2015-2016年度高二必修5综合测试
- 格式:doc
- 大小:210.00 KB
- 文档页数:4
高二理科数学第页共8页12015—2016学年度第一学期高二年级期末统一考试理科数学试题(必修3、选修2-1)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(必考题和选考题两部分).考生作答时,将第Ⅰ卷的选择题答案填涂在答题卷的答题卡上(答题注意事项见答题卡),将第Ⅱ卷的必考题答在答题卷上.考试结束后,将答题卷交回.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列命题中,真命题是A.B. x ∈R,2x >x 20,0x x R e∃∈≤C.a +b =0的充要条件是=-1D.a >1,b >1是ab >1的充分条件ab2.已知命题,则命题的否定是2:,210P x R x ∀∈+>P A. B.012,2≤+∈∀x R x 012,200≤+∈∃x R x C. D.012,2<+∈∀x R x 012,200<+∈∃x R x 3.下列事件中:①任取三条线段,这三条线段恰好组成直角三角形;②从一个三角形的三个顶点各任画一条射线,这三条射线交于一点;③实数a ,b 不都为0,但a 2+b 2=0;④明年12月28日的最高气温高于今年12月10日的最高气温.其中为随机事件的是A.①②③④B.①②④C.①③④D.②③④4.若某公司从四位大学毕业生甲、乙、丙、丁中录用两人,这四人被录用的机会均等,则甲被录用的概率为高二理科数学第页共8页2A.B.C.D.415.某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为A.11B.12C.13D.146.气象台预报“本市明天降雨概率是70%”,下列说法正确的是A.本市明天将有70%的地区降雨B.本市明天将有70%的时间降雨C.明天出行带雨具的可能性很大D.明天出行不带雨具肯定要淋雨7.椭圆的左、右焦点分别为、,则椭圆上满足的点2212516x y +=1F 2F 21PF PF ⊥PA.有2个B.有4个C.不一定存在D.一定不存在8.某单位有老年人30人,中年人90人,青年人60人,为了调查他们的身体健康状况,采用分层抽样的方法从他们中间抽取一个容量为36的样本,则应抽取老年人的人数是A.5B.6C.7D.89.若直线:与曲线C :恰好有一个公共点,则实数的值构成的l (1)1y a x =+-2y ax =a 集合为A.B. C. D.{}10-,4{2}5--,4{1}5--,4{10}5--,10.某学校举办了一次以班级为单位的广播操比赛,9位评委给高一(1)班打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是A .2B .3C .4D .5高二理科数学第页共8页311.如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为C.D.453512.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为,且两条曲12F F 、线在第一象限的交点为,是以为底边的等腰三角形,若,椭圆P 21F PF ∆1PF 110PF =与双曲线的离心率分别为,,则的取值范围是1e 2e 121e e +A.(1,)B.(,)C.(,)D.(,+)+∞43+∞65+∞109∞第Ⅱ卷二、填空题:本大题共4个小题,每小题5分,共20分.13.在如图的程序框图中,输入n =60,按程序运行后输出的结果是.高二理科数学第页共8页414.已知命题,,命题,若命:[0,3]p x ∀∈2223a x x ≥-+-2:,40q x R x x a ∃∈++=题“”是真命题,则实数的范围为.p q ∧a 15.若抛物线上的点A (2,m )到焦点的距离为6,则p =________.)0(22>=p px y 16.一数学兴趣小组利用几何概型的相关知识做实验来计算圆周率,他们向一个边长为1米的正方形区域均匀撒豆,测得正方形区域有豆5001颗,正方形内切圆区域有豆3938颗,则他们所得的圆周率为________(保留三位有效数字).三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)四棱锥P -ABCD 中,AB ⊥AD ,AD ⊥DC ,PA ⊥底面ABCD ,PA =AD =AB =21CD =1,M 为PB 的中点.求直线CM 与平面ABCD 所成角的正弦值.18.(本小题满分12分)已知椭圆:的离心率为,其中左焦点.C )0(12222>>=+b a by a x 22)0,2(-F (Ⅰ)求椭圆的方程;C (Ⅱ)若直线与椭圆交于不同的两点,且线段的中点在圆m x y +=C B A ,AB M 上,求的值.122=+y x m19.(本小题满分12分)如图,正四棱柱ABCD—A1B1C1D1中,AA1=2AB=4,点E在C1C上,且C1E=3EC.(Ⅰ)证明A1C⊥平面BED;的余弦值.(Ⅱ)求二面角A1-DE-B5高二理科数学第页共8页高二理科数学第页共8页620.(本小题满分12分)某区四所高中进行高二期中联考,共有5000名学生参加,为了了解数学学科的学习情况,现从中随机的抽取若干名学生在这次测试中的数学成绩,制成如下频率分布表:(Ⅰ)根据上面的频率分布表,推出①,②,③,④处的数字分别为,____,____,____,____;(Ⅱ)在所给的坐标系中画出上的频率分布直方图;[80,150](Ⅲ)根据题中的信息估计总体:①120分及以上的学生人数;②成绩在[126,150]中的概率.分组频数频率[80,90)①②[90,100)0.050[100,110)0.200[110,120)360.300[120,130)0.275[130,140)12③[140,150]0.050合计④频率/组距21.(本小题满分12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(Ⅰ)从袋中随机取出两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.7高二理科数学第页共8页高二理科数学第页共8页822.(本小题满分12分)已知椭圆C :的焦距为4,其长轴长和短轴长之比为.)0(12222>>=+b a by a x 1:3(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的右焦点,T 为直线上纵坐标不为0的任意一)2,(≠∈=t t t x R 点,过F 作TF 的垂线交椭圆C 于点P ,Q .(ⅰ)若OT 平分线段PQ (其中O 为坐标原点),求的值;t (ⅱ)在(ⅰ)的条件下,当最小时,求点T 的坐标.||||PQ TF高二理科数学第页共8页92015—2016学年度第一学期高二年级期末统一考试试题理科数学(必修3、选修2-1)参考答案及评分标准一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共4个小题,每小题5分,共20分.13、5;14、;15、8;16、.1[,4]33.15三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)四棱锥P -ABCD 中,AB ⊥AD ,AD ⊥DC ,PA ⊥底面ABCD ,PA =AD =AB =21CD =1,M 为PB 的中点.求直线CM 与平面ABCD 所成角的正弦值.解:以AD 、AB 、AP 所在直线分别为x 、y 、z 轴,建立空间直角坐标系A —xyz .则由题意得A (0,0,0)、B (0,1,0)、D (1,0,0)、C (1,2,0)、P (0,0,1)、M .----4分11(0,,)22则=,平面ABCD 的法向量为=(0,0,1)MC 31(1,,)22-AP 若直线CM 与平面ABCD 所成角记为,q 题号123456789101112答案DBBCBCDBDAAB高二理科数学第页共8页10则sin.------------------------------10分q =18.(本小题满分12分)已知椭圆:的离心率为,其中左焦点.C )0(12222>>=+b a by a x 22)0,2(-F (Ⅰ)求椭圆的方程;C (Ⅱ)若直线与椭圆交于不同的两点,且线段的中点在圆m x y+=C B A ,AB M 上,求的值.122=+y x m 解:(Ⅰ)由题意得,,c a =2c =解得:-----------------------------4分⎩⎨⎧==222b a 所以椭圆C 的方程为:-----------------------------6分14822=+y x (Ⅱ)设点A,B 的坐标分别为,,线段AB 的中点为M ,),(11y x ),(22y x ),(00y x 由,消去y 得⎪⎩⎪⎨⎧+==+m x y y x 148220824322=-++m mx x 3232,08962<<-∴>-=∆m m 3,32200210mm x y m x x x =+=-=+=∴点M 在圆上,),(00y x 122=+y x高二理科数学第页共8页11------------12分222()()133m m m ∴-+==,即0> 19.(本小题满分12分)如图,正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB =4,点E 在C 1C 上,且C 1E =3EC .(Ⅰ)证明A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 的余弦值.解:以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示的空间直角坐标系D -xyz .依题设B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).=(0,2,1),=(2,2,0),DE DB=(-2,2,-4),=(2,0,4).1A C 1DA(Ⅰ)∵=0,=0,1A C DB × 1A C DE ×∴A 1C ⊥BD ,A 1C ⊥DE .又DB ∩DE =D ,∴A 1C ⊥平面DBE .-------------------------------------------------------------6分(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则n ⊥,n ⊥.DE1DA高二理科数学第页共8页12∴2y +z =0,2x +4z =0.令y =1,则z =-2,x =4,∴n =(4,1,-2).∴cos 〈n ,→A 1C 〉==∵〈n ,→A 1C 〉等于二面角A 1-DE -B 的平面角,∴二面角A 1-DE -B.---------------12分20.(本小题满分12分)某区四所高中进行高二期中联考,共有5000名学生参加,为了了解数学学科的学习情况,现从中随机的抽取若干名学生在这次测试中的数学成绩,制成如下频率分布表:(Ⅰ)根据上面的频率分布表,推出①,②,③,④处的数字分别为,____,____,____,____;分组频数频率[80,90)①②[90,100)0.050[100,110)0.200[110,120)360.300[120,130)0.275[130,140)12③[140,150]0.050合计④频率/组距高二理科数学第页共8页13(Ⅱ)在所给的坐标系中画出上的频率分布直方图;[80,150](Ⅲ)根据题中的信息估计总体:①120分及以上的学生人数;②成绩在[126,150]中的概率.