D是从顺时针方向来看的,故选项D正确.5.将-885°化为α+k·360°(0°≤α<360°,k∈Z)的形式是()A.-165°+(-2)×360°B.195°+(-3)×360°C.195°+(-2)×360°D.165°+(-3)×360°解析:选B-885°=195°+(-3)×360°,0°≤195°<360°,故选B.6.在下列说法中:①时钟经过两个小时,时针转过的角是60°;②钝角一定大于锐角;③射线OA绕端点O按逆时针旋转一周所成的角是0°;④-2 000°是第二象限角.其中错误说法的序号为______(错误说法的序号都写上).解析:①时钟经过两个小时,时针按顺时针方向旋转60°,因而转过的角为-60°,所以①不正确.②钝角α的取值范围为90°<α<180°,锐角θ的取值范围为0°<θ<90°,因此钝角一定大于锐角,所以②正确.③射线OA按逆时针旋转一周所成的角是360°,所以③不正确.④-2 000°=-6×360°+160°与160°终边相同,是第二象限角,所以④正确.答案:①③7.α满足180°<α<360°,5α与α有相同的始边,且又有相同的终边,那么α=________.解析:5α=α+k·360°,k∈Z,∴α=k·90°,k∈Z.又∵180°<α<360°,∴α=270°.答案:270°8.若角α=2 016°,则与角α具有相同终边的最小正角为________,最大负角为________.解析:∵2 016°=5×360°+216°,∴与角α终边相同的角的集合为{α|α=216°+k·360°,k∈Z},∴最小正角是216°,最大负角是-144°.答案:216°-144°9.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角:(1)549°;(2)-60°;(3)-503°36′.解:(1)549°=189°+360°,而180°<189°<270°,因此,549°角为第三象限角,且在0°~360°范围内,与189°角有相同的终边.(2)-60°=300°-360°,而270°<300°<360°,因此,-60°角为第四象限角,且在0°~360°范围内,与300°角有相同的终边.(3)-503°36′=216°24′-2×360°,而180°<216°24′<270°,因此,-503°36′角是第三象限角,且在0°~360°范围内,与216°24′角有相同的终边.10.已知角的集合M={α|α=30°+k·90°,k∈Z},回答下列问题:(1)集合M中大于-360°且小于360°的角是哪几个?(2)写出集合M 中的第二象限角β的一般表达式.解:(1)令-360°<30°+k ·90°<360°,则-133<k <113,又∵k ∈Z ,∴k =-4,-3,-2,-1,0,1,2,3,∴集合M 中大于-360°且小于360°的角共有8个,分别是-330°,-240°,-150°,-60°,30°,120°,210°,300°.(2)集合M 中的第二象限角与120°角的终边相同, ∴β=120°+k ·360°,k ∈Z.层级二 应试能力达标1.给出下列四个结论:①-15°是第四象限角;②185°是第三象限角;③475°是第二象限角;④-350°是第一象限角.其中正确的个数为( )A .1B .2C .3D .4解析:选D ①-15°是第四象限角; ②180°<185°<270°是第三象限角;③475°=360°+115°,而90°<115°<180°,所以475°是第二象限角; ④-350°=-360°+10°是第一象限角, 所以四个结论都是正确的.2.若角2α与240°角的终边相同,则α=( ) A .120°+k ·360°,k ∈Z B .120°+k ·180°,k ∈Z C .240°+k ·360°,k ∈Z D .240°+k ·180°,k ∈Z解析:选B 角2α与240°角的终边相同,则2α=240°+k ·360°,k ∈Z ,则α=120°+k ·180°,k ∈Z.选B.3.若α与β终边相同,则α-β的终边落在( ) A .x 轴的非负半轴上 B .x 轴的非正半轴上 C .y 轴的非负半轴上 D .y 轴的非正半轴上解析:选A ∵α=β+k ·360°,k ∈Z , ∴α-β=k ·360°,k ∈Z , ∴其终边在x 轴的非负半轴上.4.设集合M ={α|α=45°+k ·90°,k ∈Z},N ={α|α=90°+k ·45°,k ∈Z},则集合M 与N 的关系是( )A.M∩N=∅B.M NC.N M D.M=N解析:选C对于集合M,α=45°+k·90°=45°+2k·45°=(2k+1)·45°,即M={α|α=(2k+1)·45°,k∈Z};对于集合N,α=90°+k·45°=2×45°+k·45°=(k+2)·45°,即N={α|α=(k+2)·45°,k∈Z}={α|α=n·45°,n∈Z}.∵2k+1表示所有的奇数,而n表示所有的整数,∴N M,故选C.5.从13:00到14:00,时针转过的角为________,分针转过的角为________.解析:经过一小时,时针顺时针旋转30°,分针顺时针旋转360°,结合负角的定义可知时针转过的角为-30°,分针转过的角为-360°.答案:-30°-360°6.已知角2α的终边在x轴的上方,那么α是第______象限角.解析:由题意知k·360°<2α<180°+k·360°(k∈Z),故k·180°<α<90°+k·180°(k∈Z),按照k的奇偶性进行讨论.当k=2n(n∈Z)时,n·360°<α<90°+n·360°(n∈Z),∴α在第一象限;当k=2n+1(n∈Z)时,180°+n·360°<α<270°+n·360°(n∈Z),∴α在第三象限.故α是第一或第三象限角.答案:一或三7.试写出终边在直线y=-3x上的角的集合S,并把S中适合不等式-180°≤α<180°的元素α写出来.解:终边在直线y=-3x上的角的集合S={α|α=k·360°+120°,k∈Z}∪{α|α=k·360°+300°,k∈Z}={α|α=k·180°+120°,k∈Z},其中适合不等式-180°≤α<180°的元素α为-60°,120°.8.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OB上;(2)终边落在直线OA上;(3)终边落在阴影区域内(含边界).解:(1)终边落在射线OB上的角的集合为S1={α|α=60°+k·360°,k∈Z}.(2)终边落在直线OA上的角的集合为S2={α|α=30°+k·180°,k∈Z}.(3)终边落在阴影区域内(含边界)的角的集合为S3={α|30°+k·180°≤α≤60°+k·180°,k∈Z}.课时跟踪检测(二) 弧 度 制层级一 学业水平达标1.