人教B版人教B版高中数学必修五3.4《不等式的实际应用》测试.docx
- 格式:docx
- 大小:35.52 KB
- 文档页数:5
3.4不等式的实际应用学习目标:1、通过实际问题的情景,让学生掌握不等式的实际应用,掌握解决这类问题的一般步骤,2、让学生经历从实际情景中抽象出不等式模型的过程。
3、通过实例,让学生体验数学与日常生活的联系,感受数学的实用价值,增强学生的应用意识,提高他们的实践能力。
学习重点和难点:重点:不等式的实际应用难点:数学建模【预习达标】1.实际问题中,有许多不等式模型,必须在首先领悟问题的实际背景,确定问题中量与量之间的关系,然后适当设 ,将量与量间的关系变成 或不等式组.2.实际问题中的每一个量都有其 ,必须充分注意定义域的变化.3.探究:一个正的真分数的分子与分母同时增加同一个数,分数值变 。
若一个假分数呢?试证明之。
【典例解析】例1.某工厂有一面14m 的旧墙,现准备利用这面旧墙建造平面图形为矩形,面积为126m 2的厂房。
工程条件是:①建1m 新墙的费用为a 元;②修1m 旧墙的费用为4a 元;③用拆去1m 旧墙所得的材料建1m 新墙的费用为2a 元。
现在有两种建设方案:(Ⅰ)利用旧墙的一段Xm(x<14)为矩形厂房的一个边长;(Ⅱ)利用旧墙的矩形厂房的一个边长为Xm(x≥14)。
问如何利用这堵旧墙,才使建墙费用最低?(Ⅰ)(Ⅱ)两个方案哪个更好?例2.有纯农药一桶,倒出8升后用水补满,然后倒出4升再用水补满,此时桶中的农药不超过容积的28%.问桶的容积最大为多少?分析:若桶的容积为x, 倒前纯农药为x 升第一次 :倒出纯农药8升,纯农药还剩(x-8)升,桶内溶液浓度xx 8- 第二次 :倒出溶液4升,纯农药还剩[(x-8)—(x x 8-)4], 中本题的不等关系是:桶中的农药不超过容积的28%解答:学生完成。
例3.某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上一年减少51,本年度当地旅游业收入估计万400万元,预计今后的旅游业收入每年会比上年增加41.(1)设n 年内(本年度万第一年)总投入万a n 万元,旅游业总收入万b n 万元,写出a n 、b n 的表达式。
2018版高中数学第三章不等式3.2 均值不等式学案新人教B版必修5 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第三章不等式3.2 均值不等式学案新人教B版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第三章不等式3.2 均值不等式学案新人教B版必修5的全部内容。
3.2 均值不等式1。
了解均值不等式的证明过程.2.能利用均值不等式证明简单的不等式及比较代数式的大小.(重点、难点)3.熟练掌握利用均值不等式求函数的最值问题.(重点)[基础·初探]教材整理1 均值不等式阅读教材P69~P71,完成下列问题。
1.重要不等式如果a,b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”).2。
均值不等式错误!≤错误!(1)均值不等式成立的条件:a>0,b>0;(2)等号成立的条件:当且仅当a=b时取等号。
3。
算术平均数与几何平均数(1)设a〉0,b>0,则a,b的算术平均数为错误!,几何平均数为错误!;(2)均值不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.判断(正确的打“√",错误的打“×”)(1)对任意a,b∈R,a2+b2≥2ab,a+b≥2ab均成立.( )(2)若a≠0,则a+错误!≥2错误!=4.()(3)若a〉0,b>0,则ab≤错误!错误!。
( )(4)两个不等式a2+b2≥2ab与错误!≥错误!成立的条件是相同的。
( )(5)若ab=1,a>0,b〉0,则a+b的最小值为2.( )【解析】(1)×。