解:(Ⅰ)①,②,③,④处的数字分别为3,0.025,0.100,1;------------------------------4分(Ⅱ)------------8分(Ⅲ)①(0.275+0.100+0.050)×5000=2125--------------------10分②P=0.4×0.275+0.10+0.050=0.260-----------------------12分21.(本小题满分12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(Ⅰ)从袋中随机取出两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.解:(I)从袋子中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中随机取出的球的编号之和不大于4的事件共有1和2,1和3两个.因此所求事件的概率为.----------------6分13(II)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n )有:(1,1)(1,2),(1,3),(1,4),(2,1),高二理科数学第页共8页14(2,2),(2,3),(2,4),(3,1)(3,2),(3,3)(3,4),(4,1)(4,2),(4,3)(4,4),共16个.有满足条件n ≥m +2的事件为(1,3)(1,4)(2,4),共3个.所以满足条件n ≥m +2的事件的概率为P=,故满足条件n <m +2的事件的概率316为.--------------------------------------------12分22.(本小题满分12分)已知椭圆C :的焦距为4,其长轴长和短轴长之比为.)0(12222>>=+b a by a x 1:3(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的右焦点,T 为直线上纵坐标不为0的任意一)2,(≠∈=t t t x R 点,过F 作TF 的垂线交椭圆C 于点P ,Q .(ⅰ)若OT 平分线段PQ (其中O 为坐标原点),求的值;t (ⅱ)在(ⅰ)的条件下,当最小时,求点T 的坐标.||||PQ TF 解:(Ⅰ)由已知可得解得⎪⎩⎪⎨⎧==-=,3,42222b a b a c 226 2.a b =,=所以椭圆C 的标准方程是.----------------------------------5分12622=+y x (Ⅱ)(ⅰ)由(Ⅰ)可得,F 点的坐标是(2,0).设直线的方程为,PQ 2x my +=将直线的方程与椭圆C 的方程联立,得PQ 222162x my x y =+⎧⎪⎨+=⎪⎩消去x ,得,其判别式22340)2(m y my ++-=22(1683.)0m m ∆>=++设则1122()()P x y Q x y ,,,,12122242,33m y y y y m m --+==++于是12122(1243)x x m y y m +++=+=高二理科数学第页共8页15设为的中点,则点的坐标为.M PQ M 32,36(22+-+m mm 因为,所以直线的斜率为,其方程为.PQ TF ⊥FT m -)2(--=x m y 当时,,所以点的坐标为,t x =()2--=t m y T ()()2,--t m t 此时直线OT 的斜率为,其方程为.()tt m 2--x t t m y )2(-=将点的坐标为代入,M )32,36(22+-+m mm 得.36)2(3222+⋅-=+-m t t m m m 解得.3=t (ⅱ)由(ⅰ)知T 为直线上任意一点可得,点T 的坐标为.3=x ),3(m -于是,1||2+=m TF 221221221221)()]([)()(||y y y y m y y x x PQ -+-=-+-=]4))[(1(212212y y y y m -++=]324)34)[(1(2222+--+-+=m m m m .]324)34)[(1(2222+--+-+=m m m m 3)1(2422++=m m 所以1)3(241)1(2431||||222222++⋅=++⋅+=m m m m m PQ TF 14)1(4)1(2411)3(2412222222+++++⋅=++⋅=m m m m m .414124122++++⋅=m m 33442241=+⋅≥当且仅当,即时,等号成立,此时取得最小值.22411m m +=+1m ±=||||PQ TF 33故当最小时,T 点的坐标是或-----------------------12分||||PQ TF ()3,1()3,1-。
高二语文期中试卷参考答案一、现代文阅读(9分,每小题3分)1.(3分)C(“人才培养标准与官学大相径庭”错,从第一段结尾倒数第二句话可以看出,书院教学内容都不出官学、科举的要求范围,但“大相径庭”是相差极远的意思,与原文意思不符,所以C错。
)2.(3分) B (原文为“书院生徒继聆听山长集中讲学、向山长请教外,还有充分的时间组织自学和学术讨论”,因此“并在山长的组织下开展自学和讨论”错。
)3.(3分) C (文中第二段只是提及书院也接受了为官方所接受的民间思想,并没有说官方是通过什么途径接受民间思想的。
原文相关表述为:“讲学内容既包括掌教者个人的学术思想,也包括正统的儒家经学思想,还包括一些后来逐渐为官方所接受的民间思想”。
)二、古代诗文阅读(36分)(一)文言文阅读(19分)4.(3分)D(游,研习。
)5.(3分)C6.(3分)A( B 项“同僚们高兴不已”,无中生有;C 项众位客人不写是因为都督有私心;D 项张冠李戴,《尚书》非王通撰写。
)7.(10分)(1)(5分)当时他还不满二十岁,就被授予朝散郎的官职,多次献上精美的颂文给皇帝。
(2)(5分)杨炯曾说:“我惭愧排在卢前,而对排在王后面感到羞耻。
”(当时的)评议者也认为是这样。
【参考译文】王勃,字子安,是绛州龙门人。
六岁的时候就能写文章,九岁那一年,读到了(大儒)颜师古注解的《汉书》,就作了一篇《汉书指瑕》来挑出它错误。
唐高宗麟德初年,官员刘祥道奉旨巡行关内,王勃给刘祥道写了一封信,展示自己的才学。
刘祥道上表给朝廷,策试成绩优秀。
当时他还不满二十岁,就被授予朝散郎的官职,多次献上精美的颂文给皇帝。
皇子沛王听说了他的名气,就把王勃请到自己的府中,担任专门的著作工作,评定编次《平台秘略》一书。
书写成以后,沛王对王勃更加宠爱信任。
当时,皇子们喜欢玩斗鸡游戏,王勃开玩笑写了一篇檄文声讨英王的斗鸡,高宗皇帝大怒道:“这么下去将会挑起皇子之间的矛盾。
【成才之路】2015-2016学年高中数学 第三章 不等式章末归纳总结新人A 教版必修5一、选择题1.(2015·四川理,1)设集合A ={x |(x +1)(x -2)<0},集合B ={x |1<x <3},则A ∪B =( )A .{x |-1<x <3}B .{x |-1<x <1}C .{x |1<x <2}D .{x |2<x <3}[分析] 考查集合的基本运算和一元二次不等式的解法.解答本题先解不等式求出A ,再按并集的意义求解.[答案] A[解析] A ={x |-1<x <2},B ={x |1<x <3}, ∴A ∪B ={x |-1<x <3},选A .2.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系为( ) A .a >b >-b >-a B .a >-b >-a >b C .a >-b >b >-a D .a >b >-a >-b[答案] C [解析]⎭⎪⎬⎪⎫a +b >0⇒a >-b b <0⇒-b >0⇒a >-b >0⇒-a <b <0.∴选C .另解:可取特值检验.∵a +b >0,b <0,∴可取a =2,b =-1,∴-a =-2,-b =1,∴-a <b <-b <a ,排除A 、B 、D ,∴选C .3.不等式(x +5)(3-2x )≥6的解集是( )A .⎩⎨⎧⎭⎬⎫x |x ≤-1,或x ≥92B .⎩⎨⎧⎭⎬⎫x |-1≤x ≤92C .⎩⎨⎧⎭⎬⎫x |x ≤-92或x ≥1 D .⎩⎨⎧⎭⎬⎫x |-92≤x ≤1 [答案] D[解析] 解法1:取x =1检验,满足排除A ;取x =4检验,不满足排除B ,C ;∴选D . 解法2:化为:2x 2+7x -9≤0, 即(x -1)(2x +9)≤0,∴-92≤x ≤1.4.若2x+2y=1,则x +y 的取值范围是( ) A .[0,2]B .[-2,0]C .[-2,+∞)D .(-∞,-2][答案] D[解析] ∵2x+2y≥22x +y,∴22x +y≤1,∴2x +y≤14=2-2,∴x +y ≤-2,故选D . 5.(2014·安徽理,5)x , y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A .12或-1 B .2或12C .2或1D .2或-1[答案] D[解析] 本题考查线性规划问题.如图,z =y -ax 的最大值的最优解不唯一,即直线y =ax +z 与直线2x -y +2=0或x +y -2=0重合,∴a =2或-1.画出可行域,平移直线是线性规划问题的根本解法.6.当x ∈R 时,不等式kx 2-kx +1>0恒成立,则k 的取值范围是( ) A .(0,+∞) B .[0,+∞) C .[0,4) D .(0,4)[答案] C[解析] k =0时满足排除A 、D ;k =4时,不等为4x 2-4x +1>0,即(2x -1)2>0,显然当x =12时不成立.排除B ,选C .二、填空题7.已知函数f (x )=4x +a x(x >0,a >0)在x =3时取得最小值,则a =________. [答案] 36[解析] 由基本不等式可得4x +a x≥24x ·ax =4a ,当且仅当4x =a x,即x =a2时等号成立.故a2=3,a =36.8.已知:a 、b 、x 、y 都是正实数,且1a +1b=1,x 2+y 2=8,则ab 与xy 的大小关系是________.[答案] ab ≥xy[解析] ab =ab ·(1a +1b)=a +b ≥2ab ,∴ab ≥4,等号在a =2,b =2时成立,xy ≤x 2+y 22=4,等号在x =y =2时成立,∴ab ≥xy .三、解答题9.(1)设a 、b 、c 为△ABC 的三条边,求证:a 2+b 2+c 2<2(ab +bc +ca ); (2)若正数a ,b 满足ab =a +b +3,求ab 的取值范围.[分析] (1)三角形两边之和大于第三边,两边之差小于第三边,各边长均为正数.再结合轮换对称关系设法构造三个不等式相加.(2)由ab =a +b +3出发,求ab 的范围,关键是寻找ab 与a +b 之间的联系,由此联想到基本不等式a +b ≥2ab .[解析] (1)∵a 、b 、c 是△ABC 的三边, 不妨设a ≥b ≥c >0则a >b -c ≥0,b >a -c ≥0,c >a -b ≥0.