考研数学必考知识点笔记---28.反常积分的概念和判敛准则
- 格式:pdf
- 大小:10.84 MB
- 文档页数:6
第十一章反常积分一、主要内容与教学要求主要内容问题的提出,两类反常积分(无穷积分,无界函数的反常积分或瑕积分)的定义。
柯西收敛准则,无穷积分的性质,比较判别法,绝对收敛与条件收敛,狄利克雷判别法,阿贝尔判别法。
瑕积分的性质与收敛判别。
教学要求1 理解无穷积分和瑕积分的收敛与发散概念、绝对收敛和条件收敛的概念。
2 掌握无穷积分和瑕积分的性质和各种敛散性判别方法。
3 会应用敛散性的定义、性质及判别方法计算两类反常积分和证明两类反常积分有关的问题教学重点1 无穷积分和瑕积分的收敛与发散概念、绝对收敛和条件收敛的概念2 无穷积分和瑕积分的性质和各种敛散性判别方法3无穷积分和瑕积分的计算教学难点1 两类反常积分敛散性的判别2 两类反常积分相关的证明问题。
二、本章教材处理建议1. 结合实际例子说明定积分在处理实际问题时条件的局限性,由如何突破条件的限制引入无穷积分与瑕积分的概念。
2. 通过变量替换,瑕积分与无穷积分可以互化,因此,它们有平行的理论和结果,讲课过程中,可以无穷积分为主,将相应的结论推广到瑕积分。
3. 反常积分具有线性运算性质,换元积分法和分步积分法仍然成立,进行反常积分的计算时,使学生明确,定积分的有关计算的方法与技巧仍然适用。
4.注意对反常积分审敛(包括绝对收敛,条件收敛和发散)进行归纳总结,要记住某些重要结果。
三、本章习题处理意见1. §11.1反常积分概念(P269):横线以上1,2两题为直接通过计算判断反常积分敛散性的基本题,要求学生必须掌握。
横线以下各题可在课堂或习题课上讨论,注意4,5,6这三题之间的联系。
2. §11.2无穷积分的性质与收敛判别(P275):2,4,5三题可作为课外练习.第3题课堂讨论,6,7,8,9这四题可在习题课上讲授或给予提示,同样要注意各题之间内在的联系。
第10题可在讲解阿贝尔判别法这一部分内容时讲授。
3.§11.3瑕积分的性质与收敛判别(P279):第3题可作为课外练习.4,5,6三题习题课讲授。
第七讲 非黎曼积分(反常积分)一、知识结构我们知道黎曼积分要求积分区间有限,并且积分区间是闭区间(闭区域). 下面研究积分区间无限,或积分区间不是闭区间的积分,我们称这样的积分为反常积分,所谓反常是指相对于黎曼积分的反常.对正常积分,我们主要研究它的计算问题,而对反常积分, 主要研究它的收敛问题.1、 一元函数的反常积分(1) 一元函数反常积分的概念和定义我们知道黎曼积分要求积分区间是有限闭区间[]b a ,或有限闭区域D ,如果将积分区间[]b a ,换成无限区间),[+∞a 或非闭区间],(b a (a 是被积函数的瑕点)或()+∞,a ,由此产生的积分我们称为反常积分,反常积分是相对于黎曼积分所提出的,“反常”指将黎曼积分中的有限闭区间[]b a ,换成无限区间),[+∞a 或非闭区间],(b a (a 是被积函数的瑕点,即函数)(x f 在点x 处无界).定义1 函数)(x f 在无限区间),[+∞a 连续,则定义⎰⎰+∞→+∞=AaA adx x f dx x f )(lim)(,如果极限⎰+∞→AaA dx x f )(lim存在,我们称反常积分⎰+∞adx x f )(收敛.定义2 函数)(x f 在非闭区间],(b a 连续,而在点a 右邻域内无界(a 是被积函数)(x f 的瑕点)即函数在点a 无界,则定义⎰⎰⎰++→+→==b kak ba badx x f dx x f dx x f )(lim )(lim )(0εε,如果极限⎰+→+ba dxx f εε)(lim 0存在,我们称反常积分⎰badx x f )(收敛.函数)(x f 在点a 右邻域内无界的意思是:∞=+→)(lim x f ax .注意: 函数在点a 没有定义,但函数)(x f 在点a 右极限)(lim x f ax +→可以存在,这时a 不是被积函数)(x f 的瑕点.例如,函数x x sin 在点0处没有定义,但1sin lim 0=+→xxx ,所以0=x 不是积分⎰10sin dx x x 的瑕点. ⎰10sin dx x x 不是反常积分. 将积分⎰10sin dx xx 看作推广的黎曼积分. 因为, 如果被积函数)(x f 在闭区间[]b a ,上仅有有限个第一类间断点, 则积分⎰badx x f )(为推广的黎曼积分,它也是收敛的.定义3 函数)(x f 在开区间),(b a 内连续,b a ,都是函数)(x f 的瑕点,则定义⎰⎰⎰⎰⎰-→+→-++=+=δδεεb cca b cc abadx x f dx x f dx x f dx x f dx x f )(lim )(lim )()()(0,如果极限⎰+→+ca dx x f εε)(lim 0和⎰-→-δδb cdx x f )(lim 0均存在,我们称反常积分⎰badx x f )(收敛.定义4 函数)(x f 在无限区间),(+∞a 连续,a 是函数)(x f 的瑕点,则定义⎰⎰⎰⎰⎰+∞→+→+∞+∞+=+=+AbA ba bb aadx x f dx x f dx x f dx x f dx x f )(lim)(lim )()()(0εε,如果极限⎰+→+ba dx x f εε)(lim 0和⎰+∞→AbA dx x f )(lim均存在,我们称反常积分⎰+∞adx x f )(收敛.②积分区域无限且被积函数),(y x f 有瑕点(了解). 2、一元函数反常积分的性质与收敛判别 请同学们切记如下例子中的结论.例 讨论积分dx x p ⎰101和dx x p ⎰+∞11的敛散性.解 显然dx x ⎰101和dx x⎰+∞11均发散.在区间]1,0(上, 当1<p 时, 函数xx p 11<, 即前者的图像在后者的图像下方,这时dx x p ⎰101收敛(请同学给出证明). 当1>p 时, 函数xx p 11>,即前者的图像在后者的图像上方,这时dx xp ⎰101发散(请同学给出证明).在区间),1[+∞上, 当1<p 时, 函数xx p 11>, 即前者的图像在后者的图像上方,这时dx xp ⎰+∞11发散(请同学给出证明). 当1>p 时, 函数xx p 11<, 即前者的图像在后者的图像下方,这时dx x p ⎰101收敛(请同学给出证明).结论:⎪⎩⎪⎨⎧≥∞+<-=⎰时当时,当,1,11111p p p dx x p和⎪⎩⎪⎨⎧>-≤∞+=⎰∞+.1,11111时当时,当,p p p dx x p (1) 无穷积分的性质与收敛性判别 ①无穷积分的性质 (a)若dx x f a)(1⎰+∞与dx x f a)(2⎰+∞收敛, 则dx x f k x f k a)]()([2211±⎰+∞也收敛, 且dx x f k dx x f k dx x f k x f k aaa)()()]()([22112211⎰⎰⎰+∞+∞+∞±=±.(b)若)(x f 在任何有限闭区间],[u a 上可积,b a <, 则dx x f a)(⎰+∞与dx x f b )(⎰+∞同敛态(同时收敛或同时发散),并且dx x f dx x f dx x f bba a)()()(⎰⎰⎰+∞+∞+=.(c) 若)(x f 在任何有限闭区间],[u a 上可积, 且有dx x f a⎰+∞)(收敛,则dx x f a)(⎰+∞收敛,且dx x f dx x f aa⎰⎰+∞+∞≤)()(.当dx x f a⎰+∞)(收敛时, 称dx x f a)(⎰+∞绝对收敛. 我们称收敛而不绝对收敛者为条件收敛.②无穷积分的收敛判别 (a) 柯西收敛准则 对无穷积分dx x f dx x f uau a)(lim)(⎰⎰+∞→+∞=的敛散性用以下准则可以作出判断.定理1(柯西收敛准则) 无穷积分dx x f a)(⎰+∞收敛的充要条件是: 对0>∀ε, 0>∃U , )(εU U =, 当Uu u >21,时, 有ε<=-⎰⎰⎰dx x f dx x f dx x f u u u au a)()()(2121.无穷积分的柯西收敛准则可由函数极限的柯西收敛准则得到. (b) 比较法则定理2(比较法则) 设定义在),[+∞a 上的两个函数)(x f 和)(x g 都在任何有限区间],[u a 上可积,且满足)()(x g x f ≤,),[+∞∈a x ,则当dx x g a)(⎰+∞收敛时dx x f a⎰+∞)(必收敛; 当dx x f a⎰+∞)(发散时dxx g a)(⎰+∞必发散.考虑当dx x g a)(⎰+∞收敛时dx x f a⎰+∞)(必收敛是否正确? 当dxx f a⎰+∞)(发散时dx x g a)(⎰+∞必发散是否正确?推论1设定义在),[+∞a 上的两个函数)(x f 和)(x g 都在任何有限区间],[u a 上可积,0)(>x g , 且c x g x f x =+∞→)()(lim, 则有①当+∞<<c 0时, dx x f a⎰+∞)(与dx x g a)(⎰+∞同敛态;②当0=c 时, 由dx x g a)(⎰+∞收敛可推知dx x f a⎰+∞)(也收敛;③当+∞=c 时, 由dx x g a)(⎰+∞发散可推知dx x f a⎰+∞)(也发散.利用不等式εε+<<-c x g x f c )()(,即()())()()(x g c x f x g c εε+<<-可证上述结论.推论2 设)(x f 是定义在),[+∞a (0>a )的函数,且在任何有限区间],[u a 上可积,则有:①当p xx f 1)(≤,),[+∞∈a x ,且1>p 时, dx x f a ⎰+∞)(收敛; ②当p xx f 1)(≥,),[+∞∈a x ,且1≤p 时, dx x f a ⎰+∞)(发散.利用结论⎪⎩⎪⎨⎧>-≤∞+=⎰∞+时当时,当,1,11111p p p dx x p 可证上述结论. 推论3设)(x f 是定义在),[+∞a (0>a )的函数,在任何有限区间],[u a 上可积,且()c x f x p x =+∞→)(lim , 则有:①当+∞<≤>c p 0,1时, dx x f a ⎰+∞)(收敛; ②当+∞≤<≤c p 0,1时,dx x f a⎰+∞)(发散.利用不等式εε+<<-c x g x f c )()(,即()())()()(x g c x f x g c εε+<<-可证上述结论.(c) 狄利克雷判别法定理3(狄利克雷判别法) 若⎰=uadx x f u F )()(在),[+∞a 上有界,)(x g 在),[+∞a 上当+∞→x 时单调趋于0,则dx x g x f a)()(⎰+∞收敛(了解).(d) 阿贝尔(Abel)判别法 定理4(阿贝尔(Abel)判别法) 若dx x f a⎰+∞)(收敛,)(x g 在),[+∞a 上单调有界,则dx x g x f a)()(⎰+∞收敛(了解).(2) 瑕积分的性质与收敛判别 ① 瑕积分的性质(a) 若)(1x f 与)(2x f 都以a x =为瑕点,21,k k 为常数,则当瑕积分dx x f ba)(1⎰与dx x f b a)(2⎰收敛时, 瑕积分dx x f k x f k ba)]()([2211±⎰必定收敛,且dx x f k dx x f k dx x f k x f k bababa )()()]()([22112211⎰⎰⎰±=±.(b) 设函数)(x f 以a x =为瑕点,),(b a c ∈为任一常数,则瑕积分dx x f ba )(⎰与dx x f ca)(⎰同敛态(同时收敛或同时发散),并且dx x f dx x f dx x f bcc aba)()()(⎰⎰⎰+=,其中)(x f bc⎰为定积分.(c) 设函数)(x f 以a x =为瑕点, 若)(x f 在],(b a 的任一内闭区间],[b u 上可积,则当dx x f ba⎰)(收敛时,dx x f ba)(⎰也必收敛,且dx x f dx x f baba⎰⎰≤)()(.