3.2 均值不等式(二)学习目标 1.熟练掌握均值不等式及变形的应用.2.会用均值不等式解决简单的最大(小)值问题.3.能够运用均值不等式解决生活中的应用问题.知识点一 均值不等式及变形 思考 使用均值不等式证明:21a +1b≤ab (a >0,b >0),并说明什么时候等号成立.梳理 以下是均值不等式的常见变形,试用不等号连接,并说明等号成立的条件. 当a >0,b >0时,有21a +1b________ab ________a +b 2________a 2+b 22;当且仅当________时,以上三个等号同时成立.知识点二 用均值不等式求最值思考 因为x 2+1≥2x ,当且仅当x =1时取等号.所以当x =1时,(x 2+1)min =2. 以上说法对吗?为什么?梳理 均值不等式求最值的条件: (1)x ,y 必须是________;(2)求积xy 的最大值时,应看和x +y 是否为________;求和x +y 的最小值时,应看积xy 是否为________;(3)等号成立的条件是否满足.类型一 均值不等式与最值例1 (1)若x >0,求函数y =x +4x的最小值,并求此时x 的值;(2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >2,求x +4x -2的最小值; (4)已知x >0,y >0,且 1x +9y=1,求x +y 的最小值.反思与感悟 在利用均值不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件是否具备. 跟踪训练1 (1)已知x >0,求f (x )=12x+3x 的最小值;(2)已知x <3,求f (x )=4x -3+x 的最大值; (3)设x >0,y >0,且2x +8y =xy ,求x +y 的最小值.类型二 均值不等式在实际问题中的应用命题角度1 几何问题的最值例2 (1)用篱笆围一个面积为100 m2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?(2)一段长为36 m的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?反思与感悟利用均值不等式解决实际问题时,一般是先建立关于目标量的函数关系,再利用均值不等式求解目标函数的最大(小)值及取最大(小)值的条件.跟踪训练2 某工厂要建造一个长方体无盖贮水池,其容积为4 800 m3,深为3 m,如果池底每1 m2的造价为150元,池壁每1 m2的造价为120元,问怎样设计水池才能使总造价最低?最低总造价是多少?命题角度2 生活中的最优化问题例3 某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1 800元,面粉的保管费及其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少? 引申探究若受车辆限制,该厂至少15天才能去购买一次面粉,则该厂应多少天购买一次面粉,才能使平均每天所支付的费用最少?反思与感悟 应用题,先弄清题意(审题),建立数学模型(列式),再用所掌握的数学知识解决问题(求解),最后要回应题意下结论(作答).使用均值不等式求最值,要注意验证等号是否成立,若等号不成立,可考虑利用函数单调性求解.跟踪训练3 一批货物随17列货车从A 市以v 千米/小时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于⎝ ⎛⎭⎪⎫v 202千米,那么这批货物全部运到B 市,最快需要________小时.1.设a >0,b >0,且不等式1a +1b +ka +b ≥0恒成立,则实数k 的最小值等于( )A .0B .4C .-4D .-22.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最大值52B .最小值54C .最大值1D .最小值13.将一根铁丝切割成三段做一个面积为 2 m 2,形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ) A .6.5 m B .6.8 m C .7 m D .7.2 m4.已知0<x <1,则f (x )=2+log 2x +5log 2x的最大值是________.1.用均值不等式求最值(1)利用均值不等式,通过恒等变形,以及配凑,造就“和”或“积”为定值,从而求得函数最大值或最小值.这种方法在应用的过程中要把握下列三个条件:①“一正”——各项为正数;②“二定”——“和”或“积”为定值;③“三相等”——等号一定能取到.这三个条件缺一不可.(2)利用均值不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创建应用均值不等式的条件.(3)在求最值的一些问题中,有时看起来可以运用均值不等式求最值,但由于其中的等号取不到,所以运用均值不等式得到的结果往往是错误的,这时通常可以借助函数y =x +px(p >0)的单调性求得函数的最值. 