平方得:a 2>b 2+c 2-2bc ,b 2>a 2+c 2-2ac ,c 2>a 2+b 2-2ab ,三式相加得:0>a 2+b 2+c 2-2bc -2ac -2ab . ∴2ab +2bc +2ac >a 2+b 2+c 2. (2)令ab =t (t >0). ∵a ,b 均为正数,∴ab =a +b +3≥2ab +3, 即得t 2≥2t +3,解得t ≥3或t ≤-1(舍去), ∴ab ≥3, 故ab ≥9,∴ab 的取值范围是[9,+∞).10.m 为何值时,关于x 的方程8x 2-(m -1)x +m -7=0的两根: (1)都大于1;(2)一根大于2,一根小于2. [解析] 设方程的两根分别为x 1、x 2. (1)由题意,得⎩⎪⎨⎪⎧Δ≥0x 1+x 2>2x 1-x 2-,即⎩⎪⎨⎪⎧m -2-m -m -18>2m -78-m -18+1>0,∴⎩⎪⎨⎪⎧m ≤9或m ≥25m >17m ∈R,∴m ≥25.(2)由题意,得⎩⎪⎨⎪⎧Δ>0x 1-x 2-,即⎩⎪⎨⎪⎧m -2-m -m -78-m -8+4<0,∴⎩⎪⎨⎪⎧m <9或m >25m >27,∴m >27.一、选择题11.若集合A ={x |-1≤2x +1≤3},B ={x |x -2x≤0},则A ∩B =( ) A .{x |-1≤x <0} B .{x |0<x ≤1} C .{x |0≤x ≤2} D .{x |0≤x ≤1}[答案] B[解析] 因为集合A ={x |-1≤x ≤1},B ={x |0<x ≤2},所以A ∩B ={x |0<x ≤1},选B . 12.设0<b <a <1,则下列不等式成立的是( ) A .ab <b 2<1 B .log 12b <log 12a <0C .2b<2a <2 D .a 2<ab <1[答案] C[解析] 取a =12,b =13验证可知选C .13.小王从甲地到乙地的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ) A .a <v <abB .v =abC .ab <v <a +b2D .v =a +b2[答案] A[解析] 设甲、乙两地之间的距离为s . ∵a <b ,∴v =2ss a +s b=2ab a +b <2ab2ab=ab . 又v -a =2ab a +b -a =ab -a 2a +b >a 2-a2a +b=0,∴v >a .14.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥0x -y ≥02x -y -2≥0,则ω=y -1x +1的取值范围是( ) A .[-1,13]B .[-12,13]C .[-12,+∞)D .[-12,1)[答案] D[解析] 作出可行域如右图所示,由于ω=y -1x +1可理解为经过点P (-1,1)与点(x ,y )的直线的斜率,而k PA =0-11--=-12,另一直线斜率趋向1,因此ω的取值范围为[-12,1).二、填空题15.某公司一年需购买某种货物200吨,平均分成若干次进行购买,每次购买的运费为2万元,一年的总存储费用数值(单位:万元)恰好为每次的购买吨数数值,要使一年的总运费与总存储费用之和最小,则每次购买该种货物的吨数是________.[答案] 20[解析] 设每次购买该种货物x 吨,则需要购买200x 次,则一年的总运费为200x ×2=400x,一年的总存储费用为x ,所以一年的总运费与总存储费用为400x+x ≥2400x ·x =40,当且仅当400x=x ,即x =20时等号成立.故要使一年的总运费与总存储费用之和最小,每次应购买该种货物20吨.16.(2014·苏州调研)若m 2x -1mx +1<0(m ≠0)对一切x ≥4恒成立,则实数m 的取值范围是________.[答案] (-∞,-12)[解析] 依题意,对任意的x ∈[4,+∞),有f (x )=(mx +1)(m 2x -1)<0恒成立,结合图象分析可知⎩⎪⎨⎪⎧m <0,-1m<4,1m 2<4,由此解得m <-12,即实数m 的取值范围是(-∞,-12).三、解答题17.已知a ∈R ,试比较11-a 与1+a 的大小.[解析] 11-a -(1+a )=a21-a .①当a =0时,a 21-a =0,∴11-a=1+a . ②当a <1且a ≠0时,a 21-a >0,∴11-a >1+a .③当a >1时,a 21-a <0,∴11-a<1+a . 综上所述,当a =0时,11-a =1+a ;当a <1且a ≠0时,11-a >1+a ;当a >1时,11-a<1+a . 18.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.[解析] (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ), 当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a,∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m .。
湖北省孝感高级中学2015-2016学年高二数学5月调研考试试题 文(含解析)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有 一项是符合题目要求的.1.命题“若3a >-, 则6a >-”以及它的逆命题、否命题、逆否命题这四个命题中, 真命题的个数为( ) A. 0B. 1C. 2D. 3【答案】C考点:1、命题间的关系;2、命题真假的判定. 2.已知x 与y 之间的一组数据:则y 与x 的线性回归方程为y bx a =+必过点( ) A. (2, 2)B. (1, 2)C. (1.5, 0)D. (1.5, 4)【答案】D 【解析】试题分析:因为01233 1.542x +++===,135744y +++==,所以样本中心点为()1.5,4.因为线性回归方程表示的直线必过样本中心点,所以回归直线必过点()1.5,4,故选D .考点:线性回归方程.3.对于常数,m n 、 “0mn >”是“方程221mx ny +=的曲线是椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】B 【解析】试题分析:方程221mx ny +=表示的曲线是椭圆需满足0,0,m n m n >>≠,而由0mn >可得,0m n >或,0m n <,所以“0mn >”是“方程221mx ny +=的曲线是椭圆”的必要不充分条件,故选B .考点:1、充分条件与必要条件;2、椭圆方程.4.函数()f x 的导函数()'f x 在区间(,)a b 内的图象如图所示, 则()f x 在(,)a b 内的极大值点有( )A. 1个B. 2个C. 3个D. 4个【答案】B考点:1、函数图象;2、函数极值与导数的关系.5.如果执行上面的程序框图,输入5N =,则输出的数等于( )A. 54B. 45C. 65D. 56 【答案】D 【解析】试题分析:第一次循环,得110,2122S k =+==⨯;第二次循环,得112,32233S k =+==⨯;第三次循环,得213,43344S k =+==⨯;第四次循环,得314,54455S k =+==⨯;第五次循环,得41556S =+⨯=56,此时5k =不满足条件,退出循环,输出56S =,故选D . 考点:程序框图.6.已知小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( ) A .964 B .12C .164D .18【答案】D 【解析】试题分析:正方体的体积为64,“安全飞行”为一个棱长为2的小正方体,其体积为8,所以所求概率81648P ==,故选D . 考点:几何概型.【方法点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解;(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域. 7.函数2()2ln =-f x x x 的单调递减区间是( )A. 1(0,)2 B. 11(,0)(,)22- +∞和 C. 1(,)2 +∞ D. 11(,)(0,)22-∞ - 和 【答案】A考点:利用导数研究函数的单调性.8.设抛物线24x y =的焦点为F ,经过点()1,5P 的直线l 与抛物线相交于A B ,两点,且点P恰为线段AB的中点,则AF BF +=( ) A. 13B. 12C. 11D. 10【答案】B 【解析】试题分析:由题意,知2p =.设1122(,),(,)A x y B x y ,则122510y y +=⨯=.由抛物线的定义,知AF BF +=10212+=,故选B . 考点:抛物线的定义.9.已知命题2:[1,2],0“”p x x a ∀∈ -≥,命题2:,220“使”q x R x ax a ∃∈ ++-=, 若命题“p 且q ”是真命题, 则实数a 的取值范围是( )A. {|21}≤- =或a a aB. {|1}≥a aC. {|212}≤- ≤≤或a a aD. {|21}-≤≤ a a【答案】A 【解析】试题分析:由命题“p 且q ”是真命题,知,p q 均为真命题.由20x a -≥解得x a x a ≥≤或.又[]21,2,0x x a ∀∈-≥,所以a 1≤,此时p 为真命题;由2220x ax a ++-=有解得2(2)4(2)a a ∆=--≥0,解得1a ≥或2a ≤-,此时q 真命题.要为使,p q 均为真命题,则21-≤=a a 或,故选A . 考点:复合命题的真假判定.【技巧点睛】根据命题真假求参数的值或取值范围的关键是合理转化条件,常通过有关性质、定理、图象等将原问题转化为最值问题、有解问题等,得到关于参数的方程或不等式(组),然后通过解方程或不等式(组)求出参数的值或取值范围.10.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M N ,是双曲线的两顶点.若M O N ,,将椭圆的长轴四等分,则双曲线与椭圆的离心率的比值是( )A .3B .2【答案】B考点:椭圆与双曲线的几何性质. 11.已知点P 在曲线41=+xy e 上, 则曲线在点P 处切线的倾斜角α的取值范围是( ) A. [0,)4 π B. [,)42ππC. 3,24(]ππD. 3[,)4 ππ【答案】D 【解析】试题分析:由题意,得244[1,0)1(1)2x x x x e y e e e'=-=-∈-+++,所以3[,)4παπ∈,故选D . 考点:1、导数的几何意义;2、直线的倾斜角.12.定义在(0,)2π上的函数()f x , 其导函数为'()f x , 若恒有()'()tan <f x f x x , 则( )A. ()()63>ππfB. ()()63<ππf()()63>ππfD.()()63<ππf【答案】D考点:1、利用导数研究函数的单调性;2、不等式恒成立问题.【技巧点睛】联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某班有学生55人,现将所有学生按1,2,3,…,55随机编号.若采用系统抽样的方法抽取一个容量为5的样本,已知编号为6,a ,28,b ,50号学生在样本中,则a b += .【答案】56 【解析】试题分析:因为6与28之间差为22,50与28之间差22,,a b 在其中间,由等差数列的性质知其公差为11,所以17a =,39b =,所以56a b +=. 考点:14.口袋中装有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率是0.23,则摸出黑球的概率是________. 