把50°化为弧度为( ) A .50 B .5π18 C .185πD .9 000π解析:选B 50°=50×π180=5π18. 2.扇形的周长是16,圆心角是2弧度,则扇形的面积是( ) A .16π B .32π C .16D .32解析:选C 弧长l =2r,4r =16,r =4,得l =8, 即S =12lr =16.3.角α的终边落在区间⎝⎛⎭⎫-3π,-5π2内,则角α所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选C -3π的终边在x 轴的非正半轴上,-5π2的终边在y 轴的非正半轴上,故角α为第三象限角.4.时钟的分针在1点到3点20分这段时间里转过的弧度为( ) A .143πB .-143π C .718πD .-718π解析:选B 显然分针在1点到3点20分这段时间里,顺时针转过了73周,转过的弧度为-73×2π=-143π.5.下列表示中不正确的是( )A .终边在x 轴上的角的集合是{α|α=k π,k ∈Z}B .终边在y 轴上的角的集合是⎩⎨⎧⎭⎬⎫αα=π2+k π,k ∈ZC .终边在坐标轴上的角的集合是⎩⎨⎧⎭⎬⎫αα=k ·π2,k ∈Z D .终边在直线y =x 上的角的集合是⎩⎨⎧⎭⎬⎫αα=π4+2k π,k ∈Z解析:选D 终边在直线y =x 上的角的集合应是⎩⎨⎧⎭⎬⎫αα=π4+k π,k ∈Z .6.-135°化为弧度为________,11π3化为角度为________. 解析:-135°=-135×π180=-34π, 113π=113×180°=660°. 答案:-34π 660°7.扇形的半径是6,圆心角是60°,则该扇形的面积为________. 解析:60°=π3,扇形的面积公式为S 扇形=12αr 2=12×π3×(6)2=π.答案:π8.设集合M =⎩⎨⎧⎭⎬⎫αα=k π2-π3,k ∈Z ,N ={α|-π<α<π},则M ∩N =________.解析:由-π<k π2-π3<π,得-43<k <83.∵k ∈Z ,∴k =-1,0,1,2, ∴M ∩N =⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π.答案:⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π9.一个扇形的面积为1,周长为4,求圆心角的弧度数. 解:设扇形的半径为R ,弧长为l ,则2R +l =4. 根据扇形面积公式S =12lR ,得1=12l ·R .联立⎩⎪⎨⎪⎧2R +l =4,12l ·R =1,解得R =1,l =2,∴α=l R =21=2.10.将下列各角化成弧度制下的角,并指出是第几象限角. (1)-1 725°;(2)-60°+360°·k (k ∈Z). 解:(1)-1 725°=75°-5×360°=-5×2π+5π12=-10π+5π12,是第一象限角. (2)-60°+360°·k =-π180×60+2π·k =-π3+2k π(k ∈Z),是第四象限角.层级二 应试能力达标1.下列转化结果错误的是( ) A .60°化成弧度是π3B .-103π化成度是-600°C .-150°化成弧度是-76πD .π12化成度是15°解析:选C 对于A,60°=60×π180=π3;对于B ,-103π=-103×180°=-600°;对于C ,-150°=-150×π180=-56π;对于D ,π12=112×180°=15°.故C 错误. 2.集合⎩⎨⎧⎭⎬⎫αk π+π4≤α≤k π+π2,k ∈Z 中角的终边所在的范围(阴影部分)是( )解析:选C 当k =2m ,m ∈Z 时,2m π+π4≤α≤2m π+π2,m ∈Z ;当k =2m +1,m ∈Z 时,2m π+5π4≤α≤2m π+3π2,m ∈Z ,所以选C. 3.若角α与角x +π4有相同的终边,角β与角x -π4有相同的终边,那么α与β间的关系为( )A .α+β=0B .α-β=0C .α+β=2k π(k ∈Z)D .α-β=2k π+π2(k ∈Z)解析:选D ∵α=x +π4+2k 1π(k 1∈Z),β=x -π4+2k 2π(k 2∈Z),∴α-β=π2+2(k 1-k 2)·π(k 1∈Z ,k 2∈Z).∵k 1∈Z ,k 2∈Z ,∴k 1-k 2∈Z. ∴α-β=π2+2k π(k ∈Z).4.圆弧长度等于其所在圆内接正三角形的边长,则该圆弧所对圆心角的弧度数为( ) A .π3B .2π3C . 3D .2解析:选C 如图,设圆的半径为R ,则圆的内接正三角形的边长为3R ,所以圆弧长度为3R 的圆心角的弧度数α=3RR = 3.5.若角α的终边与85π角的终边相同,则在[0,2π]上,终边与α4角的终边相同的角是____________.解析:由题意,得α=8π5+2k π,∴α4=2π5+k π2(k ∈Z).令k =0,1,2,3,得α4=2π5,9π10,7π5,19π10. 答案:2π5,9π10,7π5,19π106.已知一扇形的圆心角为π3rad ,半径为R ,则该扇形的内切圆面积与扇形面积之比为________.解析:设扇形内切圆的半径为r , ∵扇形的圆心角为π3,半径为R ,∴S 扇形=12×π3R 2=π6R 2.∵扇形内切圆的圆心在圆心角的角平分线上, ∴R =r +2r =3r ,∴r =R3.∵S 内切圆=πr 2=π9R 2,∴S 内切圆∶S 扇形=π9R 2∶π6R 2=2∶3.答案:2∶37.已知α=1 690°,(1)把α写成2k π+β(k ∈Z ,β∈[0,2π))的形式; (2)求θ,使θ与α终边相同,且θ∈(-4π,4π). 解:(1)1 690°=4×360°+250°=4×2π+2518π. (2)∵θ与α终边相同,∴θ=2k π+2518π(k ∈Z). 又θ∈(-4π,4π),∴-4π<2k π+2518π<4π. 解得-9736<k <4736(k ∈Z),∴k =-2,-1,0,1.∴θ的值是-4718π,-1118π,2518π,6118π.8.已知扇形AOB 的圆心角为120°,半径长为6,求: (1)弧AB 的长;(2)扇形所含弓形的面积. 解:(1)因为120°=120180π=23π,所以l =α·r =23π×6=4π,所以弧AB 的长为4π.(2)因为S 扇形AOB =12lr =12×4π×6=12π,如图所示,过点O 作OD ⊥AB ,交AB 于D 点, 于是有S △OAB =12AB ·OD =12×2×6cos 30°×3=9 3.所以弓形的面积为S 扇形AOB -S △OAB =12π-9 3.课时跟踪检测(三) 三角函数的定义与公式一层级一 学业水平达标1.若α=2π3,则α的终边与单位圆的交点P 的坐标是( ) A .⎝⎛⎭⎫12,32 B .