2.求解应用题的方法与步骤:(1)审题;(2)建模(列式);(3)解模;(4)作答.答案精析问题导学 知识点一思考 ∵a >0,b >0, ∴1a +1b≥21ab >0,∴11a +1b≤ab2, 即21a +1b≤ab (a >0,b >0), 当且仅当1a =1b,即a =b 时,等号成立.梳理 ≤ ≤ ≤ a =b 知识点二思考 错.显然(x 2+1)min =1.x 2+1≥2x ,当且仅当x =1时取等号.仅说明抛物线y =x 2+1恒在直线y =2x 上方,仅在x=1时有公共点.使用均值不等式求最值,不等式两端必须有一端是定值.如果都不是定值,可能出错. 梳理 (1)正数 (2)定值 定值 题型探究 类型一例1 解 (1)当x >0时,x +4x≥2 x ·4x =4, 当且仅当x =4x,即x 2=4,x =2时取等号.∴函数y =x +4x(x >0)在x =2时取得最小值4.(2)∵0<x <32,∴3-2x >0,∴y =4x (3-2x )=2[2x (3-2x )]≤2⎣⎢⎡⎦⎥⎤2x +-2x 22=92.当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝ ⎛⎭⎪⎫0,32, ∴函数y =4x (3-2x )(0<x <32)的最大值为92.(3)∵x >2,∴x -2>0, ∴x +4x -2=x -2+4x -2+2 ≥2x -4x -2+2=6, 当且仅当x -2=4x -2, 即x =4时,等号成立. ∴x +4x -2的最小值为6. (4)方法一 ∵x >0,y >0,1x +9y=1,∴x +y =⎝ ⎛⎭⎪⎫1x +9y (x +y )=y x+9xy+10 ≥6+10=16,当且仅当y x=9x y,又1x +9y=1,即x =4,y =12时,不等式取等号. 故当x =4,y =12时,(x +y )min =16. 方法二 由1x +9y=1,得(x -1)(y -9)=9(定值). 由1x +9y=1可知x >1,y >9,∴x +y =(x -1)+(y -9)+10 ≥2x -y -+10=16,当且仅当x -1=y -9=3, 即x =4,y =12时不等式取等号,故当x =4,y =12时,(x +y )min =16. 跟踪训练1 解 (1)∵x >0, ∴f (x )=12x+3x ≥212x·3x =12,当且仅当3x =12x,即x =2时取等号,∴f (x )的最小值为12. (2)∵x <3,∴x -3<0, ∴f (x )=4x -3+x =4x -3+x -3+3 =-⎣⎢⎡⎦⎥⎤43-x +3-x +3≤-243-x-x +3=-1,当且仅当43-x =3-x ,即x =1时取等号. ∴f (x )的最大值为-1.(3)由2x +8y -xy =0,得y (x -8)=2x . ∵x >0,y >0,∴x -8>0,y =2x x -8, ∴x +y =x +2xx -8=x +x -+16x -8=(x -8)+16x -8+10 ≥2x -16x -8+10=18. 当且仅当x -8=16x -8,即x =12时,等号成立. ∴x +y 的最小值是18. 类型二 命题角度1例2 解 (1)设矩形菜园的长为x m ,宽为y m , 则xy =100,篱笆的长为2(x +y ) m. 由x +y2≥xy ,可得x +y ≥2100,2(x +y )≥40.当且仅当x =y =10时等号成立.所以这个矩形的长、宽都为10 m 时,所用篱笆最短,最短篱笆为40 m.(2)设矩形菜园的长为x m ,宽为y m ,则2(x +y )=36,x +y =18,矩形菜园的面积为xy m 2. 由xy ≤x +y 2=182=9,可得xy ≤81,当且仅当x =y =9时,等号成立.所以这个矩形的长、宽都为9 m 时,菜园的面积最大,最大面积为81 m 2. 跟踪训练2 解 设水池底面一边的长度为x m ,则另一边的长度为4 8003x m.又设水池总造价为y 元,根据题意,得y =150×4 8003+120×(2×3x +2×3×4 8003x) =240 000+720×⎝⎛⎭⎪⎫x +1 600x≥240 000+720×2 x ·1 600x=297 600(元),当且仅当x =1 600x,即x =40时,y 取得最小值297 600.所以水池底面为正方形且边长为40 m 时总造价最低,最低总造价为297 600元. 