当dx x f ba⎰)(收敛时, 称dx x f ba)(⎰绝对收敛. 我们称收敛而不绝对收敛者为条件收敛.② 瑕积分的收敛判别 (a) 柯西收敛准则 对瑕积分dx x f dx x f buau ba)(lim )(⎰⎰+→=的敛散性用以下准则可以作出判断.定理1(柯西收敛准则) 瑕积分dx x f ba)(⎰(瑕点为a )收敛的充要条件是: 对0>∀ε, 0>∃δ, )(εδδ=, 当δδ<-<<-<a u a u 210,0时, 有ε<=-⎰⎰⎰dx x f dx x f dx x f u u bu bu )()()(2121.瑕积分的柯西收敛准则可由函数极限的柯西收敛准则得到. (b) 比较法则定理2(比较法则) 设定义在],(b a 上的两个函数)(x f 和)(x g ,瑕点同为a x =,)(x f 和)(x g 都在任何有限区间],(],[b a b u ⊂上可积,且满足)()(x g x f ≤,],(b a x ∈,则当dx x g b a )(⎰收敛时dx x f ba ⎰)(必收敛; 当dx x f ba⎰)(发散时dx x g ba)(⎰必发散.考虑当dx x g ba)(⎰收敛时dx x f b a⎰)(必收敛是否正确? 当dx x f ba⎰)(发散时dx x g ba)(⎰必发散是否正确?推论1又若 0)(>x g , 且c x g x f ax =+→)()(lim , 则有①当+∞<<c 0时, dx x f ba⎰)(与dx x g ba)(⎰同敛态;②当0=c 时, 由dx x g ba)(⎰收敛可推知dx x f b a⎰)(也收敛;③当+∞=c 时, 由dx x g ba)(⎰发散可推知dx x f b a⎰)(也发散.利用不等式εε+<<-c x g x f c )()(,即()())()()(x g c x f x g c εε+<<-可证上述结论.推论2 设)(x f 是定义在],(b a 的函数,瑕点为a x =, 且在任何有限区间],(],[b a b u ⊂上可积,则有:①当()pa x x f -≤1)(,且10<<p 时, dx x fb a ⎰)(收敛;②当()p a x x f -≥1)(,且1≥p 时, dx x f b a ⎰)(发散. 利用结论⎪⎩⎪⎨⎧≥∞+<-=⎰时当时,当,1,11111p p p dx x p 可证上述结论. 推论3设)(x f 是定义在],(b a 的函数,瑕点为a x =, 且在任何有限区间],(],[b a b u ⊂上可积,且()[]λ=-+→)(lim x f a x pax , 则有:①当+∞<≤<<λ0,10p 时, dx x f ba⎰)(收敛;②当+∞≤<≥λ0,1p 时, dx x f ba⎰)(发散.2、多元函数的反常积分(1)积分区域无限且被积函数),(y x f 没有瑕点①函数),(y x f z =在无限区域:D ),[),[+∞⨯+∞c a 上的反常积分定义 5 函数),(y x f z =在无限区域:D ),[),[+∞⨯+∞c a 连续,则定义⎰⎰⎰⎰⎰⎰+∞→+∞→+∞+∞==Aa BcB A acDdy y x f dx dy y x f dx dxdy y x f ),(lim),(),(,如果极限存在, 我们称反常积分⎰⎰+∞+∞acdy y x f dx ),(收敛.② 函数),(y x f z =在无限区域:D ],(],(y x -∞⨯-∞上的反常积分 定义6 函数),(y x f z =在无限区域:D ],(],(y x -∞⨯-∞连续,则定义⎰⎰⎰⎰⎰⎰-∞→-∞→∞-∞-==xA yBB A x yDdy y x f dx dy y x f dx dxdy y x f ),(lim),(),(,如果极限存在, 我们称反常积分⎰⎰∞-∞-xydy y x f dx ),(收敛.由于式中⎰⎰∞-∞-xydy y x f dx ),(的积分上限中的y x ,与被积函数中的yx ,不同,所以⎰⎰∞-∞-xy dy y x f dx ),(经常表示为⎰⎰∞-∞-xydt t u f du ),(. 这种积分是概率论与数理统计中常用求概率分布函数),(y x F 的积分, 即⎰⎰∞-∞-=x ydy y x f dx y x F ),(),(,其中),(y x f .③ 函数),(y x f z =在无限区域),(),(+∞-∞⨯+∞-∞上的反常积分 (请同学给出其定义).④ 函数),(y x f z =在无限区域),(),[+∞-∞⨯+∞a 上的反常积分(请同学给出其定义).⑤ 函数),(y x f z =在无限区域),[),[+∞⨯+∞c a 上的反常积分(请同学给出其定义).上述积分在概率中经常用到.已知随机变量Y X ,,函数),(y x f 是随机变量Y X ,的概率密度函数,),(y x F 表示随机变量Y X ,的分布函数,则概率⎰⎰∞-∞-==≤≤x ydy y x f dx y x F y Y x X P ),(),(),(,⎰⎰⎰∞-∞-+∞∞-===+∞=+∞<≤x X x X dxy x f dy y x f dx x F x F Y x X P ),(),()(),(),(,⎰⎰⎰∞-∞-+∞∞-===+∞=≤+∞<yY y Y dyy x f dx y x f dy y F y F y Y X P ),(),()(),(),(,其中),(y x f X ,),(y x f Y 分别称为Y X ,边缘概率密度函数,),(y x F X ,),(y x F Y 分别称为Y X ,边缘分布函数.例如(考研2010年数学一)设二维随机变量),(Y X 的概率密度函数为2222),(y xy xAe y x f -+-=,+∞<<∞-x ,+∞<<∞-y ,求常数A 及条件概率密度)(x y f X Y .解: 因为1),(=+∞+∞F ,所以⎰⎰⎰⎰⎰⎰∞+∞----∞+∞-+∞∞-++-+∞∞-+∞∞-+∞∞-====dyAedx dyAe dx dy y x f dx y x F y y x y xy x2222)(22),(),(1作变量替换⎩⎨⎧==-θθsin cos r y r y x ,+∞<<r 0,πθ20≤≤,即⎩⎨⎧=+=θθθsin sin cos r y r r x . 则()r r r y ry xrx r J -=-+=∂∂∂∂∂∂∂∂=θθθθθθθθθcos sin sin cos sin cos ),(.所以πθπA dr r Ae d dy Aedx r y y x =-=⎰⎰⎰⎰+∞-+∞∞----+∞∞-020)()(222, 进而π1=A .22222222222211(,)()1()(,)x xy y x xy y Y X x xy y X eef x y f y x f x f x y dyedyπππ-+--+-+∞+∞-+--∞-∞===⎰⎰222222222222222222()20111(,)1112xxy y xxy y xxy y x y x x t x t e e e y x t dy dt e e dye e dte e dtππππππ-+--+--+-+∞+∞+∞--------∞-∞===-==⋅⋅⋅⎰⎰⎰222222222222222211122111(,)11112xxy y xxy y x xy y xxuxu e e e t u dt e e u e due u e duππππππ-+--+--+-+∞+∞-------=====⎛⎫⋅Γ ⎪⎝⎭⎰⎰222222221,.1x xy y xxy y xe y π-+--+--==-∞<<+∞注: 由余元公式)10(sin )1()(<<=-ΓΓs s s s ππ得: π=⎪⎭⎫⎝⎛Γ21. 还可以用以下方法计算π=⎪⎭⎫ ⎝⎛Γ21.余元公式)10(sin )1()(<<=-ΓΓs ss s ππ的证明过程很繁杂,在此证明略. 先计算dxdy e Dy x ⎰⎰+-)(22, 其中区域D : a y a x ≤≤≤≤0,0.因为222:a y x D a ≤+, 22222:a y x Da≤+. 则dxdy e dxdy e dxdy e aaDy xDy xD y x ⎰⎰⎰⎰⎰⎰+-+-+-≤≤2222222)()()(,即dxdy e dx e dy edx edxdy eaaD y x ax aay x D y x ⎰⎰⎰⎰⎰⎰⎰+----+-≤⎪⎭⎫ ⎝⎛=≤22222222)(200)(. 令⎩⎨⎧==θθsin cos r y r x ,20,0πθ≤≤≤≤a r . 则()22214)(a D y x e dxdy ea-+--=⎰⎰π.令⎩⎨⎧==θθsin cos r y r x ,20,20πθ≤≤≤≤a r . 则()22222)(14a Dy x e dxdy e a-+--=⎰⎰π.所以()()2222201414a a x a e dx e e ----≤⎪⎭⎫ ⎝⎛≤-⎰ππ. 因为()414lim2ππ=--+∞→a a e , ()414lim 22ππ=--+∞→a a e , 所以22π=⎰∞+-dx e x ,进而π==⎪⎭⎫ ⎝⎛Γ⎰∞+-dx e x 02221.上面的积分给出了反常积分计算的一个重要方法: 夹逼方法.同学们应切记这种方法.(2) 多元函数反常积分性质与收敛性判别3、含参量的反常积分(考数学专业的同学需要掌握) (1) 含参量反常积分的概念和定义 (2) 含参量反常积分性质与收敛性判别 二、解证题方法 1、反常积分的计算反常积分的计算题在考研中很少出现, 如果出现, 一般用变量替换法求解.例1(南京农业大学2004年)求dx xx ⎰-1ln 1. 解 令te x =,则dt e dx t=. 进而021211ln 1000000202010=-=-=-=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-∞-∞-∞-∞-∞-dt t e du u e dt t e du u e dtt e dt t e dt t e e dt e t e dx x x t u t u t t t t tt . 例2(南京大学2000年)求dt ttx x ⎰→1120cos lim. 解 令x t 1=,则dx xdt 21-=,所以 1sin 1sin 1sin lim 11sin lim 11cos lim cos lim 121120=⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡=⎪⎭⎫⎝⎛=∞→∞→∞→→⎰⎰t t x dt x x dt t tt t t t xx . 例3(南京农业大学2004年)求dx x⎰+∞+0411. 解 作变量替换xt 1=,则 dt t tdx x dx x dx x dx x ⎪⎭⎫ ⎝⎛-+++=+++=+⎰⎰⎰⎰⎰∞+∞+20141041410404111111111111 ()()dx x x x x x dx x x dx x x dx x ⎰⎰⎰⎰-++++=++=+++=102221042104210421******** dx xx dx x x ⎰⎰-++++=1021022112121121()()dxx dx x ⎰⎰-++++=121212111211()()π420112arctan 210112arctan 21=-++=x x .例4(上海理工大学2003年)已知积分2sin 0π=⎰+∞dx x x ,计算dx x x ⎰∞+⎪⎭⎫⎝⎛02sin . 解dx x x x x x x d x dx x x ⎰⎰⎰∞+-∞+∞++∞+-=-=⎪⎭⎫ ⎝⎛0210202cos sin 20sin )(sin sin 2sin sin lim )2(22sin sin lim 220020π+⎪⎪⎭⎫ ⎝⎛+-=+⎪⎪⎭⎫ ⎝⎛-=+∞→→∞++∞→→++⎰a a b b x d x x a b x x b a b a 22sin sin lim 2220ππ=+⎪⎪⎭⎫ ⎝⎛+-=+∞→→+a a a b b b a . 例5(兰州大学2005年)求⎰1ln xdx .解 首先判断积分⎰1ln xdx 反常性。