【答案】0.32 【解析】试题分析:因为摸出白球的概率是0.23,所以由古典概型概率公式,知白球的个数为1000.2323⨯=,所以黑球的个数为100234532--=,所以摸出黑球的概率为320.32100=.考点:古典概型.15.设P 为直线3by x a =与双曲线2222:1(00)x y C a b a b -=>>, 左支的交点,1F 是左焦点,1PF 垂直于x轴,则双曲线的离心率e =________.【答案】4考点:双曲线的性质.【方法点睛】讨论椭圆的性质,离心率问题是重点,求椭圆的离心率e 的常用方法有两种:(1)求得a c ,的值,直接代入ce a=求得;(2)列出关于a b c ,,的一个齐次方程(不等式),再结合222b ac =-消去b ,转化为关于e 的方程(或不等式)再求解.16.已知函数3()3=--f x x ax a 在(0, 1)内有最小值, 则a 的取值范围是 . 【答案】(0,1) 【解析】试题分析:由题意,得22()333()f x x a x a '=-=-.当0≤a 时,()0f x '≥,函数)(x f 在(0,1)上单调递增,所以)(x f 在0=x 处取得最小值,显然不可能;当0>a 时,令()0f x '=,解得x =x >)(x f 为增函数,当a x <<0时,)(x f 为减函数,所以)(x f 在x =0,1)内,符合条件要求.综上所述,a的取值范围为(0,1).考点:函数最值与导数的关系.【方法点睛】求可导函数)(x f 在[]a b ,上的最大值和最小值可按如下步骤进行:(1)求)(x f 在()a b ,内的极值;(2)将)(x f 的各极值与()f a 、()f b 比较,确定)(x f 的最大值和最小值.含参数的最值,首先按照极值点是否在所给区间对参数进行讨论,然后比较区间内的极值和端点值的大小.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(10分)已知1:12p x <-, :||1q x a -<, 若p ⌝是q ⌝的充分不必要条件, 求实数a 的取值范围.【答案】(,1][4,)-∞+∞考点:1、充分条件与必要条件;2、不等式的解法.【方法点睛】充要条件判断的三种常用方法:(1)利用定义判断.如果已知p q ⇒,则p 是q 的充分条件, q 是p 的必要条件;(2)利用等价命题判断.原命题与其逆否命题是“同真同假”的等价命题,当直接判断原命题的真假有困难时,可以转化为判断其逆否命题的真假;(3) 利用韦恩图把充要条件“直观化”.18.(12分)一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,收集数 据如下:(1)请根据五次试验的数据,求出y 关于x 的线性回归方程y bx a =+; (2)根据(1)得到的线性回归方程预测加工70个零件所需要的时间.参考公式:121()()ˆˆˆ,()niii nii x x y y bay bx x x ==--==--∑∑其中111,.nni i i i x x y y n ====∑∑【答案】(1)ˆ0.754yx =+;(2)103分钟.考点:独立性检测思想.19.(12分)已知集合22{|340},{|0}.4x A x x x B x x +=+-<=<- (1)在区间(-4, 5)上任取一个实数x ,求“x AB ∈”的概率;(2)设()a b ,为有序实数对,其中a b ,分别是集合,A B 中任取的一个整数,求“a b A B -∈”的概率.【答案】(1) 13;(2) 710. 【解析】试题分析:(1)首先通过解不等式化简集合,A B ,然后求出AB ,从而利用几何概型概率公式求解;(2)首先列出()a b ,的所有可能的结果,然后列出“a b A B -∈”的所有可能的结果,从而利用古典概型概率公式求解.试题解析:(1) 由已知得41{|}A x x <<=-,24{|}B x x <<=-, {|}21A B x x ⋂<<=-.设事件“x AB ∈”的概率为1P ,由几何概型的概率公式得13193P ==.………………………………………………..(6分)考点:1、几何概型;2、古典概型;3、不等式的解法.【技巧点睛】求解几何概型与古典概型的思路是相同的,同属于“比例解法”,关键是求得“事件A 包含的基本事件所占图形长度(面积或体积)”与“试验的基本事件所占的图形长度(面积或体积)”之比来表示.几何概型问题,常与其他几何知识结合,要注意相应知识的运用.20.(12分)已知2()1xe f x ax=+, 其中a 为正实数. (1)当43a =时, 求()f x 的极值点,并指出是极大值点还是极小值点; (2)若()f x 为实数集R 上的单调函数, 求实数a 的取值范围. 【答案】(1)32x =是极小值点,12x =是极大值点;(2){|01}a a <≤. 【解析】试题分析:首先求得导函数,(1)然后令导函数等于0,并求得此时x 的值,从而通过列表求得极值点;(2)根据函数是R 上的单调函数,导函数在R 上不变号建立不等式组求解即可.试题解析:22221'()(1)xax ax f x e ax -+=⋅+……………………………………………….……..(2分) (1)当43a =时, 令'()0f x =, 得1231,22x x == .123,22x x ∴==是极小值点是极大值点 ;…………………………………(6分)(2)若()f x 为R 上的单调函数, 则'()f x 在R 上不变号,又0a >, 2210ax ax ∴-+≥在R 上恒成立,即20444(1)0a a a a a ∆>⎧⎨=-=-≤⎩ 01a ⇒<≤. {|01}a a a ∴<≤实数的取值范围是.…………………………………….……..(12分) 考点:1、函数极值与导数的关系;2、利用导数研究函数的单调性.【技巧点睛】已知函数在区间上单调,求其中的参数时,要注意单调性与导数的关系的转化.即:(1)如果()f x 在区间[]a b ,单调递增()0f x ⇒'≥在[]x a b ∈,上恒成立;(2)如果()f x 在区间[]a b ,单调递减⇒()0f x '≤在[]x a b ∈,恒成立.21.(12分)如图,12F F 、分别是椭圆2222:1(0)x y C a b a b+=>> 的左、右焦点,A 是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1260F AF ∠=o.(1)求椭圆C 的离心率;(2)若1AF B ∆的面积为求椭圆C 的方程.【答案】(1)12;(2) 22110075x y +=.(2) ( 方法一)224a c =,223b c =.直线AB 的方程可为)y x c =-.考点:1、椭圆的方程及几何性质;2、直线与椭圆的位置关系.22.(12分)已知函数3().f x x x =-(1)求曲线()y f x =在点(1,0)M 处的切线方程;(2)如果过点(1,)b 可作曲线()y f x =的三条切线, 求实数b 的取值范围.【答案】(1)22y x =- ;(2) (1, 0)b ∈-.【解析】试题分析:(1)首先求出导函数,然后利用利用导数的几何意义求得切线的斜率,从而利用点斜式求得切线方程;(2)首先设出切点,然后将问题转化为方程32002310x x b -++=有三个不同的实数解,由此转化为函数32()231g x x x b =-++有三个不同的零点,从而利用导数函数()g x 的零点,进而求得b 的取值范围.试题解析:(1) 2'()3 1.f x x =- '(1)2f ∴=.曲线()y f x =在点(1,0)M 处的切线方程为:22y x =- ……………………..….( 4分)考点:1、导数的几何意义;2、函数零点.。
徐闻二中2015—2016学年度第一学期高二年级月考数学参考答案2015年11月一、选择题:(本大题共l2小题,每小题5分,满分60分.在每小题给出的四个选 项中,只有一项是符合题目要求的)。
1 2 3 4 5 6 7 8 9 10 11 12 BD C A C A C D C C D B二、填空题:(本大题共4小题,每小题5分,满分20分)。
13: 3 14: o 60(或3π) 15: 122-+n n 16: ()11--n n三、解答题:(本大题满分70分.解答须写出文字说明、证明过程和演算步骤)。
................17.(本题满分12分)已知数列{}n a 是递增的等差数列,31,a a 是方程0342=+-x x 的两个根。
(1)求数列{}n a 的通项公式n a ; (2)设11+=n n n a a b ,求数列{}n b 的前n 项和n S 。
解:(1)由0342=+-x x 解得3,121==x x31,a a 是方程0342=+-x x 的两个根且数列{}n a 是递增的等差数列∴3,131==a a∴公差11313=--=a a d , ()()n n d n a a n =⨯-+=-+=∴11111(2)由(1)得()1111111+-=+==+n n n n a a b n n n n n n b b b b S ++++=∴-121⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=1111113121211n n n n 1111+=+-=n n n18.(本题满分12分)已知数列{}n a 是等比数列,其中16,241==a a 。
(1) 求数列{}n a 的通项公式n a ;(2) 设n n a n b ⋅=,求数列{}n b 的前n 项和n S 。
解:(1)设等比数列的公比为q ,则16,241==a a 8314==∴q a a , 2=∴q n n n n q a a 222111=⨯==∴--(2)由(1)得n n n n a n b 2⋅=⋅=n n n b b b b S ++++=∴-121()n n n n n S 2212322211321⨯+⨯-++⨯+⨯+⨯=∴- ① ()14322212322212+⨯+⨯-++⨯+⨯+⨯=∴n n n n n S ② ①-②得13222222+⨯-++++=-n n n n S()1221212+⨯---=n nn ()2211+-=∴+n n n S19.(本题满分12分) 在△ABC 中,内角C B A ,,所对的边为c b a ,,,且A B b a 2,62,3===.(1)求B sin 的值;(2)求△ABC 的面积。