⎝⎛⎭⎫-12,32 C .⎝⎛⎭⎫-32,12 D .⎝⎛⎭⎫12,-32解析:选B 设P (x ,y ),∵角α=2π3在第二象限, ∴x =-12,y =1-⎝⎛⎭⎫-122=32, ∴P ⎝⎛⎭⎫-12,32.2.若角α的终边上一点的坐标为(1,-1),则cos α为( ) A .1 B .-1 C .22D .-22解析:选C ∵角α的终边上一点的坐标为(1,-1),它与原点的距离r =12+(-1)2=2,∴cos α=x r =12=22.3.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种情况都可能解析:选B ∵sin αcos β<0,α,β∈(0,π), ∴sin α>0,cos β<0,∴β为钝角. 4.代数式sin 120°cos 210°的值为( ) A .-34B .34C .-32D .14解析:选A 利用三角函数定义易得sin 120°=32, cos 210°=-32,∴sin 120°cos 210°=32×⎝⎛⎭⎫-32=-34,故选A.5.若角α的终边在直线y =-2x 上,则sin α等于( ) A .±15B .±55C .±255D .±12解析:选C 在α的终边上任取一点(-1,2),则r =1+4=5,所以sin α=y r =25=255.或者取P (1,-2),则r =1+4=5,所以sin α=y r =-25=-25 5.6.tan ⎝⎛⎭⎫-17π3=________.解析:tan ⎝⎛⎭⎫-17π3=tan ⎝⎛⎭⎫-6π+π3=tan π3= 3. 答案: 37.已知角α的终边过点P (5,a ),且tan α=-125,则sin α+cos α=________. 解析:∵tan α=a 5=-125,∴a =-12.∴r =25+a 2=13. ∴sin α=-1213,cos α=513. ∴sin α+cos α=-713.答案:-7138.若角α的终边落在直线x +y =0上,则sin α|cos α|+|sin α|cos α=________.解析:当α在第二象限时,sin α|cos α|+|sin α|cos α=-sin αcos α+sin αcos α=0;当α在第四象限时,sin α|cos α|+|sin α|cos α=sin αcos α-sin αcos α=0. 综上,sin α|cos α|+|sin α|cos α=0.答案:09.求下列三角函数值:(1)cos(-1 050°);(2)tan 19π3;(3)sin ⎝⎛⎭⎫-31π4. 解:(1)∵-1 050°=-3×360°+30°,∴cos(-1 050°)=cos(-3×360°+30°)=cos 30°=32. (2)∵19π3=3×2π+π3, ∴tan 19π3=tan ⎝⎛⎭⎫3×2π+π3=tan π3= 3. (3)∵-31π4=-4×2π+π4, ∴sin ⎝⎛⎭⎫-31π4=sin ⎝⎛⎭⎫-4×2π+π4=sin π4=22. 10.已知点M 是圆x 2+y 2=1上的点,以射线OM 为终边的角α的正弦值为-22,求cos α和tan α的值.解:设点M 的坐标为(x 1,y 1). 由题意,可知sin α=-22,即y 1=-22. ∵点M 在圆x 2+y 2=1上,∴x 21+y 21=1, 即x 21+⎝⎛⎭⎫-222=1, 解得x 1=22或x 2=-22. ∴cos α=22或cos α=-22, ∴tan α=-1或tan α=1.层级二 应试能力达标1.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴上,所以有⎩⎪⎨⎪⎧3a -9≤0,a +2>0,即-2<a ≤3.2.给出下列函数值:①sin(-1 000°);②cos ⎝⎛⎭⎫-π4;③tan 2,其中符号为负的个数为( ) A .0 B .1 C .2D .3解析:选B ∵-1 000°=-3×360°+80°, ∴-1 000°是第一象限角,则sin(-1 000°)>0; ∵-π4是第四象限角,∴cos ⎝⎛⎭⎫-π4>0; ∵2 rad =2×57°18′=114°36′是第二象限角,∴tan 2<0.故选B. 3.若tan x <0,且sin x -cos x <0,则角x 的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D ∵tan x <0,∴角x 的终边在第二、四象限,又sin x -cos x <0,∴角x 的终边在第四象限.4.已知角α的终边经过点P (m ,-6),且cos α=-45,则m =( )A .8B .-8C .4D .-4解析:选B 由题意r =|OP |=m 2+(-6)2=m 2+36,故cos α=m m 2+36=-45,解得m =-8.5.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.解析:|OP |=42+y 2.根据任意角三角函数的定义得,y 42+y 2=- 255,解得y =±8.又∵sin θ=-255<0及P (4,y )是角θ终边上一点,可知θ为第四象限角,∴y =-8.答案:-86.tan 405°-sin 450°+cos 750°=________. 解析:原式=tan(360°+45°)-sin(360°+90°)+ cos(2×360°+30°)=tan 45°-sin 90°+cos 30° =1-1+32=32. 答案:327.判断下列各式的符号:(1)sin 340°cos 265°;(2)sin 4tan ⎝⎛⎭⎫-23π4.解:(1)∵340°是第四象限角,265°是第三象限角, ∴sin 340°<0,cos 265°<0, ∴sin 340°cos 265°>0.(2)∵π<4<3π2,∴4是第三象限角,∵-23π4=-6π+π4,∴-23π4是第一象限角.∴sin 4<0,tan ⎝⎛⎭⎫-23π4>0, ∴sin 4tan ⎝⎛⎭⎫-23π4<0.8.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限.(2)若角α的终边上一点是M ⎝⎛⎭⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.解:(1)由1|sin α|=-1sin α,所以sin α<0, 由lg(cos α)有意义,可知cos α>0, 所以α是第四象限角.(2)因为|OM |=1,所以⎝⎛⎭⎫352+m 2=1, 得m =±45.又α为第四象限角,故m <0, 从而m =-45,sin α=y r =m |OM |=-451=-45.课时跟踪检测(四) 三角函数线层级一 学业水平达标1.