a第七讲 非黎曼积分(反常积分)知识结构我们知道黎曼积分要求积分区间有限,并且积分区间是闭区间(闭区域) . 下 面研究积分区间无限 ,或积分区间不是闭区间的积分 ,我们称这样的积分为反常积分 ,所谓反常是指相对于黎曼积分的反常 .对正常积分 ,我们主要研究它的计算问题 , 而对反常积分 , 主要研究它的收敛问题 .一元函数的反常积分(1) 一元函数反常积分的概念和定义 我们知道黎曼积分要求积分区间是有限闭区间 a,b 或有限闭区域 D ,如果将a,b 换成无限区间[a,)或非闭区间(a,b]( a 是被积函数的瑕点)b在,我们称反常积分f(x)dx 收敛.积分区间 或 a,,由此产生的积分我们称为反常积分,反常积分是相对于黎曼积分所提出的, 反常”指将黎曼积分中的有限闭区间 a,b 换成无限区间 [a, ) 或非闭区间(a,b] ( a 是被积函数的瑕点,即函数f (x)在点x 处无界). 定义1 函 数 f (x) 在 无 限 区[a,) 连 续 , 则 定 义 Af (x)dx limf(x)dx ,如果极限 AaA lim aAf (x)dx 存在,我们称反常积分af (x)dx 收敛.定义 2 函数 f ( x )在非闭区间 (a,b ]连续, 而在点 a 右邻域内无界( a 是被积函数f(x) 的 瑕 点 )即函数在点a 无界则定义b af(x)dx lim 0 a bf (x)dxbkm k f(x)dx ,如果极限lim 0f (x)dx 存b af (x)dx 收敛.定义4函数f (x)在无限区间(a,)连续,a 是函数f(x)的瑕点,则定义bAb f (x)dx 叫 a f (x)dx Jim b f (x)dx ,b如果极限叫a f(x)dx 和WA bf (x)dx 均存在,我们称反常积分f (x)dx 收敛.②积分区域无限且被积函数f (x, y)有瑕点(了解)2、一元函数反常积分的性质与收敛判别 请同学们切记如下例子中的结论 .11 1例讨论积分-dx 和 一dx 的敛散性. 0x p 1 xp 函数f (x)在点a 右邻域内无界的意思是: lim f (x).注意:函数在点ax a没有定义,但函数f (x)在点a 右极限limx af (x)可以存在,这时a 不是被积函数f (x)的瑕点.sin x例如,函数在点 xsin x0处没有定义,但lim1,所以x 0不是积分x 0x1sinx dx 0x的瑕点.1sin x1sin x dx 不是反常积分.将积分dx 看作推广xx的黎曼积分. 因为,如果被积函数 f(x)在闭区间a,b 上仅有有限个第一类间断点,则积分bf (x)dx 为推广的黎曼积分,它也是收敛的.a定义3函数 f (x)在开区间(a,b)内连续,a,b 都是函数 f (x)的瑕点,则定义ba f(x)dxc bf (x)dx f (x)dxaclim 0ca f(x)dxblim f (x)dx ,0 c''如果极限lim f (x)dx 和lim0a',f (x)dx 均存在,我们称反常积分bf(x)dx f(x)dxaaa解显然Tdx 和-dx 均发散.x 1 x11在区间(0,1]上,当p 1时,函数 r -,即前者的图像在后者的图像下方x p x收敛(请同学给岀证明).当p 1时,函数 丄x p1像在后者的图像上方,这时1 1在区间[1,)上,当p 1时,函数二 ,即前者的图像在后者的图像上方 x p x 这时J_dx 发散(请同学给岀证明).当p 1时,函数1x pbf (x)dx a f (x)dx © f (x)dx .(c )若f(x)在任何有限闭区间[a,u ]上可积,且有 f (x)dx 收敛,f(x)dx 收敛,且f (x)dx af (x)dx .丄,即前者的图x丄,即前者的图x像在后者的图像下方 +dx x当p 1时, 当p 1时.无穷积分的性质与收敛性判别 ①无穷积分的性质(1) f 1(x)dx 与f 2(x)dx 收敛[k 1f1(X)k 2f 2(x)]dx 也收敛,且[k j f'x) k 2 f 2(x)]dx k 1f 1(x)dxk 2af 2(x)dx .(b)若f(x)在任何有限闭区间[a, u ]上可积f(x)dxaf (x) dx 同敛态(同时收敛或散),并1这时发散(请同学给岀证明),这时).1时,a当a为条件收敛.②无穷积分的收敛判别 (a)柯西收敛准则uif (x)dxaU2f (x)dxaU2f (x)dxU1无穷积分的柯西收敛准则可由函数极限的柯西收敛准则得到 (b)比较法则对无穷积分 a f (x)dx lim u u af (X)dX 的敛散性用以下准则可以作岀判断定理 1(柯西收敛准则)无穷积分 f(x)dx 收敛的充要条件是:对0,U U()U i , U 2 U 时f(x)dx 收敛时, f (x)dx 绝对收敛.我们称收敛而不绝对收敛者定理2(比较法则)设定义在[a,)上的两个函数 f(x) 和g(x)都在任何有限 区间[a,u ]上可积,且满足 f (x) g(x) ,x [a,),则当.g(x)dx 收敛时f (x) dx 必收敛;当f (x)dx 发散时° g(x)dx 必发散. 考虑当 g(x)dx 收敛时f (x)dx 必收敛是否正确当 f (x)dx 发散时g(x)dx 必发散是否正确推论1设定义在[a,)上的两个函数 f(x) 和g(x)都在任何有限区间[a,u ]上可积,g(x) 0,且 lim f (x) c ,xg(x)则有①当f(x)dx 与ag(x)dx 同敛态;②当0时,由ag(x)dx 收敛可推知f (x) dx 也收敛; ③当g(x)dx 发散可推知f (x)dx 也发散.[a,)上当x 时单调趋于0,则f (x)g(x)dx 收敛(了解).a(d)阿贝尔(Abel)判别法定理4(阿贝尔(Abel)判别法)若 f (x)dx 收敛,g(x)在[a,)上单调有界a则f (x)g(x)dx 收敛(了解).alim x pxf(x) c ,则有:①当p 1,0 c时, a f (x )dx 收敛;②当p 1,0 c时,af(x)dx 发散.利用不等式c f(x)| c g(x) ,即 c g(x) f(x) c 证上述结论 .(c)狄利克雷判别法且g(x)可定理3(狄利克雷判别法 )若F(u) ua利用不等式cfX)c,即 c g(x) f(x) c g(x)可证上述结论推论2设f (X )是定义在[a, )(a 0)的函数,且在任何有限区间[a,u ]上可积,则有: 1① 当 f(x) —,x [a, X 1 ② 当 f(x) J ,x [a,),且 p 1 时,& f (x)dx 收敛;),且 p 1 时,a f (x)dx 发散.利用结论 11 -pdx x,当p 1时,1 当p 借寸可证上述结论 P 1 ' 推论3设f (x)是定义在[a, )(a 0)的函数,在任何有限区间[a,u ]上可积,)上有界,g(x)在f (x)dx 在[a,定理2(比较法则)设定义在(a,b ]上的两个函数f (x)和g(x),瑕点同为瑕积分的性质与收敛判别 瑕积分的性质f (x)dx f (x) dxbf(x)dxU2U 2f(x)dxui瑕积分的柯西收敛准则可由函数极限的柯西收敛准则得到 (b)比较法则b 当 a条件收敛. ②瑕积分的收敛判别 (a)柯西收敛准则 b 对瑕积分 f (x)dxa f (x )dx 收敛时,称 bf (x)dx 绝对收敛.我们称收敛而不绝对收敛者为定理1(柯西收敛准则 limu abf (x)dx 的敛散性用以下准则可以作岀判断U)瑕积分a f (X)dX (瑕点为a )收敛的充要条件是:对 (),当 0 U i a,0 U 2 a 时,有若f 1(x)与f 2(x)都以x a 为瑕点,k i ,k 2为常数,则当瑕积分bf 1(x)dxaba f 2(X)dX 收敛时,b瑕积分[时匸区)k 2 f 2(x)]dx 必定收敛,且aba [k i f i (x) k 2 f 2(x)]dxb b k i f i (x)dx k 2f 2(x)dx .aa(b)设函数f (x)以x a 为瑕点,c (a,b)为任一常数,则瑕积分ba f(x)dxc与 f(x )dx 同敛态(同时收敛或同时发散a ),并且b f(x)dxac bb f (x)dx f (x)dx ,其中f (x)为定积分.acc(C)设函数f (x)以x a 为瑕点, 若f (x)在(a, b ]的任一内闭区间[u,b]上f (x)dx 收敛时,ba f (x)dx也必收bf (x) dxuix a , f(x)和g(x)都在任何有限区间[u,b ](a,b ]上可积,且满足bbf (x) g(x) , x (a,b],则当 a g(x)dx 收敛时 a f (x)dx 必收敛;当bf (x)dx 发散时a g(x)dx 必发散.bf (x)dx 必收敛是否正确当abg(x)dx 必发散是否正确[u,b ] (a,b ]上可积,则有① 当 f(x) -------- 1一,且 0 p 1 时, f(x)dx 收敛;x aa② 当f(x) —,且p 1时,"f (x)dx 发散.x aa1时,可证上述结论1时b考虑当 g( x)dx 收敛时ab f (x)dx 发散时a推论 1又若g(x) 0,且limfx) c ,则有 x ag(x)①当②当bc 时,a b0时,由 g(x)dx 收敛可推知f (x)dx 与 a g(x)dx 同敛态;bf (x)dx 也收敛;③当b由g g(x)dx 发散可推知:f(x)dx 也发散利用不等式c g(x) f(x) c g(x)可证上述结论 . 推论2设f (x)是定义在(a, b ]的函数,瑕点为x a ,且在任何有限区间利用结论+dx0 P 0 x推论3设f(x)是定义在(a, b]的函数,瑕点为x a ,且在任何有限区间p[u,b] (a,b]上可积,且 lim x a f (x),则有:x ab① 当0 p 1,0 时,a f(X)dX 收敛;b② 当p 1,0时,a f (x)dx 发散.2、多元函数的反常积分 (1)积分区域无限且被积函数f (x, y)没有瑕点①函数z f (x,y)在无限区域 D :[a,) [c,定义5函数z f(x, y)在无限区域D : [a, 存在, 我们称反常积分 dx f (x, y)dy 收敛.ac与数理统计中常用求概率分布函数F(x,y)的积分,即x yF(x, y) dx f (x, y)dy ,其中 f (x, y).定义6函数zf (x, y)在无限区域D :(,x] (,y]连续,则定义xyx yf(x,y)dxdydx f (x, y)dy limdx AD f (x, y)dy ,如果极限存 BDxy在, 我们称反常积分dx f(x, y)dy 收敛②函数z f (x, y)在无限区域D :( ,x] ( , y]上的反常积分 x y由于式中dx f (x, y)dy 的积分上限中的 x,y 与被积函数中的 x, y 不同,xyxy所以 dx f (x, y)dy 经常表示为 du f (u,t)dt .这种积分是概率论 )上的反常积分 )[c,)连续,则定义f(x,y)dxdyDdxacf (x, y)dy A Blim dx f (x, y)dy ,如果极限A acB③函数z f(x, y)在无限区域()( )上的反常积分(请同学上述积分在概率中经常用到.