高二英语期中试卷参考答案第一卷一.听力(15分)1-5 CBBAA 6-10 CACAB 11-15CBABA二完形填空(30分)16-20 CBAAD 21-25 CCDCA 26-30 DDABA 31-35 CACBA三语法填空(15分)36. as 37.deadly 38. terrified 39. theories 40 possibly41. its 42. were attacked 43.where 44. the 45. polluted四.阅读理解(40分)46—49 CBBC 50-53 BACD 54-57 BDAA 58-60 DBC 61-65 AFDEG 第二卷一.单词拼写(15)66 . representing 67. central 68 . instructed 69. roughly 70.facial71.swings 72. announced 73. convenience 74. strict 75.included76. greet 77. curiously 78. tourism 79. excited 80.consists二.短文改错(10分)1 . I 后的were 去掉 2.dormitory 改为dormitories3 .following 改为followed 4. for 改为to5. kiss 改为kissed6. surprising改为surprised7. probable 改为probably 8. introduced前加were9. Therefore改为However 10. all 改为both三书面表达(25分)American Students Came To Our School ,Our school received a group of students from America last month. During their one-week stay in our city, the students experienced the campus life of Chinese students. They also visited some places of interest in our city and learned about the local culture . The American students were impressed by the kindness of Chinese students, the cleanness of the city and the delicious food.At the invitation of an American high school, 20 students in our school are going to America for an exchange visit next July.By Li Hua, School Newspaper。
2015—2016学年度第二学期高二文科数学05月份联考试卷一.选择题(本大题共12题,每小题5分,共60分. )1.“22a b >”是“22log log a b >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2.命题“,()n N f n n *∀∈≤”的否定形式是( )A .,()n N f n n *∀∈>B .,()n N f n n *∀∉>C .,()n N f n n *∃∈>D .,()n N f n n *∃∉>3.下列说法中,正确的是( )A .空集没有子集B .空集是任何一个集合的真子集C .空集的元素个数为零D .任何一个集合必有两个或两个以上的子集4.若集合{}1,2lg <=⎭⎬⎫⎩⎨⎧-==x x N x x y x M ,则=⋂N C M R ( ) A .)2,0( B .(]2,0 C .[)2,1 D .()+∞,05.已知几何体的三视图如图所示,则该几何体的表面积为( )6.命题“若b a >,则11->-b a ”的否命题是( )A .若b a >,则11-≤-b aB .若b a ≥,则11-<-b aC .若b a ≤,则11-≤-b aD .若b a <,则11-<-b a7.已知平面α内有无数条直线都与平面β平行,那么 ( )A .α∥βB .α与β相交C .α与β重合D .α∥β或α与β相交8.下列四个命题中错误..的是( ) A .若直线a 、b 互相平行,则直线a 、b 确定一个平面B .若四点不共面,则这四点中任意三点都不共线C .若两条直线没有公共点,则这两条直线是异面直线D .两条异面直线不可能垂直于同一个平面9.一个圆柱和一个圆锥的底面直径..和他们的高都与某一个球的直径相等,此时圆柱、圆锥、球的体积之比为( )A .3∶1∶2B .3∶1∶4C .3∶2∶4D .2∶1∶310.点A ,B ,C ,D 均在同一球面上,且AB ,AC ,AD 两两垂直,且AB=1,AC=2,AD=3,则该球的表面积为( )A .7πB .14πC 11.已知R 是实数集,等于( )A.[1,2]B.C. D.[0,2]12.下列选项中,说法正确的是( )A.命题“”的否定是“”B.命题“为真”是命题“为真”的充分不必要条件C.命题“若,则”是假命题D.命题“若,则”的逆否命题为真命题 二、填空题(本大题共4小题,每小题5分,共20分)13.已知命题02,:2≤++∈∃a x x R x p 是真命题,则实数a 的取值范围是________.14.若集合A ={x|x 2+2x -8<0},B ={x|5-m<x<2m -1}.若U =R ,A∩( ∁U B)=A ,则实数m 的取值范围是________.15.若“”是假命题,则a 的取值范围___________. 16.已知集合A ={x|x 2-9x +14=0},集合B ={x|ax +2=0},若B A ,则实数a 的取值集合为________.三、解答题(本大题共6个小题,共70分.解答应写出证明过程或演算步骤)17.(10(1)当3=m 时,求集合B A U ,(∁)R A B ;(2)若A B B = ,求实数m 的取值范围.18.(12分)在正方体1111ABCD A B C D -中,E 、F 分别是AB 、11B C 的中点。
高中英语真题:2015~2016学年度普通高中高二教学质量监测试题Word版.doc一、阅读理解(共4题)1.University Room RegulationsApproved and Prohibited ItemsThe following items are approved for use in residential rooms: electric blankets, hair dryers, personal computers, radios, televisions and DVD players. Items that are not allowed in student rooms include: candles, ceiling fans, fire works, waterbeds, sun lamps and wireless routers. Please note that any prohibited items will be taken away by the Office of Residence Life.Access to Residential RoomsStudents are provided with a combination for their room door locks upon check-in. Do not share your room door lock combination with anyone. The Office of Residence Life may change the door lock combination at any time at the expense of the resident if it is found that the student has sharedthe combination with others. The fee is $25 to change a room combination.Cooking PolicyStudents living in buildings that have kitchens are only permitted to cook in the kitchen. Students must clean up after cooking. This is not the responsibility of housekeeping staff. Kitchens that are not kept clean may be closed for use. With the exception of using a small microwave oven to heat food, students are not permitted to cook in their rooms.Pet PolicyNo pets except fish are permitted in student rooms. Students who are found with pets, whether visiting or owned by the student, are subject to an initial fine of $ 100 and a continuing fine of $50 a day per pet. Students receive written notice when the fine goes into effect. If, one week from the date of written notice, the pet is not removed, the student is referred to the Student Court.21. Which of the following items is allowed in student rooms?A. Ceiling fans and waterbeds.B. Wireless routers and radios.C. Hair dryers and candles.D. TVs and electric blankets.22. What do we know about the cooking policy?A. A microwave oven can be used.B. Cooking in student rooms is permitted.C. A housekeeper is to clean up the kitchen.D. Students are to close kitchen doors after cooking.23. If a student has kept a cat in his room for a week since the warning, he will face .A. parent visitsB. a fine of $100C. the Student CourtD. a written notice2.Recently, a series of bracelets have gone viral on Weibo. On these specially made bracelets are the words “Cell Phone Ninja.”The bracelets are actually part of an experiment carried out byChongqing Three Gorges University that challenges students not to use cell phones in class for 21 days.The experiment started on April 12. Each student who volunteered to participate received a bracelet. Before the first class and after the last class of each day, students were instructed to upload a photo of their bracelet to the school’s public Wechat account if they did not use their cell