角π5和角6π5有相同的( )A .正弦线B .余弦线C .正切线D .不能确定解析:选C 在同一坐标系内作出角π5和角6π5的三角函数线可知,正弦线及余弦线都相反,而正切线相等.2.已知角α的正切线是长度为单位长度的有向线段,那么角α的终边在( ) A .直线y =x 上 B .直线y =-x 上C .直线y =x 上或直线y =-x 上D .x 轴上或y 轴上解析:选C 由角α的正切线是长度为单位长度的有向线段,得tan α=±1,故角α的终边在直线y =x 上或直线y =-x 上.3.如果MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论正确的是( )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM解析:选D ∵7π8是第二象限角,∴sin7π8>0,cos 7π8<0, ∴MP >0,OM <0, ∴MP >0>OM .4.已知角α的正弦线和余弦线的方向相反、长度相等,则α的终边在( ) A .第一象限的角平分线上 B .第四象限的角平分线上 C .第二、第四象限的角平分线上 D .第一、第三象限的角平分线上解析:选C 作图(图略)可知角α的终边在直线y =-x 上,∴α的终边在第二、第四象限的角平分线上,故选C.5.若α是第一象限角,则sin α+cos α的值与1的大小关系是( ) A .sin α+cos α>1 B .sin α+cos α=1 C .sin α+cos α<1D .不能确定解析:选A 作出α的正弦线和余弦线,由三角形“任意两边之和大于第三边”的性质可知sin α+cos α>1.6.若角α的余弦线长度为0,则它的正弦线的长度为______.解析:若角α的余弦线长度为0,则α的终边落在y 轴上,所以它的正弦线的长度 为1.答案:17.用三角函数线比较sin 1与cos 1的大小,结果是_________________________. 解析:如图,sin 1=MP ,cos 1=OM .显然MP >OM ,即sin 1>cos 1. 答案:sin 1>cos 18.若θ∈⎝⎛⎭⎫3π4,3π2,则sin θ的取值范围是________. 解析:由图可知sin 3π4=22,sin3π2=-1,22>sin θ>-1, 即sin θ∈⎝⎛⎭⎫-1,22. 答案:⎝⎛⎭⎫-1,22 9.作出下列各角的正弦线、余弦线、正切线. (1)5π6;(2)-2π3. 解:(1)因为5π6∈⎝⎛⎭⎫π2,π,所以作出5π6角的终边如图(1)所示,交单位圆于点P ,作PM ⊥x 轴于点M ,则有向线段MP =sin5π6,有向线段OM=cos5π6,设过A (1,0)垂直于x 轴的直线交OP 的反向延长线于T ,则有向线段AT =tan 5π6.综上所述,图(1)中的有向线段MP ,OM ,AT 分别为5π6角的正弦线、余弦线、正切线. (2)因为-2π3∈⎝⎛⎭⎫-π,-π2,所以在第三象限内作出-2π3角的终边如图(2)所示. 交单位圆于点P ′用类似(1)的方法作图,可得图(2)中的有向线段M ′P ′,OM ′,A ′T ′分别为-2π3角的正弦线、余弦线、正切线.10.求下列函数的定义域. (1)y =lg⎝⎛⎭⎫22-sin x . (2)y =3tan x - 3.解:(1)为使y =lg ⎝⎛⎭⎫22-sin x 有意义,则22-sin x >0,所以sinx <22,所以角x 终边所在区域如图所示, 所以2k π-5π4<x <2k π+π4,k ∈Z. 所以原函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪2k π-5π4<x <2k π+π4,k ∈Z .(2)为使y =3tan x -3有意义,则3tan x -3≥0,所以tan x ≥33, 所以角x 终边所在区域如图所示, 所以k π+π6≤x <k π+π2,k ∈Z ,所以原函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪k π-π6≤x <k π+π2,k ∈Z .层级二 应试能力达标1.下列三个命题:①π6与5π6的正弦线相等;②π3与4π3的正切线相等; ③π4与5π4的余弦线相等. 其中正确命题的个数为( ) A .1B .2C .3D .0解析:选Bπ6和5π6的正弦线关于y 轴对称,大小相等,方向相同;π3和4π3两角的终边在同一条直线上,因而所作正切线相等;π4和5π4的余弦线方向不同.2.若α是三角形的内角,且sin α+cos α=23,则这个三角形是( )A .等边三角形B .直角三角形C .锐角三角形D .钝角三角形解析:选D 当0<α≤π2时,由单位圆中的三角函数线知,sin α+cos α≥1,而sin α+cosα=23,∴α必为钝角.3.如果π4<α<π2,那么下列不等式成立的是( )A .cos α<sin α<tan αB .tan α<sin α<cos αC .sin α<cos α<tan αD .cos α<tan α<sin α解析:选A 如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT ,很容易地观察出OM <MP <AT ,即cos α<sin α<tan α.4.使sin x ≤cos x 成立的x 的一个变化区间是( ) A .⎣⎡⎤-3π4,π4 B .⎣⎡⎤-π2,π2 C .⎣⎡⎦⎤-π4,3π4 D .[0,π]解析:选A 如图,画出三角函数线sin x =MP ,cos x =OM ,由于sin ⎝⎛⎭⎫-3π4=cos ⎝⎛⎭⎫-3π4,sin π4=cos π4,为使sin x ≤cos x 成立, 则由图可得-3π4≤x ≤π4.5.sin2π5,cos 6π5,tan 2π5从小到大的顺序是________.解析:由图可知: cos6π5<0,tan 2π5>0,sin 2π5>0. ∵|MP |<|AT |, ∴sin2π5<tan 2π5. 故cos6π5<sin 2π5<tan 2π5. 答案:cos6π5<sin 2π5<tan 2π56.若0<α<2π,且sin α<32,cos α>12.利用三角函数线,得到α的取值范围是________.解析:利用三角函数线得α的终边落在如图所示∠AOB 区域内,所以α的取值范围是⎝⎛⎭⎫0,π3∪⎝⎛⎭⎫5π3,2π. 答案:⎝⎛⎭⎫0,π3∪⎝⎛⎭⎫5π3,2π 7.利用单位圆中的三角函数线,分别确定角θ的取值范围. (1)sin θ<-12;(2)-12≤cos θ<32.解:(1)图①中阴影部分就是满足条件的角θ的范围,即⎩⎨⎧⎭⎬⎫θ⎪⎪-5π6 +2k π<θ<-π6+2k π,k ∈Z .