已知随机变量 X,Y ,函数f (x,y)是随机变量X ,丫的概率密度函数,F (x, y)表示随机变量 X ,丫的分布函数,则概率x yP(X x,Y y) F (x, y) dx f(x,y)dy5P(X x,Y)F(x,)xF X (X )dxf(x, y)dyxf x (x, y)dxP(X,Y y) F( ,y) yF Y W)dy f (x, y)dxyf Y (x, y)dyF x (x, y), F Y (x, y)分别称为X ,Y 边缘分布函数f (x, y) Ae 2x 2xy y求常数 A 及条件概率密度 f Y |X (yx). 解:因为F( ,)1,所以2 2dx Ae(x y ydy给岀其定义).④ 函数z f (x, y)在无限区域[a, 岀其定义).⑤ 函数z f (x, y)在无限区域[a, 定义).)(,)上的反常积分(请同学给)[c,)上的反常积分(请同学给岀其其中 f x (x, y) f y (x, y)X,Y 边缘概率密度函数 例如(考研2010年数学一)设二维随机变量(X,Y)的概率密度函数为1 F (x, y) dx f (x, y)dydxAe 2x22xy y 2 dyx 作变量替换r cos rsinx r cos rsinr sin则J(r,cos sinsincos sin dx Ae (x y)2y dyr cos2Ae r( r)drf Yx(y x) f (x, y)f x(x)1e2x22xy y21e2x2 2xy y2f(x,y)dy -e2x2 2xy y2dy1 2x22xy y2—e 1 2x22xy y2—e1 2x22xy y2—e1e x2 e (y x)2dy !e x2 e "dt 丄e^ 2 eSt(y t,dy dt) !e2x22xy y21e2x2 2xy y2■1e2x22xyy2丄e" u2e0 u du11u2e u dux2f(t22u, dt12x 22xy y2ee x2x22xy y2注:由余元公式(s) (s 1) ——(0 ssin s1)得:.还可以用以下方法计算1、.余元公式(s)(s1)2 1)的证明过程很繁杂,在此证明略.2 2先计算 e (x y )dxdy ,其中区域Dr cos r sin2xdx上面的积分给岀了反常积分计算的一个重要方法 这种方法.(2)多元函数反常积分性质与收敛性判别 含参量的反常积分(考数学专业的同学需要掌握) 含参量反常积分的概念和定义含参量反常积分性质与收敛性判别 、解证题方法 1、反常积分的计算 反常积分的计算题在考研中很少岀现 ,如果岀现,一般用变量替换法求解x2)dxdy D 2a 匸12 a2所以一1 4 a2o ex2dx2 a2因为lim — 114a2lim —a 42a2x2dxa,0 y因为 D a :x 2 y 2a 2,D2a:x 22 2y 2aD aD a/ 2 2、(x y)dxdy22(x y )dxdyr cos r sine (x2、y )dxdyx2dxy2dya,0(x2D a)dxdy ,2x2dxe (x2y 2)e (x22y )dxdy .dxdy 一4■. 2a,0:夹逼方法.同学们应切记 (1) ⑵1111x 1 1(南京农业大学 2004年)求dx . In xe t ,贝U dx e t dt . 进而x 1 . dx 0ln x0 e u 1 du 1 2 u 2jdt tt edt t2t te e dt tuedu u例2(南京大学 2000 年)求x m 0cosidt tdtdx ,所以xt im1 lim 1 x 0 —x1 1 cos- §dtt im.1 sin x例3(南京农业大学2004 解作变量替换 1 -,则 x 年)求 —dx .x0 r J ?dx 01 —dxx —dx x04 —dx x11 01 2x . —dx x11 x 2----- d x 、• 2x1 1x 2、2x2dx1 2x 1 2dx1 2x 1dt tt edt t1 t im1~4xsin 1dx.1 sin tsin 1.* dt1 x2 2x 1 x 22xdxdx21 ―——arctan . 2x 121 -一 arctan . 2x 10 2 例4(上海理工大学 2003年)已知积分sin x , dx .x2沁dx sin 2 xd(x 1)sin 2 x2sinxcosx ,dx xlima 0 b.2sin xsin 2Xj2x (2x) limsin 2 b・2sin alima 0 bsin 2 bsin 2 a例5(兰州大学2005 年)求 1 ln xdx . 0解首先判断积分 1ln xdx 反常性。
1 / 1 考研数学(二)真题解析:反常积分敛散性的判定来源:文都教育研究生入学考试大纲数学二对反常积分这个知识点的要求是:了解反常积分的概念,会计算反常积分。
从大纲要求看出,大纲对反常积分敛散性的判定要求比较低,但是近些年数二经常考敛散性的判定,所以考研的同学对此知识点不可小觑。
下面文都老师把数二近三年考到的这个知识点的两道真题帮大家分析一下。
【数二】下列反常积分中收敛的是( ) ()21d x x+∞⎰ ()2ln d x x x +∞⎰ ()21d ln x x x +∞⎰ ()2d x x x e +∞⎰ 解析:221d 2x x x +∞+∞==∞⎰,所以21d x x+∞⎰发散 ()222ln 1d ln 2x x x x +∞+∞==∞⎰,所以2ln d x x x +∞⎰发散 221d ln ln ln x x x x +∞+∞==∞⎰,所以21d ln x x x +∞⎰发散22222|3,x x x x x dx xde xe e dx e e+∞+∞+∞--+∞--=-=-+=⎰⎰⎰收敛. 应选()本题主要是应用牛顿—莱布尼兹公式的推广来判定反常积分的敛散性,题目比较简单。
【数二】设函数()111,1,(1)1,.ln x e x x e x x αα-+⎧<<⎪-⎪⎨⎪≥⎪⎩若反常积分()1f x dx +∞⎰收敛,则( )() 2α<- () 2α>() 20α-<< () 02α<< 解析:1111()(1)ln e e dx dx f x dx x x x αα+∞+∞-+=+-⎰⎰⎰ 1111lim(1)1(1)x x x αα--→-=-,因为11(1)e dx x α--⎰收敛,所以11α-<,即2α< 又因为1111(ln )(ln )|ln ln e e e dx d x x x x x αααα+∞+∞-+∞++==-⎰⎰ 因为1ln e dx x x α+∞+⎰收敛,所以0α>,因此02α<<。
数学分析重点概念整理第一章 集合与函数1. 集合定理1.1.1可列个可列集之并也是可列集。
定理1.1.2 有理数集Q 是可列集Descartes 乘积集合{(,)|}A B x y x A y B ⨯=∈∈并且 2. 映射与函数映射的基本要素映射要求元素的像必须是唯一的,但不要求逆像也具有唯一性。
基本初等函数Dirichlet 函数,任何有理数都是其周期。
定义1.2.7 算术平均值:1...n a a n ++,调和平均值111...nna a ++第二章 数列极限1.实数系的连续性上确界的定义:下确界的定义:定理 2.1.1(确界存在定理——实数系连续性定理)非空有上界的数集必有上确界;非空有下界的数集必有下确界。
定理2.1.2非空有界数集的上(下)确界是唯一的。
2.数列与数列极限数列极限的形式 (1)唯一性定理2.2.1 收敛数列的极限必唯一 (2)有界性定理2.2.2收敛数列必有界 (3)数列的保序性定理2.2.3 设数列{},{}n n x y 均收敛,若,且a b <,则存在正整数N ,当n N >是,成立n n x y <四则运算只能推广到有限个数列的情况3.无穷大量4.收敛准则定理2.4.1 单调有界数列必定收敛。
(确界存在定理)用定理证明的时候先用方法证明有界性(归纳法等),再证明单调性(做差)用闭区间套定理可以证明定理2.4.3 实数集R 是不可列集。
定理2.4.5(Bolzano-Weierstrass 定理)有界数列必有收敛子列。
定理 2.4.6 若{}n x 是一个无界数列,则存在子列{}k n x 使得lim k n k x →∞=∞。
定理2.4.7(Cauchy收敛原理)数列{}n x收敛的充要条件是{}n x是基本数列。
由实数构成的基本数列必存在实数极限,这一性质称为实数系的完备性,有理数不具有完备性。
实数系之间的推理关系:定理2.4.8 实数系的完备性等价于实数系的连续性。
《数学分析》第十一章反常积分1《数学分析》第十一章反常积分1第十一章反常积分在数学分析中,我们经常研究的是定义在有界闭区间上的函数的积分,这些函数在有界闭区间上的积分被称为定积分。
但是,在实际应用中,有时会遇到一些函数在一些点上的值没有定义,或者函数在一些有界闭区间上的积分不存在,这就引出了反常积分的概念。
反常积分是对于在有界闭区间上不满足定积分条件的函数进行积分,也可以看作是对定积分的扩充。
反常积分分为无穷积分和广义积分两种类型。
一、无穷积分如果函数f(x)在区间[a,+∞)上定义,而对于任意的x∈[a,+∞),f(x)都是有定义的,那么这样的函数f(x)在[a,+∞)上的积分称为无穷积分。
记作∫[a,+∞) f(x)dx如果函数f(x)在区间(-∞,a]上定义,而对于任意的x∈(-∞,a],f(x)都是有定义的,那么这样的函数f(x)在(-∞,a]上的积分称为无穷积分。
记作∫(-∞,a] f(x)dx在计算无穷积分时,常常使用变量替换或者部分积分等方法。
二、广义积分如果函数f(x)在区间[a,b]上除了其中一点x=c外都是有定义的,而在x=c处f(x)的定义和c的极限存在,那么这样的函数f(x)在[a,b]上的积分称为广义积分。
记作∫[a,b] f(x)dx如果函数f(x)在区间[a,b)上除了其中一点x=b外都是有定义的,而在x=b处f(x)的定义和b的极限存在,那么这样的函数f(x)在[a,b)上的积分称为广义积分。
记作∫[a,b) f(x)dx如果函数f(x)在区间(a,b]上除了其中一点x=a外都是有定义的,而在x=a处f(x)的定义和a的极限存在,那么这样的函数f(x)在(a,b]上的积分称为广义积分。
记作∫(a,b] f(x)dx如果函数f(x)在区间(a,b)上除了其中一点x=a和x=b外都是有定义的,而在x=a和x=b处f(x)的定义和a、b的极限存在,那么这样的函数f(x)在(a,b)上的积分称为广义积分。