命题角度2例3 解 设该厂每隔x 天购买一次面粉,其购买量为6x 吨. 由题意可知,面粉的保管及其他费用为3×[6x +6(x -1)+6(x -2)+…+6×1]=9x (x +1). 设平均每天所支付的总费用为y 元, 则y =1x[9x (x +1)+900]+6×1 800=9x +900x+10 809≥29x ·900x+10 809=10 989(元),当且仅当9x =900x,即x =10时,等号成立.所以该厂每10天购买一次面粉,才能使平均每天所支付的总费用最少.引申探究解 设x 1,x 2∈[15,+∞),且x 1<x 2. 则(9x 1+900x 1+10 809)-(9x 2+900x 2+10 809)=9(x 1-x 2)+900(1x 1-1x 2)=(x 1-x 2)⎝⎛⎭⎪⎫9-900x 1x 2=(x 1-x 2)⎝⎛⎭⎪⎫9x 1x 2-900x 1x 2.∵15≤x 1<x 2,∴x 1-x 2<0,x 1x 2>225, ∴(x 1-x 2)⎝⎛⎭⎪⎫9x 1x 2-900x 1x 2<0,即y =9x +900x+10 809在[15,+∞)上为增函数.∴当x =15,即15天购买一次面粉,每天支付的平均费用最少. 跟踪训练3 8 当堂训练1.C 2.D 3.C 4.2-2 5。
《不等式》专项训练1.设a b <,c d <,则下列不等式中一定成立的是 ( ) A .d b c a ->- B .bd ac > C .d b c a +>+ D .c b d a +>+ 2.不等式b ax >的解集不可能是 ( )A .φB .RC .),(+∞a bD .),(ab --∞ 3.不等式022>++bx ax 的解集是)31,21(-,则b a -的值等于 ( ) A .-14 B .14 C .-10 D .104.不等式||x x x <的解集是 ( ) A .{|01}x x <<B .{|11}x x -<<C .{|01x x <<或1}x <-D .{|10,1}x x x -<<> 5.若011<<ba ,则下列结论不正确的是 ( ) A .22b a < B .2b ab < C .2>+ba ab D .||||||b a b a +>+6.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为 ( )A .)()(x g x f >B .)()(x g x f =C .)()(x g x f <D .随x 值变化而变化 7.下列各式中最小值是2的是 ( )A .y x +x yB .4522++x x C .tan x +cot x D . xx -+228.如果a x x >+++|9||1|对任意实数x 总成立,则a 的取值范围是 ( )A . }8|{<a aB . }8|{>a aC . }8|{≥a aD . }8|{≤a a9.若+∈R b a ,,则b a 11+与b a +1的大小关系是 . 10.函数121lg +-=x xy 的定义域是 .11.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨.12. 已知0()1,0x x f x x ≥⎧=⎨-<⎩,, 则不等式3)2(≤+x f 的解集___ _ ____.13.已知()f x 是奇函数,且在(-∞,0)上是增函数,(2)0f =,则不等式()0xf x <的解集是___ _ ____. 14.解不等式:21582≥+-x x x15.已知1<a ,解关于x 的不等式12>-x ax.16.已知0=++c b a ,求证:0≤++ca bc ab .17.对任意]1,1[-∈a ,函数a x a x x f 24)4()(2-+-+=的值恒大于零,求x 的取值范围.18.已知函数b ax x x f ++=2)(.(1)若对任意的实数x ,都有a x x f +≥2)(,求b 的取值范围; (2)当]1,1[-∈x 时,)(x f 的最大值为M ,求证:1+≥b M ;参考答案一、选择题1.C ; 2.D ; 3.C ; 4.C ; 5.D ; 6.A ; 7.D ; 8.A . 二、填空题 9.b a b a +>+111; 10.)21,1(-; 11. 20 ; 12. ]1,(-∞;13. {|20,}x x -<<或0<x<2 三、解答题14.