(2)图②中阴影部分就是满足条件的角θ的范围,即⎩⎨⎧⎭⎬⎫θ⎪⎪2k π-2π3 ≤θ<2k π-π6 或2k π+π6<θ≤2k π+2π3 ,k ∈Z .8.若0<α<π2,证明:sin α<α<tan α.证明:如图所示,连接AP ,设弧AP 的长为l , ∵S △OAP <S 扇形OAP <S △OAT , ∴12|OA |·|MP |<12l ·|OA |<12|OA |·|AT |, ∴|MP |<l <|AT |,∴sin α<α<tan α.课时跟踪检测(五) 同角三角函数的基本关系层级一 学业水平达标1.(福建高考)若sin α=-513,且α为第四象限角,则tan α的值等于( ) A .125B .-125C .512D .-512解析:选D 因为sin α=-513,且α为第四象限角, 所以cos α=1213,所以tan α=-512,故选D.2.若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为( )A .3B .-3C .1D .-1解析:选B ∵α为第三象限角, ∴原式=cos α-cos α+2sin α-sin α=-3.3.下列四个结论中可能成立的是( ) A .sin α=12且cos α=12B .sin α=0且cos α=-1C .tan α=1且cos α=-1D .α是第二象限角时,tan α=-sin αcos α解析:选B 根据同角三角函数的基本关系进行验证,因为当α=π时,sin α=0且cos α=-1,故B 成立,而A 、C 、D 都不成立.4.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-35B .-15C .15D .35解析:选A sin 4α-cos 4α=(sin 2α+cos 2α)(sin 2α-cos 2α)=sin 2α-(1-sin 2α)=2sin 2α-1=2×⎝⎛⎭⎫552-1=-35.5.若α是三角形的最大内角,且sin α-cos α=35,则三角形是( )A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形解析:选B 将sin α-cos α=35两边平方,得1-2sin αcos α=925,即2sin αcos α=1625.又α是三角形的内角,∴sin α>0,cos α>0,∴α为锐角.6.若sin θ=-22,tan θ>0,则cos θ=________. 解析:由已知得θ是第三象限角, 所以cos θ=-1-sin 2θ=-1-⎝⎛⎭⎫-222=-22.答案:-227.化简:1-2sin 40°cos 40°=________. 解析:原式=sin 240°+cos 240°-2sin 40°cos 40° =(sin 40°-cos 40°)2=|cos 40°-sin 40°|=cos 40°-sin 40°. 答案:cos 40°-sin 40°8.已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α=________.解析:1+2sin αcos αsin 2α-cos 2α=(sin α+cos α)2sin 2α-cos 2α=sin α+cos αsin α-cos α=tan α+1tan α-1=-12+1-12-1=12-32=-13.答案:-139.化简:(1)cos 36°-1-cos 236°1-2sin 36°cos 36°;(2)sin θ-cos θtan θ-1.解:(1)原式=cos 36°-sin 236°sin 236°+cos 236°-2sin 36°cos 36°=cos 36°-sin 36°(cos 36°-sin 36°)2=cos 36°-sin 36°|cos 36°-sin 36°|=cos 36°-sin 36°cos 36°-sin 36°=1.(2)原式=sin θ-cos θsin θcos θ-1=cos θ(sin θ-cos θ)sin θ-cos θ=cos θ.10.已知sin α+cos α=33,求tan α+1tan α及sin α-cos α的值. 解:将sin α+cos α=33两边平方,得sin αcos α=-13. ∴tan α+1tan α=1sin αcos α=-3, (sin α-cos α)2=1-2sin αcos α=1+23=53,∴sin α-cos α=±153. 层级二 应试能力达标1.已知tan α=12,且α∈⎝⎛⎭⎫π,3π2,则sin α的值是( ) A .-55B .55C .255D .-255解析:选A ∵α∈⎝⎛⎭⎫π,3π2,∴sin α<0. 由tan α=sin αcos α=12,sin 2α+cos 2α=1,得sin α=-55. 2.化简⎝⎛⎭⎫1sin α+1tan α(1-cos α)的结果是( ) A .sin α B .cos α C .1+sin αD .1+cos α解析:选A ⎝⎛⎭⎫1sin α+1tan α(1-cos α)=⎝⎛⎭⎫1sin α+cos αsin α·(1-cos α)=(1+cos α)sin α·(1-cos α)=1-cos 2αsin α=sin 2αsin α=sin α.3.已知θ是第三象限角,且sin 4θ+cos 4θ=59,则sin θcos θ的值为( )A .23B .-23C .13D .-13解析:选A 由sin 4θ+cos 4θ=59,得(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59.∴sin 2θcos 2θ=29.∵θ是第三象限角,∴sin θ<0,cos θ<0,∴sin θcos θ=23. 4.已知sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( )A .34B .±310C .310D .-310解析:选C 由条件得sin θ+cos θ=2sin θ-2cos θ, 即3cos θ=sin θ,tan θ=3, ∴sin θcos θ=sin θcos θsin 2θ+cos 2θ=tan θ1+tan 2θ=31+32=310. 5.已知sin αcos α=18,且π<α<5π4,则cos α-sin α=________.解析:因为π<α<5π4,所以cos α<0,sin α<0.利用三角函数线,知cos α<sin α,所以cosα-sin α<0,所以cos α-sin α=-(cos α-sin α)2=-1-2×18=-32.答案:-326.若sin α+cos α=1,则sin n α+cos n α(n ∈Z)的值为________. 