第11章 反常积分§11. 1 反常积分的概念一 基本内容一、无穷限反常积分定义 1 设函数()f x 在[, )a +∞上有定义,且在任意区间[, ]a u 上可积,如果lim()d uau f x x→+∞⎰存在,则称此极限为()f x 在[, )a +∞上的反常积分,亦称为()f x 在[,)a +∞上的无穷限反常积分,简称无穷限积分,记作 ()d af x x+∞⎰.ie ()d lim ()d ua au f x x f x x+∞→+∞=⎰⎰:,此时并称 ()d a f x x+∞⎰收敛.如果极限不存在,则称 ()d af x x+∞⎰发散.同理可定义 ()d lim()d bbuu f x x f x x-∞→-∞=⎰⎰, ()d ()d ()d a af x x f x x f x x+∞+∞-∞-∞=+⎰⎰⎰,几何解释如图.()d af x x+∞⎰收敛是指图中阴影区域的 面积存在.二、瑕积分定义 2 设函数()f x 在(, ]a b 上有定义,且在点a 的任一右邻域内无界,而在[, ](, ]u b a b ⊂上有界可积,如果 lim ()d buu a f x x +→⎰存在,则称此极限为无界函数()f x 在上(, ]a b 的反常积分,记作 ()d baf x x⎰,ie ()d lim ()d bbauu af x x f x x+→=⎰⎰:,并称 ()d baf x x⎰收敛,否则称其发散.其中a 称为瑕点.无界函数的反常积分亦称为瑕积分.同理可得b 为瑕点时, ()d lim ()d bu a a u b f x x f x x-→=⎰⎰.当()f x 的瑕点(, )c a b ∈,则定义()d ()d ()d bcbaacf x x f x x f x x=+⎰⎰⎰lim ()d lim ()d u bauu cu cf x x f x x -+→→=+⎰⎰.若, a b 都是()f x 的瑕点,则定义()d ()d ()d bc baacf x x f x x f x x=+⎰⎰⎰lim ()d lim ()d c uucu au bf x x f x x+-→→=+⎰⎰.二 习题解答1 讨论下列无穷积分是否收敛?若收敛,则求其值 (1)2d x xe x+∞-⎰;解:由于2201d (1)2ux u xe x e --=--⎰,21limd 2ux u xe x -→+∞=⎰.所以该反常积分收敛,且收敛于12.(2)2d x xe x+∞--∞⎰;解:由于22 01d (1)2x u uxe x e -=--⎰21limd 2x ux xe x -→-∞=-⎰而2220d d d 0x x x xe x xe x xe x +∞+∞----∞-∞=+=⎰⎰⎰所以该反常积分收敛,且收敛于0.(3)0x +∞⎰;解:由于21ux ⎛⎫= ⎝⎰,lim 212u →+∞⎛⎫= ⎝.所以该反常积分收敛,且收敛于2.(4) 2 11d (1)x x x +∞+⎰;解:由于22 111111d d (1)1uu x x x x x x x ⎛⎫=-+ ⎪++⎝⎭⎰⎰11111ln 1ln ln 2ux u x x u u ++⎛⎫=-+=-+- ⎪⎝⎭.2 11limd 1ln 2(1)uu x x x →+∞=-+⎰.所以该反常积分收敛,且收敛于1ln 2-.(5) 2 1d 445x x x +∞-∞++⎰;解:由于 22 0 0111d d(21)4452(21)1u u x x x x x =+++++⎰⎰011arctan(21)arctan(21)228|u x u π=+=+-2 01lim d 445488uu x x x πππ→+∞=-=++⎰,0 022 111d d(21)4452(21)1u u x x x x x =+++++⎰⎰ 011arctan(21)arctan(21)282|u x u π=+=-+02 1lim d 44584u u x x x ππ→-∞=+++⎰所以该反常积分收敛,且收敛于2π.(6) 1sin d x e x x+∞-⎰;解:由于 11sin d [1(sin cos )]2ux ue x x e u u --=-+⎰,11lim sin d 2ux u e x x -→+∞=⎰.所以该反常积分收敛,且收敛于12.(7) sin d x e x x+∞-∞⎰;解:由于 01sin d [1(sin cos )]2uxu e x x e u u =-+⎰,1limsin d ux u e x x →+∞=∞⎰.所以该反常积分发散. (8)1x +∞⎰.解:由于 1ln(u x u =+⎰,1limuu x →+∞=+∞⎰.所以该反常积分发散.2 讨论下列瑕积分是否收敛?若收敛,则求其值(1) 1d ()b p a x x a -⎰; 解:由于x a =为瑕点,而11 ()1()11d 11()ln()ln()1p p b p u b a u a p x p px a b a u a p --⎧---≠⎪=--⎨-⎪---=⎩⎰,1 ()11lim d 1()1pb p u u a b a p x p x a p +-→⎧-<⎪=-⎨-⎪∞≥⎩⎰,所以1p <时,该瑕积分收敛,且值为1()1pb a p ---; 所以1p ≥时,该瑕积分发散.(2) 1201d 1x x -⎰;解:由于1x =为瑕点,而u2011d [ln(1)ln(1)]12x u u x =+---⎰,u2011lim d 1u x x -→=∞-⎰.所以该瑕积分发散.(3)2x⎰;解:由于1x =为瑕点,而2(1uux x ==⎰⎰,1lim 2uu x -→=⎰.同理21lim 2uu x +→=⎰,所以该瑕积分收敛,且值为4.(4)1x ⎰;解:由于1x =为瑕点,而1u x =⎰1lim 1uu x -→=⎰所以该瑕积分收敛,且值为1. (5)1ln d x x⎰;解:由于0x =为瑕点,而1ln d 1ln ux x u u u=-+-⎰,1lim ln d 1uu x x +→=-⎰.所以该瑕积分收敛,且值为1-. (6)x ⎰;解:令2sin x t =,则cos dx t t t=⎰⎰2220 02sin d(1cos2)d2t t t tπππ==-=⎰⎰,所以该瑕积分收敛,且值为2π.(7)1x⎰;解:令2sinx t=,则12x tπ=⎰⎰22d tππ==⎰.所以该瑕积分收敛,且值为π.(8)11d(ln)pxx x⎰.解:由于0x=,1为瑕点,又11(ln)111d(ln)ln ln1ppx C ppxx xx C p-⎧+≠⎪-=⎨⎪+=⎩⎰,而1p=时,1limlnlnxx-→=∞,1p<时,11lim(ln)1pxxp+-→=∞-1p>时,111lim(ln)1pxxp--→=∞-所以p R∀∈,瑕积分11d(ln)pxx x⎰发散.3 举例说明:瑕积分()dbaf x x⎰收敛时,2()dbaf x x⎰不一定收敛.解:例如x⎰收敛于2π,但1d1xxx-⎰发散.4 举例说明:积分()daf x x+∞⎰收敛,且()f x在[,)a+∞上连续时,不一定有lim()0xf x→+∞=.解:例如+41sin dx x x∞⎰.因令x=+ +41 11sin d4x x x t∞∞=⎰⎰.所以 +4 1sin d x x x∞⎰收敛,且4()sin f x x x =在[,)a +∞上连续,但lim ()x f x →+∞不存在.5 证明:若 ()d af x x+∞⎰收敛,且lim ()x f x A→+∞=存在,则0A =. 证:假设0A ≠,不妨设0A >,因lim ()x f x A→+∞=,所以0M ∃>,()2Ax M f x ∍>⇒>“”.于是 ()d ()2uMAf x x u M >-⎰,从而lim()d uMu f x x →+∞=∞⎰.此与 ()d af x x+∞⎰收敛矛盾,故0A =.6 证明:若()f x 在[,)a +∞上可导,且()d af x x+∞⎰与()d af x x+∞'⎰都收敛,则li m ()0x f x →+∞=.证:因为()d ()()u af x x f u f a '=-⎰,所以由()d af x x+∞'⎰都收敛知lim ()x f x →+∞存在,故由上一题知lim ()0x f x →+∞=.§11. 2 无穷限积分的性质与收敛判别一 基本内容一、无穷限积分的性质 由无穷限积分的定义知()d af x x+∞⎰收敛lim()d uau f x x→+∞⇔⎰存在;由极限的柯西收敛准则知lim()d uau f x x→+∞⎰存在0,,G a ε⇔∀>∃≥2112 ,()d u u u u G f x x ε∍>⇒<⎰“”.定理1()d af x x+∞⎰收敛0,,G a ε⇔∀>∃≥2112 ,()d u u u u G f x x ε∍>⇒<⎰“”.性质1 若 1 ()d ,af x x +∞⎰ 2 ()d af x x+∞⎰都收敛,则12,k k ∀,[] 1111()()d ak f x k f x x +∞+⎰也收敛,且[] 11111122 ()()d ()d ()d a aak f x k f x x k f x x k f x x+∞+∞+∞+=+⎰⎰⎰.性质2 若,()u a f x ∀>在[, ]a u 上可积,则b a ∀>, ()d af x x+∞⎰与 ()d bf x x+∞⎰同收同发,且()d ()d ()d b aabf x x f x x f x x+∞+∞=+⎰⎰⎰.性质3 若,()u a f x ∀>在[, ]a u 上可积,则()d af x x+∞⎰收敛()d af x x+∞⇒⎰收敛,且()d ()d aaf x x f x x+∞+∞≤⎰⎰.定义1 如果 ()d af x x+∞⎰收敛,则 ()d af x x+∞⎰称绝对收敛.二、比较判别法比较判别法仅应用于绝对收敛的判别. 由于()()d uaF u f x x=⎰单调上升,所以,()d af x x+∞⎰收敛()()d ua F u f x x⇔=⎰有上界.定理2 若,(),()u a f x g x ∀>在[, ]a u 上可积,且,()()x a f x g x ∀>≤,则 ()d ag x x+∞⎰收敛()d af x x+∞⇒⎰收敛;而 ()d af x x+∞⎰发散()d ag x x+∞⇒⎰发散.推论 (比较判别法的极限形式)若,(),()u a f x g x ∀>在[, ]a u 上可积,, ()0x a g x ∀>>,且()lim()x f x cg x →+∞=, 则(1) 0c <<+∞ ()d af x x+∞⇒⎰与 ()d ag x x+∞⎰同收同发; (2) 0c =时, ()d ag x x+∞⎰收敛()d af x x+∞⇒⎰收敛; (3) c =+∞时, ()d ag x x+∞⎰发散()d af x x+∞⇒⎰发散.当选用 11d p x x+∞⎰为比较“尺子”时,则得下面的柯西判别法.定理3 (柯西判别法) 若0,()u a f x ∀>>在[, ]a u 上可积,则 1(1) ()p f x x ≤,且1p >时, ()d a f x x+∞⎰收敛;1(2) ()pf x x ≥,且1p ≤时, ()d a f x x +∞⎰发散.定理'3(柯西判别法的极限形式) 若0,()u a f x ∀>>在[, ]a u 上可积,且lim ()p x x f x λ→+∞=,则(1) 0λ≤<+∞,且1p >时, ()d af x x +∞⎰收敛; (2) 0λ<≤+∞,且1p ≤时, ()d af x x+∞⎰发散.三、狄立克雷判别法与阿贝尔判别法 此法是对一般无穷限积分的敛散性判别. 定理4 (狄立克雷判别法) 若,()()d uau a F u f x x∀>=⎰有界,()g x 在[,)a +∞上单调,且lim ()0x g x →+∞=,则()()af xg x dx+∞⎰收敛.定理 5 (阿贝尔判别法) 若()d af x x+∞⎰收敛,()g x 在[,)a +∞上单调有界,则()()d af xg x x+∞⎰收敛.二 习题解答1 设()f x 与()g x 是定义在[,)a +∞上的函数,u a ∀>,()f x 与()g x 在[,]a u 上可积,证明:若2 ()d af x x+∞⎰与 2 ()d ag x x+∞⎰都收敛,则 ()()d af xg x x+∞⎰与 2 [()()]d af xg x x+∞+⎰亦收敛.证:(1) 因为t R ∀∈,()2()()0tf x g x -≥,从而()2()()d 0a tf x g x x +∞+≥⎰, 即222()d 2()()d ()d 0aaat f x x t f x g x x g x x +∞+∞+∞-+≥⎰⎰⎰.故由判别式为负得()2222()()d 4()d ()d 0aaaf xg x x f x x g x x +∞+∞+∞-≤⎰⎰⎰.即()222()()d ()d ()d aaaf xg x xf x xg x x+∞+∞+∞≤⎰⎰⎰.而 2()d a f x x +∞⎰,2()d a g x x+∞⎰收敛, 所以 ()()d a f x g x x +∞⎰收敛.又2 [()()]daf xg x x +∞+⎰2()d af x x +∞=⎰2()()af xg x x +∞+⎰2()d a g x x+∞+⎰,所以2 [()()]d af xg x x+∞+⎰收敛.