解:原不等式等价于:0158301720158301720215822222≤+-+-⇔≥+--+-⇔≥-+-x x x x x x x x x x x3250)5)(3()52)(6(<≤⇔≤----⇔x x x x x 或65≤<x ∴原不等式的解集为]6,5()3,25[15.解:不等式12>-x ax 可化为022)1(>-+-x x a . ∵1<a ,∴01<-a ,则原不等式可化为0212<---x a x , 故当10<<a 时,原不等式的解集为}122|{ax x -<<; 当0=a 时,原不等式的解集为φ; 当0<a 时,原不等式的解集为}212|{<<-x ax . 16.证明:法一(综合法)0=++c b a , 0)(2=++∴c b a展开并移项得:02222≤++-=++c b a ca bc ab 0≤++∴ca bc ab法二(分析法)要证0≤++ca bc ab ,0=++c b a ,故只要证2)(c b a ca bc ab ++≤++ 即证0222≥+++++ca bc ab c b a ,也就是证0])()()[(21222≥+++++a c c b b a ,而此式显然成立,由于以上相应各步均可逆,∴原不等式成立. 法三:0=++c b a ,b a c +=-∴222223()()[()]024b b ab bc ca ab b a c ab a b a b ab a ∴++=++=-+=---=-++≤ 0≤++∴ca bc ab法四:,222ab b a ≥+ bc c b 222≥+,ca a c 222≥+ ∴由三式相加得:ca bc ab c b a ++≥++222两边同时加上)(2ca bc ab ++得:)(3)(2ca bc ab c b a ++≥++ 0=++c b a , ∴0≤++ca bc ab17.解:设22)2()2(24)4()(-+-=-+-+=x a x a x a x a g ,则)(a g 的图象为一直线,在]1,1[-∈a 上恒大于0,故有⎩⎨⎧>>-0)1(0)1(g g ,即⎩⎨⎧>+->+-02306522x x x x ,解得:1<x 或3>x ∴x 的取值范围是),3()1,(+∞⋃-∞18. 解:(1)对任意的R x ∈,都有⇔+≥a x x f 2)(对任意的R x ∈,0)()2(2≥-+-+a b x a x 0)(4)2(2≤---=∆⇔a b a)(1412R a b a b ∈≥⇔+≥⇔ ∴),1[+∞∈b .(2)证明:∵,1)1(M b a f ≤++=,1)1(M b a f ≤+-=-∴222+≥b M ,即1+≥b M .(3)证明:由210<<a 得,0241<-<-a ∴)(x f 在]2,1[a --上是减函数,在]1,2[a-上是增函数.∴当1||≤x 时,)(x f 在2ax -=时取得最小值42a b -,在1=x 时取得最大值b a ++1.故对任意的]1,1[-∈x ,.1414111|)(|22a b a a b b a x f -≤≤-⇔⎪⎩⎪⎨⎧-≥-≤++⇔≤。
3.4不等式的实际应用一、选择题(每题5分,共20分)1.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( )A .5 km 处B .4 km 处C .3 km 处D .2 km 处【解析】 设仓库建在离车站x km 处,则土地费用y 1=k 1x,运输费用y 2=k 2x 把x =10,y 1=2代入得k 1=20,把x =10,y 2=8代入得k 2=45, 故总费用y =20x +45x ≥220x ·45x =8, 当且仅当20x =45x 即x =5时等号成立. 【答案】 A2.银行计划将某资金给项目M 和N 投资一年,其中40%的资金给项目M,60%的资金给项目N ,项目M 能获得10%的年利润,项目N 能获得35%的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户,为了使银行年利润不小于给M 、N 总投资的10%而又不大于总投资的15%,则给储户的回扣率最小值为( )A .5%B .10%C .15%D .20% 【解析】 设给储户的回扣率为x ,由题意:⎩⎪⎨⎪⎧0.4×0.1+0.6×0.35-x ≥0.10.4×0.1+0.6×0.35-x ≤0.15, 解得0.1≤x ≤0.15,故x 的最小值是0.1=10%.【答案】 B3.