phones.Over 800 students signed up for the experiment and 400 were selected to participate. After seven days, only 103 students remained. The experiment was set for 21 days because of a claim in psychology that 21 days is the length of time required to form any habit.According to the teachers monitoring the activity, there were no rewards or punishments in the experiment. It depended on students themselves to make the decision. Teachers hope students can form better study habits through activities like this one.24. What should the student do in the experiment?A. The student should receive a bracelet.B. The student should upload the bracelet’s picture during their class.C. The student should upload the bracelet’s picture before and after their class.D. The student should open an account in the school’s public Wechat.25. How many students survived the experiment after a week?A. 800B. 400C. 203D. 10326. Why did the experiment last for 21 days?A. Because the 21st day is a special day in psychology.B. Because the organizers only have 21 days free.C. Because it is believed that it takes 21 days to develop a habit.D. Because 21 days are needed to form any hobby.27. According to the teachers monitoring the activity, through such activities ________.A. students must form a better study habitB. students could benefit from the activityC. students should depend on themselves to make a choiceD. few students attended it because there were no rewards or punishments3.When we’re young and we dream of love and fulfillment, we think perhaps of moon-covered Parisian nights or walks along the beach at sunset. No one tells us that the greatest moments of a lifetime are short, unplanned and nearly always catch us off guard.Not long ago,as I was reading a bedtime story to my seven-year-old daughter, Annie,I became aware of her focused look. She was staring at me with a faraway, blank expression. Apparently, completing The Tale of Samuel Whiskers was not as important as we first thought.I asked what she was thinking about. “Mommy,” she whispered, “I just can't stop looking at your pretty face.”I almost dissolved(溶解) on the spot. Little did she know how many trying moments the glow of her sincerely loving statement would carry me through over the following years.Not long after, I took my four-year-old son to an elegant department store, where the sweet notes of a classic love song drew us toward a tuxedoed(穿晚礼服的) musician playing a grand piano. Sam and I sat down on a marble bench nearby, and he seemed as astonished by the pleasant theme as I was. I didn’t realize that Sam had stood up next to me until he turned, took my face in his little hands and said, “Dance with me.”If only those women walking under the Paris moon knew the joy of such an invitation made by a round-cheeked boy with baby teeth. Althoughshoppers openly chuckled(咯咯笑) and pointed at us as we glided and whirled(旋转) around the open space, I would not have traded a dance with such a charming young gentleman if I'd been offered the universe.28. From the passage we know .A. Annie knew how important she was to her motherB. shoppers didn’t notice the author dancing with her sonC. there are bedtime stories in the Tale of Samuel WhiskersD. Sam was not surprised at the music which was played in the store29. When the author knew her daughter could not stop looking at her pretty face, she felt .A. sadB. deeply movedC. annoyedD. ashamed30. Why wouldn’t the author trade a dance with her son even if she was given the world ?A. Because she knew she wouldn’t be given the universe.B. Because her son was the most important person to her.C. Because she thought she was the happiest one at the moment.D. Because it was very important for the author to dance with her son.31. What does the author want to prove by showing two examples of her kids?A. Her kids love her very much.B. She enjoys staying with her kids.C. The greatest moments of a lifetime always come unexpectedly.D. Those women walking under the moon should enjoy the happinesswith kids.4.Chinese police are joining Italian officers on the streets of Rome and Milan in an experiment aimed at helping tourists from China feel safe, Italy’s interior ministry has announced.The experiment is the first of its kind in Europe, China’s ambassador to Italy, Li Ruiyu, said at a meeting to announce the project, according to a statement from the Italian ministry.The four Chinese officers, who were trained by Italians in Beijing, will wear the same uniforms they wear at home so their compatriots can recognize them easily.More than 3 million Chinese tourists come to Italy every year, according to Liao Jinrong, the director general of the Chinese international co-operation bureau.