证:(2) 因为 2 ()d af x x+∞⎰与 2 ()d ag x x+∞⎰都收敛,所以22 ()()d 2af xg x x+∞+⎰收敛.而 22()()()()2f x g x f x g x +≤,故 ()()d a f x g x x+∞⎰绝对收敛,亦收敛.又2 [()()]d af xg x x+∞+⎰22 ()d 2()()d ()d aaaf x x f xg x x g x x+∞+∞+∞=++⎰⎰⎰.所以由四则运算知 2 [()()]d af xg x x+∞+⎰收敛.2 设()f x 、()g x 、()h x 是定义在[,)a +∞上的三个连续函数,且()()()f x g x h x ≤≤,证明(1) 若 ()d a f x x+∞⎰, ()d a h x x+∞⎰都收敛,则 ()d a g x x+∞⎰也收敛;证:因为()()()f x g x h x ≤≤,所以u a ∀>,()d uaf x x ⎰()d u ag x x ≤⎰ ()d uah x x≤⎰.而()d af x x+∞⎰, ()d ah x x +∞⎰都收敛,所以 lim()d uau f x x →+∞⎰, lim()d ua u h x x→+∞⎰都存在,从而 lim()d uau g x x→+∞⎰存在,故 ()d ag x x+∞⎰收敛.(2) 若 ()d af x x +∞⎰ ()d ah x x A+∞==⎰,则 ()d a g x x A+∞=⎰.证:因为 ()d a f x x +∞⎰ ()d ah x x A +∞==⎰所以lim()d uau f x x A→+∞=⎰, lim()d uau h x x A→+∞=⎰,于是由夹逼性定理得 lim ()d uau g x x A→+∞=⎰,故 ()d a g x x A+∞=⎰.3 讨论下列无穷限积分的收敛性:(1) 0x +∞⎰;解:因为43lim 1x x →+∞=,而x+∞⎰收敛,故x+∞⎰收敛.(2)1d 1x xx e +∞-⎰;解:因为2lim 01x x x x e →+∞⋅=-,而 2 11d x x +∞⎰收敛,故 1d 1xxx e +∞-⎰收敛.(3)x +∞⎰;解:因为lim 1x =,而1x+∞⎰发散,故x+∞⎰发散.(4) 3 1arctan d 1x xx x +∞+⎰;解:因为23arctan lim 12x x x x x π→+∞⋅=+,而 2 01d xx +∞⎰收敛,故 3 1arctan d 1x xx x +∞+⎰收敛. (5) 1ln(1)d n x x x +∞+⎰; 解:当1n ≤时, 1ln(1)d n x x x +∞+⎰发散,当1n >时, 1ln(1)d n x x x +∞+⎰收敛.(6)d (,0)1mnx x m n x +∞>+⎰.解:因为lim 11m n mn x x xx -→+∞⋅=+,所以当1n m -≤时,0d 1mn x x x +∞+⎰发散, 当1n m ->时,0d 1mn x x x +∞+⎰收敛.4 讨论下列无穷限积分绝对收敛还是条件收敛: (1)1x x +∞⎰;解:因为12lim 1x x →+∞=,而1x+∞⎰发散,所以1x ⎰发散.又1()2cos14uF u x ==-≤⎰,()g x 在x →+∞时单调下降以零为极限,所以由狄氏判别法知1x ⎰收敛.综上可知 1x ⎰条件收敛.(2) 2 0sgn(sin )d 1x x x +∞+⎰; 解:因为22sgn(sin )111x x x ≤++,而 2 01d 1x x +∞+⎰收敛,所以 2 0sgn(sin )d 1x x x +∞+⎰绝对收敛.(3)x⎰;解:因为0()cos d sin 1u F u x x u ==≤⎰,而()g x =在x →+∞时单调下降以零为极限,所以由狄氏判别法知x⎰收敛.=+,而x ⎰发散,0x⎰收敛,所以x⎰发散,综上可知0x⎰条件收敛.(4)ln(ln )sin d ln ex x x x +∞⎰.解:因为()sin d cos cos 2u eF u x x e u ==-≤⎰,ln(ln )()ln x g x x =在x →+∞时单调下降以零为极限,所以由狄氏判别法知ln(ln)sin dlnexx xx+∞⎰收敛.又2ln(ln)ln(ln)ln(ln)ln(ln)sin sin cos2ln ln2ln2lnx x x xx x x x x x x≥=-,而ln(ln)dlnexxx+∞⎰发散,ln(ln)cos2dlnexx xx+∞⎰收敛,所以ln(ln)sin dlnexx xx+∞⎰条件收敛.5 举例说明,()daf x x+∞⎰收敛时,2()daf x x+∞⎰不一定收敛;()daf x x+∞⎰绝对收敛时,2()daf x x+∞⎰也不一定收敛.证:例如()f x=1()df x x+∞⎰收敛,但221 1()df x x x+∞+∞=⎰⎰发散.又如345345333100,221,()1,11 01,(1)xn x n n x n nnf xn x n n x n nnx n nn n ⎧⎡⎤∈-⎪⎢⎥⎣⎦⎪⎪⎛⎫+-∈-⎪ ⎪⎝⎭⎪=⎨⎡⎤⎪-++∈+⎢⎥⎪⎣⎦⎪⎛⎫⎪∈-+-⎪⎪-⎝⎭⎩,如图.则23331111()d231236f x x nnπ+∞=⋅+⋅++⋅+=-⎰,所以 1()d f x x+∞⎰收敛且为绝对收敛.但21()df x x+∞⎰发散.6 证明:()daf x x+∞⎰若绝对收敛,且lim()0xf x→+∞=,则2()daf x x+∞⎰必定收敛.证:因为lim()0xf x→+∞=,所以110,,()1M a x M f x ε∀>∃>∍>⇒≤“”,于是1x M >时,2()()f x f x ≤,又()d af x x+∞⎰收敛,就上述ε,2M a ∃>,21122,()d u u u u M f x x ε∍>⇒<⎰“”取12max{,}M M M =,则12,u u M >时,22112()d ()d u u u u f x x f x x ε≤<⎰⎰,故 2 ()d af x x+∞⎰收敛.7 证明:若()f x 是[,)a +∞上的单调函数,且 ()d a f x x +∞⎰收敛,则lim ()0x f x →+∞=. 证:不妨设()f x ,则[,),()0x a f x ∀∈+∞≥.实因假设00[,),()0x a f x ∃∈+∞<,则0x x >时,0()()f x f x ≤, 从而 000 ()d ()()ux f x x f x u x ≥-⎰,即 0 l i m ()dux u f x x →+∞=∞⎰,此与 ()d af x x+∞⎰收敛矛盾.又由 ()d af x x+∞⎰收敛得 0,M a ε∀>∃>,22()d 2xx x M f t t ε∍>⇒<⎰“”. 而221()d ()d ()02x xxx f t t f x t xf x ≥=≥⎰⎰,所以2x M >时,0()xf x ε≤<,于是0()f x ε≤<, 故lim ()0x f x →+∞=.8 证明:若()f x 在[,)a +∞上一致连续,且 ()d a f x x+∞⎰收敛,则lim ()0x f x →+∞=.证:假设lim ()0x f x →+∞≠,则00ε∃>,M a ∀>,0x M ∃>,00()f x ε∍≥“”.因为()f x 在[,)a +∞上一致连续,所以0δ∃>,000()()22x x f x f x εδδ∍<-<⇒-<“”. 从而00()()()()2f x f x f x f x ε≥--≥于是M a ∀>,0,x x M ∃>,00()d 24xx f x x x x εεδ∍≥->⎰“”.此与 ()d af x x+∞⎰收敛矛盾,故lim ()0x f x →+∞=.9 利用狄利克雷判别法证明阿贝尔判别法. 证:因为 ()d af x x+∞⎰收敛,所以0M ∃>,u a ∀>,()()d uaF u f x x M=≤⎰,即()F u 在[,)a +∞上有界.又()g x 单调有界,所以极限存在.设lim ()x g x A→+∞=,则()lim ()0x g x A →+∞-=,从而由狄氏差别法知() ()()d af xg x A x+∞-⎰收敛.而() ()()d ()()d ()d a aaf xg x x f x g x A x A f x x+∞+∞+∞=--⎰⎰⎰故 ()()d af xg x x+∞⎰收敛.§11. 3 瑕积分的性质与收敛判别一 基本内容一、瑕积分的性质设a 为瑕点,由瑕积分的定义知()d baf x x⎰收敛存在lim ()d buu af x x+→⇔⎰,由极限的柯西收敛准则知lim ()d buu af x x+→⎰存在0,0,εδ⇔∀>∃>2112 ,(,)()u u u u a a f x dx δε∍∈+⇒<⎰“”.定理1()d baf x x⎰收敛0,0εδ⇔∀>∃>,2112 ,(,)()d u u u u a a f x x δε∍∈+⇒<⎰“”.性质 1 设 a 为瑕点,若1 ()d baf x x⎰、2 ()d baf x x⎰都收敛,则12,k k ∀,[] 1122()()d bak f x kf x x+⎰也收敛,且[] 11221122 ()()d ()d ()d bbba aak f x k f x x k f x x k f x x+=+⎰⎰⎰.性质2 设a 为瑕点,则(,)c a b ∀∈, ()d baf x x⎰与 ()d caf x x⎰同收同发,且收敛时,()d ()d ()d bcb aacf x x f x x f x x=+⎰⎰⎰.性质3 设 a 为瑕点,若,()u a f x ∀>在[, ]u b 上可积,则()d baf x x⎰收敛()d baf x x⇒⎰收敛,且()d ()d bbaaf x x f x x≤⎰⎰.定义1 如果收敛 ()d ba f x x⎰,则称 ()d ba f x x⎰绝对收敛. 二、比较判别法比较判别法仅应用于绝对收敛的判别.定理2 设a 为瑕点,若,(),()u a f x g x ∀>在[, ]u b 上可积,且,()()x a f x g x ∀>≤, 则 ()d ba g x x⎰收敛()d baf x x⇒⎰收敛,而()d baf x x⎰发散⇒()d bag x x⎰发散.推论(比较判别法的极限形式) 若,(),()u a f x g x ∀>在[, ]u b 上可积,, ()0x a g x ∀>>,且()lim ()x af x cg x +→=,则(1) 0c <<+∞时, ()d ba f x x⎰与 ()d bag x x ⎰同收同发; (2) 0c =时, ()d bag x x⎰收敛()d b af x x⇒⎰收敛;(3) c =+∞时, ()d bag x x⎰发散 ()d ba f x x ⇒⎰发散.定理3 (柯西判别法) 若0,()u a f x ∀>>在[, ]u b 上可积,则(1)1()()pf x x a ≤-且01p <<时, ()d b a f x x ⎰收敛; (2)1()()pf x x a ≥-且1p ≥时, ()d ba f x x ⎰发散. 定理 3 (柯西判别法的极限形式) 若0,()u a f x ∀>>在[, ]ub 上可积,且l i m ()|()|p x a x a f x λ+→-=,则(1) 0λ≤<+∞且01p <<时, ()d ba f x x⎰收敛;(2) 0λ<≤+∞且1p ≥时, ()d ba f x x⎰发散.二 习题解答1 讨论瑕积分的收敛性(1) 22 01d (1)x x -⎰;解:瑕点为1x =.改写积分为 2 1 2222 0 0 1111d d d (1)(1)(1)x x xx x x =+---⎰⎰⎰.因为121d(1)xx-⎰发散,所以221d(1)xx-⎰发散.(2)32sindxxxπ⎰;解:瑕点为0x=.因为2lim1xx→=,而 0xπ⎰收敛,所以32sindxxxπ⎰收敛.