天文台用3.2万元买一台观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910元(n ∈N *),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的日平均耗资最少)为止,一共使用了( )A .600天B .800天C .1 000天D .1 200天【解析】 日平均耗资为3 2000+n ·12·⎝⎛⎭⎫5+n +4910n=3 2000n +n 20+9920≥2 3 2000n ·n 20+9920=80+9920,当且仅当3 2000n =n 20,即n =800时取等号. 【答案】 B4.用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为( )A .85 cm 2B .610 cm 2C .355 cm 2D .20 cm 2【解析】 设三角形各边长为x 、y 、z ,且x 、y 、z ∈N +,则x +y +z =20.由于在周长一定的三角形中,各边长越接近的三角形面积越大,于是当三边长为7 cm 、7 cm 、6 cm 时面积最大,则S △=12×6×72-32=610(cm 2),故选B.【答案】 B二、填空题(每题5分,共10分)5.建造一个容积为8 m 2,深为2 m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为________元.【解析】 设池底长x m ,则宽4xm , 总造价y =(4x +16x)×80+4×120 ≥24x ·16x×80+480=1 760, 当且仅当4x =16x即x =2时等号成立. 【答案】 1 7606.某省每年损失耕地20万亩,每亩耕地价格24 000元,为了减少耕地损失,决定以每年损失耕地价格的t %征收耕地占用税,这样每年的耕地损失可减少52t 万亩,为了既减少耕地的损失又保证此项税收一年不少于9 000万元,则t 的取值范围是____. 【解析】 由题意得(20-52t )×2 4000×t %≥9 000, 化简得t 2-8t +15≤0解得3≤t ≤5.【答案】 3≤t ≤5三、解答题(每题10分,共20分)7.某工厂建造一间地面面积为12 m 2的背面靠墙的矩形小房,房屋正面的造价为1 200元/m 2,房屋侧面的造价为800元/m 2,屋顶的造价为5 800元,如果墙高为3 m ,且不计房屋背面的费用,则建造此小房的最低总造价是多少元?【解析】 设房子的长为x m ,宽为y m ,总造价为t 元,则xy =12.t =3x ·1 200+3y ·800·2+5 800=1 200(3x +4y )+5 800≥1 200·212xy +5 800=34600(当且仅当3x =4y 时取等号).故最低总造价是34 600元.8.一批救灾物资随26辆汽车从某市以v km/h 的速度匀速直达灾区,已知两地公路线长400 km ,为了安全起见,两辆汽车的间距不得小于(v 20)2 km ,那么这批物资全部安全到达灾区,最少需要多少小时? 【解析】 第一辆汽车到达用400v h ,由题意每隔(v 20)2v h 到达一辆汽车, ∴400v +25×(v 20)2v =400v +v 16≥2400v ×v 16=10(h), 当且仅当400v =v 16,v =80 km/h 时取等号. ∴每辆汽车以80 km/h 的速度行驶,最少需10 h 这批物资全部安全到达灾区.9.(10分)工厂对某种原料的全年需要量是Q 吨.为保证生产,又节省开支,打算全年分若干次等量订购,且每次用完后可立即购买.已知每次订购费用是a 元.又年保管费用率是p ,它与每次购进的数量(x 吨)及全年保管费(S 元)之间的关系是S =12px .问全年订购多少次才能使订购费与保管费用之和最少?并求这个最少费用的和(为简便计算,不必讨论订购次数是否为整数).【解析】 设每次购进的数量为x 吨,则全年定购费用=a ·Q x ,全年保管费S =12px , 定购费与保管费之和y =a ·Q x +12px . 由于a ·Q x +12px ≥212paQ =2paQ , 当且仅当a ·Q x =12px ,即x =2aQp p时取等号, 即最优批量订购数为x 0=2aQp p(吨), 最小费用数为y min =2paQ (元),全年最佳定购次数n =Q x 0=2paQ 2a(次). 故全年订购2paQ 2a次,才能使全年的订购费用与保管费用之和最少,最少费用为2paQ 元.高$考じ试(题╬库。