“This servic e was planned with Chinese tourists in mind and, if it works well, we may consider other forms of collaboration, given the presence of the Chinese community in our country,” said the interior minister, Angelino Alfano.The officers will share information with Italian police and help Chinese tourists if they need to contact local authorities and diplomats from Monday until 13 May, the ministry said.Liao, the head of the Chinese international co-operation bureau, said the officers’ assignment was a“historic moment” recalling that the route between China and Italy was mapped 700 years ago by Venetian merchant traveler Marco Polo.32. Why do the Chinese police come to work in Italy?A. They plan to help the Italian police.B. They plan to help Chinese in need in Italy.C. They plan to show Chinese tourists around Italy.D. They plan to comfort Chinese tourists.33. What does the word “compatriot” mean?A. companyB. countrymanC.family D. friend34. According to Angelino Alfano, the experiment _____________.A. will be the first of its kind in EuropeB. will improve the presence of the Chinese community in EuropeC. will give a good example to other forms of cooperation if it succeedsD. will help Chinese tourists contact local authorities35. What dose Liao think of this service?A. meaningfulB. perfectC. uselessD. interesting二、未分类(共2题)1.Gratitude makes your life better36.________ And thankfulness and appreciation are the pathway to happiness and well-being. Gratitude keeps us focused on what is already good in your lives, and opens up the doorway to more goodness to flow into our lives. Gratitude does make your life better in the following ways.You feel more satisfied.Not completely happy with your life? Gratitude is a lasting feeling that lasts longer than other sensations. 37. ________ When you practice gratitude, you take time to appreci ate the things that you’re thankful for in your life.38. ________what they did for you, even if just a little bit. Saying “thank you” is therefore a powerful motivator for others to keep helping you again. Have you ever noticed how it feels when someone doesn’t appreciate what you did for them? 39. ________ The words, thank you, go a long way. You can never show someone enough gratitude.You’re happier.Grateful people are hap pier. They’re more in tune with what’s going well in their lives and focus more on the positive. 40. ________ It’s very enjoyable to recognize the things that you might have been taking for granted, and to feel happy for having them in your life.A. You help others.B. You motivate others.C. They won’t thank you after you help them.D. It makes you not want to help them again in the future.E. When you actually count your blessings, it puts you in a positive and uplifting mood.F. Gratitude is the feeling of being thankful and showing appreciation for what you have in your lives.G. Grateful people are more satisfied with their lives because they focus more on what they appreciate in their life.2.Several years ago, I was backpacking in the Philippines when I met a lady from the US. She was paying a visit to her father, 61 had lived with her in the US. I asked why her fatherhad chosen to live on such a poor and 62 (lone) island. She said her father was diagnosed with cancer after he moved to the US and the doctor said he had only half a year 63 (leave). As soon as her father 64 (hear) the news, he went back to live on their home island in the Philippines. What happened next was 65 miracle. Fishing and barbecuing as he used to, her father survived. 66 turned out that 67 (happy) was the best cure,” the wom an said.on the true purpose of living. Traveling has changed me. But if you asked me what that change is about, I would say it is about 70 (find) what I really want.1.Fears can stop us from making progress, and limit what we are willing to try. Fears can make us lead a 41 life. So we should do whatever we could to overcome them.I was 42 of flying. In order to get rid of my fear, I decided to43 a helicopter ride. When I was in it, 44 came in all kinds of forms. I thought flying would leave me out of 45 and that I would have to trust someone else with my life. To my 46 , my fear died away after a few minutes into the flight. The 47 views attracted me and I48 forgot to be afraid. The views of the ocean, waterfalls and heart of the volcano were well worth the 49 of dying in a plane crash. I realized I might have 50 this opportunity of seeing the beautiful scenery if I had 51 to stay on the ground. This adventure 52 me. I was able to face everything 53 . For example, I tried another business when my last one had no good 54 .Today, my business is quite 55 because I tend to accept new ideas boldly(大胆地). This year, I am learning to fly on my own. I’ve learnedbad and learn something 57 . Maybe you fear that you may fail, 58 you should learn how to deal with your fear to keep it from holding you 59 in life. Learn relaxation and develop a spiritual life and 60 your fears with courage and confidence.41. A. miserable B. private C. selfish D. slow42. A. short B. fond C. proud D. afraid43. A. enjoy B. try C. teach D. test44. A. dreams B. ideas C. tears D. anxieties45. A. work B. control C. curiosity D. sight46. A. disappointment B. sadness C. surprise D. regret47. A. beautiful B. strange C. common D. regular48. A. rarely B. hopefully C. partly D. completely49. A. intention B. pressure C. risk D. necessity50. A. ignored B. missed C.51. A. chosen B. advised C. instructed D. pushed52. A. changed B. frightened C. bored D. relaxed53. A. deeply B. fairly C. heavily D. bravely54. A. effect B. reason C. future D. position55. A. profitable B. flexible C. hopeless D. slow56. A. see B. appoint C. tolerate D. compare57. A. big B. new C. bad D. free58. A. so B. but C. because D. or59. A. unchanged B. out C. back D. positive60. A. face B. share C. view D. admit四、短文改错(共1题)1.假定英语课上老师要求同桌之间交换修改作文,请你修改你同桌写的以下作文。