(3)1x ⎰;解:瑕点为0,1x=.因为H1111lim(1)lim11x x xxx--→→→-==,而11d1xx-⎰发散,所以1x⎰发散.(4)1lnd1xxx-⎰;解:瑕点为1x=.而112H211112ln ln(1)lim(1)lim lim012(1)x x xx x xxx xx---→→→--⋅===--,又1x⎰收敛,所以1lnd1xxx-⎰收敛.(5)13arctand1xxx-⎰;解:瑕点为1x=.而3211arctan arctanlim(1)lim1112x xx xxx x xπ--→→-⋅==-++,又11d1xx-⎰发散,所以13arctand1xxx-⎰发散.(6)21cosdmxxxπ-⎰;解:瑕点为0x=.而21cos1lim2mmxxxx+-→-⋅=,所以当21m-<,即3m<时21cosdmxxxπ-⎰收敛;所以当21m -≥,即3m ≥时2 01cos d m xx x π-⎰发散.(7) 1011sin d x xx α⎰;解:瑕点为0x =.而111sin x x x αα≤, 所以当01α<<时, 1 011sin d x x x α⎰绝对收敛;又2α≥时,1111sin xx x αα-≤,而 11 01d x x α-⎰发散,所以此时1011sin d x x x α⎰发散; 当12α≤<时, 1 011sin d x xx α⎰条件收敛. (8) 0ln d x e x x+∞-⎰.解:积分表为11ln d ln d ln d x x x e x x e x x e x x+∞+∞---=+⎰⎰⎰.就 1ln d x e x x-⎰,瑕点为0x =,而120lim ln 0xx x e x +-→⋅=,所以 1 0ln d x e x x-⎰收敛;就 1ln d x e x x+∞-⎰,因20lim ln 0x x x e x +-→⋅=,所以 1ln d x e x x+∞-⎰收敛.综上可知 0ln d x e x x+∞-⎰收敛.2 计算下列瑕积分的值 (1) 1(ln )d n x x⎰;解:设1 0(ln )d n n I x x=⎰,则1111 0lim(ln )lim (ln )d |n n n n eee e I x x n x x nI ++--→→=-=-⎰,而10 0d 1I x ==⎰,所以 1 0(ln )d (1)!n n x x n =-⎰.(2)1nx ⎰.解:令2sin x t =,则d 2sin cos d x t t t =,于是121202sin d n n n I x t t π+==⎰⎰ 22 02sin d(cos )n t t π=-⎰22122202sin cos 22sin cos d |nn t t n t t tππ-=-+⋅⎰212122 04sind 4sin d n n n t t n t tππ-+=-⎰⎰12()n n n I I -=-,于是 1221n n n I I n -=+,而0I =2 02sin d 2t t π==⎰,所以212(2)!!2(!)2(21)!!(21)!n n n n I n n +=⋅=++.3 证明瑕积分2 0ln(sin )d J x xπ=⎰收敛,且ln 22J π=-,(提示:利用22 0ln(sin )d ln(cos )d x x x xππ=⎰⎰,并将它们相加).证:瑕点为0x =,而3H 20001sin lim ln(sin )lim lim 2cos x x x x x x x+++→→→=-⋅3201sin lim 02cos x x x x +→=-=,所以2 0ln(sin )d J x xπ=⎰收敛.令2x t π=-知22 0 0ln(sin )d ln(cos )d x x x x ππ=⎰⎰,于是22 0 02ln(sin )d ln(cos )d J x x x xππ=+⎰⎰22 0 0sin 2ln(sin cos )d lnd 2xx x x x ππ==⎰⎰2 0ln sin 2d ln 22x x ππ=-⎰.而令2x t =得201ln sin 2d ln sin d 2x x t t ππ=⎰⎰ 2 0 211ln sin d ln sin d 22t t t t πππ=+⎰⎰ 22 0 011ln sin d ln cos d 22t t t t J ππ=+=⎰⎰.所以ln 22J π=-.4 利用上题结果,证明(1)2ln(sin )d ln 22ππθθθ=-⎰;证:令t θπ=-,则ln(sin )d ()ln(sin )d t t tππθθθπ=-⎰⎰,于是ln(sin )d ln(sin )d 2πππθθθθθ=⎰⎰220ln(sin )d ln 22πππθθ==-⎰.(2) 0sin d 2ln 21cos πθθθπθ=-⎰.证:() 0 0sin d d ln(1cos )1cos ππθθθθθθ=--⎰⎰ln 2ln(1cos )d ππθθ=--⎰2 0 0ln 2ln 2d ln sin d 2ππθπθθ⎛⎫=-- ⎪⎝⎭⎰⎰ 02lnsin d 2πθθ=-⎰2 04lnsin d t tπ=-⎰2ln2π=. 所以 0sin d 2ln 21cos πθθθπθ=-⎰.总练习题111 证明下列等式(1) 110 1d d ,011p px x x x p x x --+∞=>++⎰⎰;证:令1x t =,则21d d x t t =-,于是1111 1112 0 00111d lim d lim d 1111p p p e e e e x x x x t x x t t t ++---→→⎛⎫==⋅⋅-⎪++⎝⎭+⎰⎰⎰1 1 10lim d d 11p p ee t t t tt t +--+∞→==++⎰⎰, 所以110 1d d ,011p p x x x x p x x --+∞=>++⎰⎰.(2) 10 0d d ,0111p px x x x p x x --+∞+∞=<<++⎰⎰.证:因为01p <<,所以0x =为瑕点.令1x t =,则21d d x tt =-,于是1 0 12 00111d d d 1111p pp x t x t tx t t t t --+∞+∞-+∞=-⋅⋅=+++⎰⎰⎰所以10 0d d 11p px x x x x x --+∞+∞=++⎰⎰. 2 证明下列不等式(1)12π<<⎰; 证:1x =为瑕点.而12111lim(1)lim 2x x x --→→-==,所以1⎰收敛.又设sin x t =,则d cos d x t t =,于是12 0π=⎰⎰而1≤≤, 所以12π<<⎰. (2) 21111d 122x e x e e +∞-⎛⎫-<<+ ⎪⎝⎭⎰. 证:因为22lim 0x x x e -→∞=,所以2d xe x+∞-⎰收敛.而2222110 1d d d d x x x xe x e x e x e x+∞+∞----=+>⎰⎰⎰⎰22 11201d d()2x x xe x e x --≥=--⎰⎰1122e =-.222211d d d 1d x x x xe x e x e x xe x+∞+∞+∞----=+<+⎰⎰⎰⎰()22111d 2x e x +∞-=--⎰112e =+. 故结论成立.3 计算下列反常积分的值. (1) 0cos d (0)ax e bx x a +∞->⎰;解:01cos d d(sin )ax axe bx x e bx b +∞+∞--=⎰⎰ 01sin sin d ax axa e bx e bx x bb +∞+∞--=+⎰2d(cos )ax a e bx b +∞-=-⎰2 22cos cos d ax ax a a e bx e bx xb b +∞+∞--=--⎰222 0cos d ax a a e bx xb b+∞-=-⎰所以22 0cos d ax ae bx x a b +∞-=+⎰为所求.(2) 0sin d (0)ax e bx x a +∞->⎰;解:方法同上可得22 0sin d ax be bx x a b +∞-=+⎰.(3) 2 0ln d 1xx x +∞+⎰;解: 1 222 0 0 1ln ln ln d d d 111x x xx x x xx x +∞+∞=++++⎰⎰⎰,就 2 1ln d 1x x x +∞+⎰作变换1x t =,则21d d x t t =-,于是20 12222 1 1 0ln ln 1ln d d d 111x t t t x t t x t t t +∞⎛⎫=-⋅-=- ⎪+++⎝⎭⎰⎰⎰ 所以 2 0ln d 01xx x +∞=+⎰. (4)2ln(tan )d πθθ⎰.解:设tan x θ=,则21d d 1x x θ=+,于是2ln(tan )d πθθ⎰2 0ln d 01xx x +∞==+⎰.4 讨论反常积分sin d (0)bxx b x λ+∞≠⎰,λ取何值时绝对收敛,λ取何值时条件收敛.解: 1 0 0 1sin sin sin d d d bx bx bxx x x x x x λλλ+∞+∞=+⎰⎰⎰,就 1 0sin d bxx x λ⎰,当0λ>时,0x =为瑕点.当01λ<<时,sin 1bx x x λλ≤,而 1 01d x x λ⎰收敛, 所以当01λ<<时, 1 0sin d bxx xλ⎰绝对收敛.当12λ≤<时,因为10sin sin lim lim 0x x bx bxx b x x λλ-→→==>,而111d xx λ-⎰收敛,所以当12λ≤<时,10sin d bxx x λ⎰绝对收敛.当2λ≥时,因为100sin sin lim lim 0x x bx bxx b x x λλ-→→==>,而111d xxλ-⎰发散,所以当2λ≥时,10sin d bxx x λ⎰发散.就 1sin d bx x xλ+∞⎰,当0λ≤时, 1sin d bxx x λ+∞⎰发散.当01λ<≤时, 1()sin d uF u bx x=⎰在[1,)+∞上有界,1()g x x λ=单调以零为极限,由狄氏判别法知1sin d bxx x λ+∞⎰收敛.而22sin sin 1cos bx bx bx x x x x λλλλ≥=-, 所以1sin d bx x x λ+∞⎰发散,故 1sin d bxx x λ+∞⎰条件收敛.当1λ>时,因为sin 1bx x x λλ≤, 而 1 01d x xλ⎰收敛,所以当1λ>时, 10sin d bxx x λ⎰绝对收敛.综上可知,当0λ≤时,或2λ≥时, + 0sin d bxx xλ∞⎰发散;当01λ<≤时, + 0sin d bxx x λ∞⎰条件收敛;当12λ<<时, + 0sin d bxx x λ∞⎰绝对收敛.5 证明:设f 在[0,)+∞上连续,0a b <<. (1) 若lim ()x f x k→+∞=,则()()d ((0))ln f ax f bx bx f k x a +∞-=-⎰;证:令ax t =,则 ()()d d A aA a f ax f t x t x t δδ=⎰⎰,令bx t =,则 ()()d d A bA b f bx f t x t xt δδ=⎰⎰,于是 0()()()()d d d aA bA a b f ax f bx f t f t x t t x t t δδ+∞-=-⎰⎰⎰ ()()()()d d d d b bA aA bA a b bA b f t f t f t f t t t t t t t t t δδδδ=++-⎰⎰⎰⎰()()d d b bA a aA f t f t t t t t δδ=-⎰⎰ ()()d d b b a a f y f Ay y y y y ε=-⎰⎰1[()()]d b a f f A yyδξη=-⎰(积分中值定理,,(,)a b ξη∈)[()()]lnbf f A a δξη=-.