人民教育出版社B版高中数学目录(全)高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数(I)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)整合提升高中数学(B版)必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学(B版)必修三第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学(B版)必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学(B版)必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学(人教B)选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测(二)高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学(B版)选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结。
高中数学学习材料
马鸣风萧萧*整理制作
【高中数学新人教B 版必修5】3.4《不等式的实际应用》测试
一.选择题:
1.完成一项装修工程,请木工需要付工资每人50元,请瓦工需要付工资每人40元,现有工人工资2000元,设木工x 人,瓦工y 人,则所请工人的约束条件是( ) A.5x+4y<200 B.5x+4y ≥200 C 5x+4y =200 D.5x+4y ≤200
2.有一家三口的年龄之和为65岁,设父亲、母亲和小孩的年龄分别为x 、y 、z ,则下列选项中能反映x 、y 、z 关系的是( )
A.x+y+z=65 B.⎪⎩⎪⎨⎧>>=++z y z x z y x 65 C.⎪⎩⎪⎨⎧>>>>=++0065z y z x z y x D.⎪⎪⎩
⎪⎪⎨⎧<<<=++65656565z y x z y x 3.买4枝郁金香和5枝丁香的金额小于22元,而买6枝郁金香和3枝丁香的金额和大于24元,那么买2枝郁金香和买3枝丁香的金额比较,其结果是( )
A .前者贵
B .后者贵
C .一样
D .不能确定
4.如果f(x)=mx 2
+(m -1)x+1在区间]1,(-∞上为减函数,则m 的取值范围( ) A . (0, ⎥⎦⎤31 B .⎪⎭⎫⎢⎣⎡31,0 C .]⎢⎣
⎡31,0 D (0,31) 5.设计用32m 2
的材料制造某种长方体形状的无盖车厢,按交通部门的规定车厢宽度为2m ,则车厢的最大容积是( )
A .(38-3)73m 2
B .16 m 2
C . 42 m 2
D .14 m 2 6.把长为12厘米的细铁丝截成两段,各自围成一个正三角形,那么这两个三角形的面积之和的最小值为( )
A.232
3cm B.4cm 2 C.23 cm 2 D.23 cm 2 7.某种生产设备购买时费用为10万元,每年的设备管理费用为9万元,这种生产设备的维护费用:第一年2千元,第二年4千元,第三年6千元,依每年2千元的增量逐年递增,则这套生产设备最多使用( )年报废最划算。
A.3 B.5 C.7 D.10
8.某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下:
若用同一行业中应聘人数和招聘人
数的比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( )
A .计算机行业好于化工行业
B .建筑行业好于物流行业
C.机械行业最紧张 D.营销行业比贸易行业紧张
二.填空题:
9.某高校录取新生对语文、数学、英语的高考分数的要求是:(1)语文不低于70分;(2)数学应高于80分;(3)三科成绩之和不少于230分。
若张三被录取到该校,则该同学的语、数、英成绩x 、y 、z 应满足的约束条件是_____________________.
10.用两种材料做一个矩形框,按要求其长和宽分别选用价格为每米3元和5元的两种材料,
且长和宽必须为整数,现预算花费不超过100元,则做成的矩形框所围成的最大面积是 .
11.某市某种类型的出租车,规定3千米内起步价8元(即行程不超过3千米,一律收费8元),若超过3千米,除起步价外,超过部分再按1.5元/千米计价收费,若乘客与司机约定按四舍五入以元计费不找零,下车后乘客付了16元,则乘车里程的范围是 .