2015-2016学年度高二年级第一学期期末统测第I卷 (三部分共85分)第一部分听力 (共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节 (共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What's the most probable relationship between the two spe akers?A. They are host and guest.B. They are waiter and customer.C. They are husband and wife.2. Where did this conversation take place?A. At the hospital.B. At the airport.C. At the post office.3. Why will the woman go to ?A. To have a look at .B. To go with her friend.C. To spend the weekend.4. What's the woman's job?A. She is a saleswoman.B. She is a waitress.C. She is a hotel clerk.5. How is the weather now?A. It's snowing.B. It's raining.C. It's clear.第二节(共15小题;每小题 1 分,满分 15分)听下面5段对话。
每段对话后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
南阳一中2015年高二春期阶段测试英语试题第一部分:听力(共两节,满分20分)第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What can the woman’s dog do?A. Close doors.B. Turn off the TV.C. Get shoes for her.2. What will the man do next?A. Have dinner.B. Visit the World Expo.C. Wait for his grandparents.3. How many letters does the woman get?A. One.B. Two.C. Three.4. What will the man do?A. Continue his work.B. Go to the woman’s house.C. Take a walk with the woman.5. When did the woman return the keys?A. On Tuesday.B. On Wednesday.C. On Thursday.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的做答时间。
每段对话或独白读两遍。
听第6段材料,回答第6至8题。
6. What is 35% of the new coffee made from?A. African coffee beans.B. South American beans.C. South Asian beans.7. How long has the man been a customer of the coffee shop?A. Two years.B. Three years.C. Four years.8. What is Samantha doing now?A. Studying.B. Taking a holiday.C. Working as a designer. 听第7段材料,回答第9至10题。
2015~2016学年高二必修5综合测试
班级 _________姓名__________座号________成绩________
一、选择题
1、等比数列}{n a 的前n 项和为n S ,若021=+S S ,则公比q =( ) A .-1 B .-2 C .1 D .2
2、已知锐角三角形的边长分别为2、
3、x ,则x 的取值范围是( )
A .135<<x
B x <5
C .2<x x <5 3、已知R b a ∈,,下列命题正确的是( )
A .若a b >,则||||a b >
B .若a b >,则
11a b
< C .若||a b >,则22a b > D .若||a b >,则22a b >
4、已知等比数列{}582n a 4a a a =∙中,,等差数列{},中,564n a b b b =+则数
{}等于项和的前9n 9b S ( )
A. 9
B. 18
C. 36
D.72
5、不等式220ax bx ++>的解集为11
(,)23
-,则a b +=( ) A .10 B .-10 C .14 D .-14
6、数列{}n a 的通项公式是()()121--=n a n
n ,则该数列的前100项之和为
A .200-
B .100-
C .200
D .100
7、设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为,,X Y Z ,则下列等式中恒成立的是 ( ) A 、2X Z Y += B 、()()Y Y X Z Z X -=-
C 、2
Y XZ =
D 、()()Y Y X X Z X -=-
8、已知ABC ∆的三个内角A 、B 、C 所对的边分别为1,3,3
,,,===b a A c b a π
且,则角
B 等于 ( ) A .
2π B .6π C .65π D .6
56π
π或
9、ABC ∆的三内角A ,B ,C 所对边长分别是c b a ,,,设向量),sin ,(C b a m +=
)sin sin ,3(A B c a n -+=,若//,则角B 的大小为
A .6π
B .65π
C .3π
D .32π
10、某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元。
该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是( )
A. 12万元
B. 20万元
C. 25万元
D. 27万元
11、设二元一次不等式组2,1,260x y x y ≥⎧⎪
≥⎨⎪+-≤⎩
所表示的平面区域为M ,若直线10ax y --=总
经过区域M ,则实数a 的取值范围是( ) A.1
(,]2
-∞
B. 13[,]22
C. 12[,]53
D. 3[,)2
+∞
12、已知函数*()21,f x x x =+∈N ,若*0,x n ∃∈N ,使000()(1)()63f x f x f x n +++++=成
立,则称0(,)x n 为函数()f x 的一个“生成点”.函数()f x 的“生成点”共有( ) A .2个 B .3个 C .4个 D . 5个
二、填空题
1、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若其面积: S = 1
4
(b 2+c 2-a 2),
则∠A =________.
2、若关于x 的不等式4104822
<<>---x a x x 在内有解,则实数a 的取值范围是___________
3、已知数列{a n }满足11=a ,)(12*
1
N n a a n n ∈+=+则数列{}n a 的通项公式_____________.
4、设,x y 满足60,
0,3,x y x y x -+≥⎧⎪
+≥⎨⎪≤⎩
若z ax y =+的最大值为39,a +最小值为33,a -则a 的取
值范围为__________.
三、解答题
1、已知等差数列{}n a 满足3a =2,前3项和3S =92
. (1)求{}n a 的通项公式;
(2)设等比数列{}n b 满足1b =1a ,4b =15a ,求{}n b 前n 项和n T .
2、已知等差数列{}n a 的前n 项和为n S ,749S =,4a 和8a 的等差中项为2. (1)求n a 及n S ; (2)证明:当2n ≥时,有
121117 (4)
n S S S +++<. 3、.在ABC △中,角A B C ,,
的对边分别为tan a b c C =,,,
(1)求cos C ; (2)若5
2
CB CA ⋅=
,且9a b +=,求c . 4、某厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知该厂生产这种仪器,次品率p 与日产量x(件)之间大体满足关
系:P=⎪⎪⎩⎪⎪⎨⎧∈>∈≤≤-N),94(3
2N),941(961
x x x x x
.已知每生产一件合格的仪器可盈利A 元,但每生产一件
次品将亏损
2
A
元,厂方希望定出适当的日产量. (1)试判断:当日产量(件)超过94件时,生产这种仪器能否赢利?并说明理由;
(2)当日产量x 件不超过94件时,试将生产这种仪器每天的赢利额T(元)表示成日产量x(件)的函数;
(3)为了获得最大利润,日产量x 件应为多少件? 5、在等差数列{}n a 中,11a =,前n 项和n S 满足条件
242
,1,2,1
n n S n n S n +==+.
(Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)记(0)n a
n n b a p p =>,求数列{}n b 的前n 项和n T .
6、海岛B 上有一座海拔1000m 的山,山顶A 处设有观察站,上午11时测得一轮船在海岛北偏东o
60的C 处,俯角为o
30;11时10分又测得该轮船在海岛北偏西o
60的D 处,俯
60.
角为o
(1)求此船的速度;
(2)若船的速度和航向不变,则它何时到达岛的正西方?。