令0,A δ+→→+∞得 0()()d ((0))lnf ax f bx bx f k x a +∞-=-⎰.(2) 若 ()d a f x x x +∞⎰收敛,则 0()()d (0)ln f ax f bx bx f x a +∞-=⎰.证:由(1)得()()d f ax f bx x x +∞-⎰()()d d b bA a aA f t f t t tt t δδ=-⎰⎰.因()d af x x x +∞⎰收敛,所以由柯西收敛准则得0,M a ε∀>∃>,2112(),d u u f x u u M x x ε∍>⇒<⎰“”.即 ()lim d 0bA aA A f t t t →∞=⎰.故 0()()d (0)ln f ax f bx bx f x a +∞-=⎰.6 证明下述命题(1) 设0a >,()f x 为[,)a +∞上的非负连续函数.若 ()d axf x x+∞⎰收敛,则 ()d af x x+∞⎰也收敛.证:因为 ()d axf x x+∞⎰收敛,所以所以由柯西收敛准则得0,M a ε∀>∃>,2112,()d u u u u M xf x x a ε∍>⇒<⎰“”.而1()d ()d aa f x x xf x xa +∞+∞<⎰⎰,于是亦有21()d u u f x x ε<⎰.故 ()d af x x+∞⎰收敛.(2) 设0a >,()f x 为[,)a +∞上的连续可微函数,且当x →+∞时,()f x 递减地趋于0,则 ()d af x x+∞⎰收敛的充要条件为 ()d axf x x+∞'⎰收敛.证:()⇒设 ()d af x x+∞⎰收敛,因()d ()()d |aaaf x x xf x xf x x+∞+∞+∞'=-⎰⎰而lim ()0x xf x →+∞=(本章第二节第8题) 所以 ()d axf x x+∞'⎰收敛.()⇐设 ()d a xf x x +∞'⎰收敛,则0ε∀>,M a ∃>,()d AxA x M tf t t ε'∍>>⇒<⎰“”.因为()f x 递减地趋于0,所以()0f x '≤, 于是由积分中值定理得()d ()d [()()]AAxxtf t t f t t f A f x ξξ''==-⎰⎰,从而 0[()()][()()]x f A f x f A f x ξε≤-≤-<.又lim ()0A f A →+∞=,所以lim ()0x xf x →+∞=.从而()d ()()d |aaaxf x x xf x f x x+∞+∞+∞'=-⎰⎰()()d aaf a f x x+∞=-⎰,故 ()d af x x+∞⎰收敛.反常积分无限区间上的积分或无界函数的积分,这两类积分叫作广义积分,又名反常积分.1.无限区间上的积分一般地,我们有下列定义定义6.2设函数在区间上连续,如果极限()存在,就称上极限值为在上的广义积分.记作即( 6.24 )这时我们说广义积分存在或收敛;如果不存在,就说不存在、发散或不收敛.类似地,可以定义在及上的广义积分.( 6.25 )其中( 6.26 )对于广义积分,其收敛的充要条件是:与都收敛.广义积分收敛时,具有常义积分的那些性质与积分方法,如换元法、分部积分法以及牛顿—莱布尼兹公式等,但有时代数和运算要注意,不要随便拆开.在用广义的牛顿—莱布尼兹公式时,无穷远点应取极限.为方便起见,引入记号,这样,若为的一个原函数,则(其中)注意:这里与是独立变化的,不能合并成 .2.无界函数的积分先给出瑕点或奇点的概念,若(或)时,,则点(或点)称为无界函数的瑕点或奇点. 的无穷间断点就是的瑕点.定义6.3设函数在上连续,左端点为的瑕点,如果存在,就称此极限值为无界函数在上的广义积分.记作( 6.27 )这时我们说广义积分存在或收敛.如果不存在,就说广义积分不存在、不收敛或发散.。
数学分析考研重点内容及常见题型数学分析是高等院校数学类各专业主干课程之一,是数学各专业硕士研究生入学考试的必考课程.数学分析内容丰富,知识面广,综合性强,理论体系严谨,解题方法灵活巧妙.主要包括一元函数极限、一元函数的连续性、一元微分学、一元函数积分学、级数、多元函数微分学、多元函数积分学等,分别涉及七章内容[1,2].学生在复习考研数学分析时,主要通过例题体会和掌握相应内容的思想方法和解题技巧,通过习题训练达到巩固基础知识,提高理论水平和应用能力.如何掌握好该课的基本内容并能熟练地运用其中的基本技巧至关重要.本文作者根据多年的教学研究与实践,依据考研大纲[3,4],结合高等院校硕士研究生的入学考试试题,对考研数学分析的重点内容及常见题型进行归纳和总结,使其所涉及的知识点之间相互关系清晰明了,同时也将数学分析课程要求学生掌握的知识体系体现出来,可供学生考研复习数学分析时参考,对教师进行数学分析教学也具有参考价值.1 一元函数极限极限是考研热点问题.本章包含四个部分,即函数;用定义证明极限的存在性;求极限值的若干方法;O.Stolz公式.其中极限的求法是核心.重点内容:(1)极限定义,基本理论.(2)几个常用的不等式.(3)极限存在性的证明.(4)极限的求法.(5)实数基本定理.常见题型:(1)几个常用的不等式的证明.(2)用定义证明极限.(3)利用单调有界原理证明极限存在.(4)求极限(利用等价量、利用已知极限、利用两边夹法则、利用洛必达法则、利用Taylor公式、利用定积分定义、利用级数收敛的必要条件).(5)实数基本定理的应用.2 一元函数的连续性本章包含连续性的证明、连续性的应用、一致连续、半连续、函数方程.重点内容:(1)函数连续性的证明,证明的主要方法有:用定义证明、用左右极限证明(对分段函数)、用归结原则证明.(2)连续性的应用(假定函数连续,证明在某些条件下有什么结果).(3)一致连续性.常见题型:(1)直接证明函数在某区间或某点连续.(2)讨论间断点的类型.(3)连续性的应用(假定函数连续,证明在某些条件下有什么结果).(4)利用一致连续的定义及其否定形式证题.(5)Cantor定理的应用.(6)借助连续模数证明一致连续.3 一元微分学本章是基础性内容,包含导数;微分中值定理;Taylor公式;不等式与凸函数;导数的综合应用.一元函数微分学在微积分学中占有极重要的位置,是微积分学的重要内容之一.重点内容:(1)函数导数与微分的概念.(2)微分中值定理——罗尔中值定理,拉格朗日中值定理,柯西中值定理与泰勒中值定理.(3)Taylor公式.(4)导数的应用.常见题型:(1)利用导数(或左右导数)定义解题.(2)求函数的高阶导数.(3)函数零点问题讨论(利用Rolle定理证明零点的存在性,利用单调性证明零点的唯一性).(4)利用Lagrange定理证明函数与函数的导数同时存在的命题.(5)利用导数法证明恒等式.(6)导数介值性的应用.(7)利用Cauchy中值定理证题.(8)利用Taylor公式证明含有高阶导数的命题.(9)利用Taylor 公式作导数的中值估计、界的估计.(10)利用Taylor公式求极限.(11)不等式的证明(利用单调性、微分中值定理、Taylor公式、函数的极值、单调极限证明).(12)导数在几何中的应用.4 一元函数积分学本章包含积分与极限、定积分的可积性、积分值的估计、积分不等式及定积分的应用、若干著名的不等式、反常积分.一元函数积分学是一元函数微积分学的最重要内容,涉及面较广,影响深远.重点内容:(1)定积分的定义、几何意义、性质.(2)利用定积分定义求极限.(3)积分的极限.(4)积分值的估计.(5)几个著名不等式(Cauchy不等式、Schwarz不等式、平均值不等式).(6)反常积分的概念、计算、敛散性的判断.常见题型:(1)利用定积分的定义求和式的极限.(2)运用定积分的各种特性和运算法则求积分的极限.(3)利用变量替换、分部积分、缩放被积函数或积分区间、微分中值公式或Taylor公式对被积函数进行变形,从而估计积分值.(4)几个著名不等式(Cauchy不等式、Schwarz不等式、平均值不等式)的证明、变形及应用.(5)利用Newton-Leibniz公式、变量替换、分部积分法计算反常积分.(6)判定反常积分的敛散性.(7)讨论无穷限的反常积分的收敛性与无穷远处的极限的关系.5 级数级数是一门工具,又有完善的理论,是《数学分析》课程中三大基本内容之一.历年来均为考研热点.本章包含数项级数、函数项级数、幂级数及Fourier级数四个部分.重点内容:(1)数项级数敛散定义,正项级数敛散判别法(Cauchy准则、判阶法、比较判别法、根式判别法等),变号级数收敛性判别法.(2)函数项级数(及序列)一致收敛的定义及判别法.(3)一致收敛级数的性质(三大解析性质:连续性、可积性、可微性).(4)幂级数的收敛半径与收敛域,幂级数的和函数的性质.(5)傅立叶级数——傅立叶级数的概念,函数展开成傅立叶级数,正弦级数与余弦级数.常见题型:(1)利用Cauchy准则证明级数敛散性.(2)利用判阶法及比较判别法证明正项级数敛散性.(3)利用部分和有界证明正项级数收敛.(4)利用Leibniz定理、Abel判别法、Dirichlet判别法研究变号级数收敛性.(5)利用级数收敛的必要条件求极限或证明极限存在.(6)函数项级数一致收敛的证明(利用定义、Cauchy准则、M判别法、A-D判别法).(7)一致收敛级数逐项取极限定理及其应用.(8)和函数连续性、可微性、可积性的应用.(9)求幂级数收敛半径、收敛域及和函数(将级数通过代数运算、变量置换、逐项求导、逐项积分等手段化成已知和函数的级数,如几何级数,从而求得和函数).(10)求某些数项级数的和(由定义求部分和数列的极限,或将其看作某个幂级数或某个傅立叶级数在某点处的值,先求出该幂级数或傅立叶级数的和函数,再求出该数项级数的和).6 多元函数微分学本章包含多元函数的极限与连续、偏导数和全微分、多元函数的应用三部分.重点内容:(1)多元函数(主要是二元、三元函数)的概念、极限与连续.(2)多元函数的偏导数和全微分.(3)多元函数微分在几何上的应用.(4)多元函数的极值和条件极值.(5)方向导数和梯度.常见题型:(1)多元函数极限的计算.(2)证明二元函数极限不存在.(3)关于全面极限愈特殊路径极限的讨论.(4)求多元函数的一阶、二阶偏导数与全微分.(5)讨论二元函数连续性与可微性.(6)求复合函数的一阶、二阶偏导数.(7)对微分方程作变量替换.(8)求空间曲线的切线与法平面方程.(9)求曲面的切平面和法线方程.(10)求多元函数的极值与最大、最小值.(11)利用极值证明不等式.(12)利用拉格朗日乘数法求多元函数的条件极值.(13)证明隐函数的存在性.(14)求多元函数的方向导数和梯度.7 多元积分学本章包含含参变量积分、重积分、曲线积分与Green公式、曲面积分Gauss 公式及Stokes公式、场论等五大部分.多元函数积分学是多元函数微积分学的重要内容,涉及三大类重要积分,应用面较广.重点内容:(1)含参变量积分的正常积分、含参变量积分反常积分的一致收敛性、含参变量积分反常积分的连续性、可积性、可微性.(2)二重积分的概念、性质与计算.(3)三重积分的概念、性质与计算.(4)曲线积分的概念、性质与计算.(5)格林公式,平面上曲线积分与路径无关的充要条件.(6)曲面积分的概念、性质与计算.(7)高斯公式与斯托克斯公式.(8)梯度、散度与旋度的概念及各种公式.常见题型:(1)含参变量积分正常积分的积分号下求极限、积分号下求导、积分号下求积分.(2)证明含参变量积分反常积分的一致收敛性.(3)含参变量积分反常积分的积分号下求极限、积分号下求导、积分号下求积分.(4)证明含参变量积分反常积分的连续性.(5)利用直角坐标与极坐标计算二重积分.(6)直角坐标、柱面坐标、球面坐标计算三重积分.(7)二重积分、三重积分在几何和物理上的应用,如求面积、体积、质量、重心坐标、引力等.(8)曲线积分的计算(利用对称性、利用格林公式、利用与路径无关性).(9)曲面积分的计算(利用对称性、利用公式、利用高斯公式).(10)斯托克斯公式的应用.。