三.解答题:
12.已知26辆货车以相同速度v 由A 地驶向400千米处的B 地,每两辆货车间距离为d 千米,现已知d 与v 的平方成正比,且当v=20(千米/时)时,d=1(千米).
(1)写出d 与v 的函数关系;
(2)若不计货车的长度,则26辆货车都到达B 地最少需要多少小时?此时货车速度是多少? 行业名称 计算机 机械 营销 物流 贸易 应聘人数 215830 200250 154676 74570 65280 行业名称 计算机 营销 机械 建筑 化工 招聘人数 124620 102935 89115 76516 70436
13.经过长期观测得到:在交通繁忙的时段内某公路汽车的车流量y (千辆/时)与汽车的平均速度v (千米/时)之间的函数关系为)0(1600
39202>++=v v v v y (1) 在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量是多少(精
确到0.1千辆/时)?
(2) 若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应该在什么范围内?
14.有三个新兴城镇,分别位于A 、B 、C 三个点处,且AB=AC=13千米,BC =10千米。
今计划合建一个中心医院。
为同时方便三个城镇,需要将医院建在BC 的垂直平分线上的点P 处。
若希望点P 到三个城镇距离的平方和最小,点P 应该位于何处?
参考答案
一.选择题:
1.D ;
2.C 解析:A 、C 、D 中都有可能x 、y 、z 为负数。
3.A 解析:设郁金香x 元/枝,丁香y 元/枝,则⎩⎨
⎧>+<+②①24362254y x y x ,∴由不等式的可加(减)性,得x>3,y<2,∴2x>6,3y<6,故前者贵。
4.C 解析:依题意知,若m=0,则成立;若m ≠0,则开口向上,对称轴不小于1,从而取并集解得C 。
5.B 解析:设长方体的长为xm,高为hm ,则V=2xh 而2x+2h ×2+xh ×2=32∴可求得B 。
6.D 解析:设一段为x ,则面积和为22)3
12(43)3(43x x -+≥23 7.D 解析:设使用x 年,年平均费用为y 万元,则y=x x x x 2)2.02.0(9.010÷+++ =3101012.02202≥++=++x
x x x x ,当且仅当x=10时等号成立。
8.B
二.填空题:
9.⎪⎩
⎪⎨⎧≥++>≥2308070z y x y x
10.解析:设长x 米,宽y 米,∴6x+10y ≤100即3x+5y ≤50∵100≥3x+5y ≥2y x 53∙,当且仅当3x=5y 时等号成立,∵x ,y 为正整数,∴只有3x=24,5y=25时,此时面积xy=40
平方米。
11.解析:付款16元,肯定超出了3千米,设行程x 千米,则应该付款8+1,5(x-3)∵四舍五入∴15.5≤8+1.5(x-3)<16.5解得8≤x<8
32。
三.解答题:
12.解析:(1)设d=kv 2(其中k 为比例系数,k>0),由v=20,d=1得k=4001∴d=2400
1v (2)∵每两列货车间距离为d 千米,∴最后一列货车与第一列货车间距离为25d ,∴最后一列货车达到B 地的时间为t=v d v 25400+,代入d=2400
1v 得 t=16
400v v +≥216400v v =10,当且仅当v=80千米/时等号成立。
∴26辆货车到达B 地最少用10小时,此时货车速度为80千米/时。
13.(1)依题意y=839201600
23920)1600(3920=+≤++v
v ,当且仅当v=40等号成立。
最大车流量y=
83
920≈11.1(千辆/时) (2)由条件得10160039202>++v v v ,整理得v 2-89v+1600<0解得25<v<64。
14.解析:以BC 中点为原点,BC 所在直线为x 轴,建立坐标系,则B(-5,0),C(5,0),A(012),设P(0,y)∴PA 2+PB 2+PC 2=2(25+y 2)+(12-y)2=3(y-4)2
+146∴y =4时取最小值146,此时P 的坐标为(0,4)。