解析:∵sin α+cos α=1,∴(sin α+cos α)2=1,又sin 2α+cos 2α=1, ∴sin αcos α=0,∴sin α=0或cos α=0,当sin α=0时,cos α=1,此时有sin n α+cos n α=1; 当cos α=0时,sin α=1,也有sin n α+cos n α=1, ∴sin n α+cos n α=1. 答案:17.已知tan 2α1+2tan α=13,α∈⎝⎛⎭⎫π2,π.(1)求tan α的值; (2)求sin α+2cos α5cos α-sin α的值.解:(1)由tan 2α1+2tan α=13,得3tan 2α-2tan α-1=0,即(3tan α+1)(tan α-1)=0, 解得tan α=-13或tan α=1.因为α∈⎝⎛⎭⎫π2,π,所以tan α<0,所以tan α=-13. (2)由(1),得tan α=-13,所以sin α+2cos α5cos α-sin α=tan α+25-tan α=-13+25-⎝⎛⎭⎫-13=516.8.求证:cos α1+sin α-sin α1+cos α=2(cos α-sin α)1+sin α+cos α.证明:左边=cos α(1+cos α)-sin α(1+sin α)(1+sin α)(1+cos α)=cos 2α-sin 2α+cos α-sin α1+sin α+cos α+sin αcos α =(cos α-sin α)(cos α+sin α+1)12(cos α+sin α)2+sin α+cos α+12=2(cos α-sin α)(cos α+sin α+1)(sin α+cos α+1)2=2(cos α-sin α)1+sin α+cos α=右边.所以原等式成立.课时跟踪检测(六) 诱导公式(一)层级一 学业水平达标1.sin 600°的值是( ) A .12B .-12C .32D .-32解析:选D sin 600°=sin(360°+240°)=sin 240° =sin(180°+60°)=-sin 60°=-32. 2.若sin(π+α)=-12,则sin(4π-α)的值是( )A .12B .-12C .-32D .32解析:选B 由题知,sin α=12,所以sin(4π-α)=-sin α=-12.3.如图所示,角θ的终边与单位圆交于点P ⎝⎛⎭⎫-55,255,则cos(π-θ)的值为( )A .-255B .-55C .55 D .255解析:选C ∵r =1,∴cos θ=-55, ∴cos(π-θ)=-cos θ=55. 4.已知tan ⎝⎛⎭⎫π3-α=13,则tan ⎝⎛⎭⎫2π3+α=( ) A .13B .-13C .233D .-233解析:选B ∵tan ⎝⎛⎭⎫2π3+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π3-α =-tan ⎝⎛⎭⎫π3-α, ∴tan ⎝⎛⎭⎫2π3+α=-13. 5.设tan(5π+α)=m ,则sin (α+3π)+cos (π+α)sin (-α)-cos (π+α)的值等于( )A .m +1m -1B .m -1m +1C .-1D .1解析:选A ∵tan(5π+α)=tan [4π+(π+α)]=tan(π+α)=tan α,∴tan α=m ,∴原式=sin (π+α)-cos α-sin α+cos α=-sin α-cos α-sin α+cos α=tan α+1tan α-1=m +1m -1,故选A. 6.求值:(1)cos 29π6=______;(2)tan(-855°)=______. 解析:(1)cos29π6=cos ⎝⎛⎭⎫4π+5π6=cos 5π6=cos ⎝⎛⎭⎫π-π6=-cos π6=-32. (2)tan(-855°)=-tan 855°=-tan(2×360°+135°)=-tan 135°=-tan(180°-45°)=tan 45°=1.答案:(1)-32(2)1 7.已知sin(π-α)=log 814,且α∈⎝⎛⎭⎫-π2,0,则tan(2π-α)的值为________. 解析:sin(π-α)=sin α=log 814=-23,又α∈⎝⎛⎭⎫-π2,0, 所以cos α=1-sin 2α=53,tan(2π-α)=tan(-α)=-tan α=-sin αcos α=255. 答案:2558.已知cos(508°-α)=1213,则cos(212°+α)=________.解析:由于cos(508°-α)=cos(360°+148°-α)=cos(148°-α)=1213,所以cos(212°+α)=cos(360°+α-148°)=cos(α-148°)=cos(148°-α)=1213. 答案:12139.求下列各三角函数值:(1)sin ⎝⎛⎭⎫-8π3;(2)cos 23π6;(3)tan 37π6. 解:(1)sin ⎝⎛⎭⎫-8π3=sin ⎝⎛⎭⎫-4π+4π3=sin 4π3 =sin ⎝⎛⎭⎫π+π3=-sin π3=-32.(2)cos 23π6=cos ⎝⎛⎭⎫4π-π6=cos ⎝⎛⎭⎫-π6=cos π6=32. (3)tan 37π6=tan ⎝⎛⎭⎫6π+π6=tan π6=33. 10.若cos α=23,α是第四象限角,求sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)的值.解:由已知cos α=23,α是第四象限角得sin α=-53,故sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)=sin α-sin αcos α-cos α+cos 2α=52. 层级二 应试能力达标1.已知cos(π-α)=-35,且α是第一象限角,则sin(-2π-α)的值是( )A .45B .-45C .±45D .35解析:选B ∵cos(π-α)=-cos α,∴cos α=35.∵α是第一象限角,∴sin α>0, ∴sin α=1-cos 2α=1-⎝⎛⎭⎫352=45.∴sin(-2π-α)=sin(-α)=-sin α=-45.2.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β∈R ,若f (2 015)=5,则f (2 016)等于( )A .4B .3C .-5D .5解析:选C ∵f (2 015)=a sin(2 015π+α)+b cos(2 015π+β)=-a sin α-b cos β=5,∴f (2 016)=a sin(2 016π+α)+b cos(2 016π+β)=a sin α+b cos β=-5.3.若α,β的终边关于y 轴对称,则下列等式成立的是( ) A .sin α=sin β B .cos α=cos β C .tan α=tan βD .sin α=-sin β 解析:选A 法一:∵α,β的终边关于y 轴对称,∴α+β=π+2k π或α+β=-π+2k π,k ∈Z , ∴α=2k π+π-β或α=2k π-π-β,k ∈Z , ∴sin α=sin β.法二:设角α终边上一点P (x ,y ),则点P 关于y 轴对称的点为P ′(-x ,y ),且点P 与点P ′到原点的距离相等,设为r ,则sin α=sin β=yr .4.下列三角函数式:①sin ⎝⎛⎭⎫2n π+3π4;②cos ⎝⎛⎭⎫2n π-π6;③sin ⎝⎛⎭⎫2n π+π3; ④cos ⎣⎡⎦⎤(2n +1)π-π6;⑤sin ⎣⎡⎦⎤(2n -1)π-π3. 其中n ∈Z ,则函数值与sin π3的值相同的是( )A .①②B .①③④C .②③⑤D .①③⑤解析:选C ①中sin ⎝⎛⎭⎫2n π+3π4=sin 3π4≠sin π3;②中,cos ⎝⎛⎭⎫2n π-π6=cos π6=sin π3;③中,sin ⎝⎛⎭⎫2n π+π3=sin π3;④中,cos ⎣⎡⎦⎤(2n +1)π-π6=cos ⎝⎛⎭⎫π-π6=-cos π6≠sin π3;⑤中,sin ⎣⎡⎦⎤(2n -1)π-π3=sin ⎝⎛⎭⎫-π-π3=-sin ⎝⎛⎭⎫π+π3=sin π3. 5.化简:cos (-585°)sin 495°+sin (-570°)的值是________.解析:原式=cos (360°+225°)sin (360°+135°)-sin (210°+360°)=cos 225°sin 135°-sin 210°=cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-cos 45°sin 45°+sin 30°=-2222+12=2-2. 答案:2-26.已知f (x )=⎩⎪⎨⎪⎧sin πx , x <0,f (x -1)-1, x >0,则f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116的值为________. 解析:因为f ⎝⎛⎭⎫-116=sin ⎝⎛⎭⎫-11π6 =sin ⎝⎛⎭⎫-2π+π6=sin π6=12; f ⎝⎛⎭⎫116=f ⎝⎛⎭⎫56-1=f ⎝⎛⎭⎫-16-2 =sin ⎝⎛⎭⎫-π6-2=-12-2=-52.所以f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116=-2. 答案:-2 7.计算与化简(1)tan (2π-θ)sin (2π-θ)cos (6π-θ)(-cos θ)sin (5π+θ);(2)sin 420°cos 330°+sin(-690°)cos(-660°).解:(1)原式=tan (-θ)sin (-θ)cos (-θ)(-cos θ)sin (π+θ)=tan θsin θcos θcos θsin θ=tan θ.(2)原式=sin(360°+60°)cos(360°-30°)+sin(-2×360°+30°)cos(-2×360°+60°)=sin 60°cos 30°+sin 30°cos 60°=32×32+12×12=1.8.已知1+tan (θ+720°)1-tan (θ-360°)=3+22,求:[cos 2(π-θ)+sin(π+θ)·cos(π-θ)+2sin 2(θ-π)]·1cos 2(-θ-2π)的值. 解:由1+tan (θ+720°)1-tan (θ-360°)=3+22,得(4+22)tan θ=2+22, 所以tan θ=2+224+22=22,故[cos 2(π-θ)+sin(π+θ)·cos(π-θ)+2sin 2(θ-π)]·1cos 2(-θ-2π)=(cos 2θ+sin θcos θ+2sin 2θ)·1cos 2θ=1+tan θ+2tan 2θ =1+22+2×⎝⎛⎭⎫222=2+22.课时跟踪检测(七) 诱导公式(二)层级一 学业水平达标1.若sin ⎝⎛⎭⎫π2+θ<0,且cos ⎝⎛⎭⎫π2-θ>0,则θ是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角解析:选B 由于sin ⎝⎛⎭⎫π2+θ=cos θ<0,cos ⎝⎛⎭⎫π2-θ=sin θ>0,所以角θ的终边落在第二象限,故选B.2.已知sin θ=15,则cos(450°+θ)的值是( )A .15B .-15C .-265D .265解析:选B cos(450°+θ)=cos(90°+θ)=-sin θ=-15.3.已知cos ⎝⎛⎭⎫π2+φ=32,且|φ|<π2,则tan φ等于( ) A .-33B .33C .- 3D . 3解析:选C 由cos ⎝⎛⎭⎫π2+φ=-sin φ=32,得sin φ=-32.又|φ|<π2,∴φ=-π3,∴tan φ=- 3.4.已知tan θ=2,则sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2+θ-sin (π-θ)=( )A .2B .-2C .0D .23解析:选B sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2+θ-sin (π-θ)=cos θ+cos θcos θ-sin θ=21-tan θ=21-2=-2.5.若角A ,B ,C 是△ABC 的三个内角,则下列等式中一定成立的是( ) A .cos(A +B )=cos C B .sin(A +B )=-sin C C .cos A +C2=sin BD .sin B +C 2=cos A 2解析:选D ∵A +B +C =π,∴A +B =π-C , ∴cos(A +B )=-cos C ,sin(A +B )=sin C ,故A ,B 错.∵A +C =π-B ,∴A +C 2=π-B2, ∴cos A +C 2=cos ⎝⎛⎭⎫π2-B 2=sin B2,故C 错. ∵B +C =π-A ,∴sin B +C 2=sin ⎝⎛⎭⎫π2-A 2=cos A2,故D 正确. 6.sin 95°+cos 175°的值为________.解析:sin 95°+cos 175°=sin(90°+5°)+cos(180°-5°) =cos 5°-cos 5°=0. 答案:07.若sin ⎝⎛⎭⎫π2+θ=35,则cos 2θ-sin 2θ=________. 解析:sin ⎝⎛⎭⎫π2+θ=cos θ=35,从而sin 2θ=1-cos 2θ=1625,所以cos 2θ-sin 2θ=-725. 答案:-7258.化简:sin(-α-7π)·cos ⎝⎛⎭⎫α-3π2=________. 解析:原式=-sin(7π+α)·cos ⎝⎛⎭⎫3π2-α=-sin(π+α)·⎣⎡⎦⎤-cos ⎝⎛⎭⎫π2-α =sin α·(-sin α) =-sin 2α. 答案:-sin 2α9.已知sin(π+α)=-13.求:(1)cos ⎝⎛⎭⎫α-3π2; (2)sin ⎝⎛⎭⎫π2+α.解:∵sin(π+α)=-sin α=-13,∴sin α=13.(1)cos ⎝⎛⎭⎫α-3π2=cos ⎝⎛⎭⎫3π2-α=-sin α=-13. (2)sin ⎝⎛⎭⎫π2+α=cos α,cos 2α=1-sin 2α=1-19=89. ∵sin α=13,∴α为第一或第二象限角.①当α为第一象限角时,sin ⎝⎛⎭⎫π2+α=cos α=223.。
第三章 3.1 3.1.3 两角和与差的正切课时跟踪检测[A 组 基础过关]1.已知向量a =(cos α,-2),b =(sin α,1),且a ∥b ,则tan ⎝ ⎛⎭⎪⎫α-π4等于( )A .3 B.-3 C.13D.-13解析:a ∥b ,则tan α=-12,∴tan ⎝ ⎛⎭⎪⎫α-π4=tan α-11+tan α=-3.答案:B2.已知1-tan α1+tan α=2+3,则tan ⎝ ⎛⎭⎪⎫π4+α的值为( )A .2+ 3 B.1 C .2- 3D. 3解析:tan ⎝ ⎛⎭⎪⎫π4+α=1+tan α1-tan α=12+3=2-3,故选C.答案:C3.已知tan α,tan β是方程6x 2-5x +1=0的两个根,且0<α<π2,π<β<3π2,则α+β的值为( )A.π4B.3π4C.5π4D.7π4解析:由韦达定理得tan α+tan β=56,tan αtan β=16,∴tan(α+β)=561-16=1,又π<α+β<2π,故α+β=5π4.答案:C4.在△ABC 中,若0<tan A ·tan B <1,则△ABC 为( ) A .钝角三角形 B.锐角三角形 C .直角三角形D.不确定解析:0<tan A ·tan B <1,∴tan A >0,tan B >0,∴∠A ,∠B 都是锐角,tan C =-tan(A +B )=-tan A +tan B 1-tan A tan B<0,∴∠C 为钝角,故选A.答案:A5.已知sin α=45,tan(α+β)=1,且α是第二象限角,那么tan β的值为( ) A.43 B.-43 C .7D.-7解析:∵α是第二象限角,sin α=45, ∴cos α=-35,tan α=-43, ∴tan β=tan(α+β-α)=tan (α+β)-tan α1+tan (α+β)tan α=1+431-43=-7.故选D. 答案:D6.(2017·江苏卷)若tan ⎝ ⎛⎭⎪⎫α-π4=16,则tan α=________.解析:tan α=tan ⎝ ⎛⎭⎪⎫α-π4+π4=tan ⎝ ⎛⎭⎪⎫α-π4+tanπ41-tan ⎝ ⎛⎭⎪⎫α-π4tan π4= 16+11-16=75.答案:7 57.化简:tan(18°-x)tan(12°+x)+3[tan(18°-x)+tan(12°+x)]=________.解析:原式=tan(18°-x)tan(12°+x)+3tan30°[1-tan(18°-x)tan(12°+x)]=1.答案:18.已知tanα=17,tanβ=13,求tan(α+2β)的值.解:∵tan2β=2tanβ1-tan2β=34,∴tan(α+2β)=tanα+tan2β1-tanαtan2β=1.[B组技能提升]1.若A,B是△ABC的内角,并且(1+tan A)(1+tan B)=2,则A+B等于()A.π4 B.3π4C.5π4 D.2π3解析:由(1+tan A)(1+tan B)=2得:1+tan A+tan B+tan A·tan B=2,所以tan A+tan B=1-tan A·tan B.由tan(A+B)=tan A+tan B1-tan A tan B=1-tan A tan B1-tan A tan B=1,又∵0<A+B<π,可得A+B=π4.答案:A2.(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)的值为()A.16 B.8C.4 D.2解析:(1+tan21°)(1+tan24°)=1+tan21°+tan24°+tan21°tan24°=1+tan45°(1-tan21°tan24°)+tan21°tan24°=2.同理(1+tan22°)(1+tan23°)=2,∴原式=4,故选C.答案:C3.A ,B ,C 是△ABC 的三个内角,且tan A ,tan B 是方程3x 2-5x +1=0的两个实数根,则△ABC 是________三角形.解析:由韦达定理得⎩⎪⎨⎪⎧tan A +tan B =53,tan A tan B =13,∴tan(A +B )=tanA +tanB 1-tan A tan B=531-13=52.在△ABC 中,tan C =tan [π-(A +B )]=-tan(A +B )=-52<0,∴C 是钝角,∴△ABC 是钝角三角形.答案:钝角4.设tan(α+β)=25,tan β-π4=14,则tan ⎝ ⎛⎭⎪⎫α+π4的值等于________.解析:tan ⎝ ⎛⎭⎪⎫α+π4=tan ⎣⎢⎡⎦⎥⎤(α+β)-⎝ ⎛⎭⎪⎫β-π4=tan (α+β)-tan ⎝ ⎛⎭⎪⎫β-π41+tan (α+β)tan ⎝ ⎛⎭⎪⎫β-π4=25-141+25×14=322. 答案:3225.下图是由三个小正方形并在一起构成的长方形,求其中α+β 的大小.解:设一个小正方形的边长为1. 则tan α=12,tan β=13,∴tan(α+β)=tan α+tan β1-tan αtan β=12+131-12×13=1. 又∵0<α<π2,0<β<π2,∴0<α+β<π,∴α+β=π4.6.(2018·江苏卷)已知α,β为锐角,tan α=43,cos(α+β)=-55. (1)求cos2α的值; (2)求tan(α-β)的值.解:(1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α.因为sin 2α+cos 2α=1,所以cos 2α=925,因此,cos2α=2cos 2α-1=-725.(2)因为α,β为锐角,所以α+β∈(0,π).又因为cos(α+β)=-55,所以sin(α+β)=1-cos 2(α+β)=255,因此tan(α+β)=-2.因为tan α=43,所以tan2α=2tan α1-tan 2α=-247,因此tan(α-β)=tan [2α-(α+β)]=tan2α-tan (α+β)1+tan2αtan (α+β)=-211.。