2013年八年级下册数学期末考试卷及答案
- 格式:doc
- 大小:431.54 KB
- 文档页数:6
2013年初二下册数学期末联考试卷(带答案)?012-2013?鍒?浜?鏁?瀛?璇?棰??2?鍒嗭紝鍏?8A銆丅銆丆銆丏1锛?鐐筆锛?4,5锛锛?A锛庯紙4锛?锛?B锛庯紙-4锛?5锛?C锛庯紙5锛?4锛?D锛庯紙4,-5锛?2锛?宸茬煡鐐筆锛?2,-1锛?鍒欑偣P锛?A B岃薄闄?C?D?3锛庝娇鍒嗗紡鏃犳剰涔?鍒檟鐨勫彇鍊艰寖鍥达紙锛?A锛巟鈮? B锛?x=-1 C锛?x鈮? D锛?x=1 4锛庝笅鍒楀洓y=- 锛?A锛?2,4) B锛?-2锛?4) C锛?-2,4) D锛?4,2) 5锛?璁$畻梅鐨勭粨鏋滄槸锛?锛?A锛?B 锛?C锛?D锛?6锛庡凡鐭ュ叧浜巟鐨勬柟绋?锛?=0锛?锛?A锛?-2 B锛?2 C锛?5 D 3 7锛庡凡鐭ヤ竴娆″嚱鏁皔=(m 锛?)x锛?鐨勫浘璞$粡杩囷紙1,4锛夛紝鍒檓鐨勫€间负锛?锛?A锛?7 B锛?0 C锛? D锛?2 8锛庡凡鐭?+ =3锛屽垯鐨勫€间负锛?锛?A锛?B锛?C锛?D锛?9锛庡凡鐭ュ弽姣斾緥鍑芥暟y= ?锛?锛? (3, ),( , ),鍒?锛?锛?鐨勫ぇ灏忓叧绯绘槸锛?锛?A锛?锛?锛?B锛?锛?锛?C 锛?锛?锛?D锛?锛?锛?10锛庡嚱鏁?涓?锛?锛?11BCD A锛?3,2锛夛紝C锛?,0锛夛紝鍒欑洿绾緽D鐨勮В鏋愬紡涓猴紙锛?A锛?y= x锛?B锛?y=锛?x+ C锛?y= x+ D锛?y= x+ 12?鍜?,澶ф呴櫎鍘诲皬姝f柟褰㈤儴鍒嗙殑闈㈢Н涓簊锛堥槾褰遍儴鍒嗭級锛屽垯s涓巟鐨勫ぇ鑷村浘璞′负锛?锛?ч6?鍒嗭紝鍏?4鍒嗭級璇峰皢?13锛庡綋x=__________鏃讹紝鍒嗗紡鐨勫€间负闆?14锛庝竴绮掔背鐨勯噸閲忕害涓?.000036篲_ 鍏?15y=ax+b锛坅鈮?锛夊拰鍙屾洸绾縴= (k鈮?)鐩镐氦,y鐨勬柟绋嬬粍鐨勮В鏄痏________ 16锛庝竴娆″嚱鏁皔=kx+b(k鈮?)鐨勫浘璞′笌鐩寸嚎y=-2x+1骞y=3x-1浘璞¤〃杈惧紡涓篲________ 銆?17锛庡皢x= 浠e叆鍙嶆瘮渚嬪嚱鏁皔=锛??锛屽張灏唜= +1浠e叆鍙嶆瘮渚嬪嚱鏁皔=锛??锛屽張灏唜= +1浠e叆鍙嶆瘮渚嬪嚱鏁皔=锛??鍒?=______________ 18鍥撅紝鐭╁舰OABC鐨勪袱杈筄A銆丱C鍒嗗埆鍦▁杞淬€亂杞寸殑姝e崐杞翠笂锛孫A=4锛孫C=2锛岀偣G掔嚎鐨勪氦鐐癸紝缁忚繃鐐笹鐨勫弻鏇茬嚎y=BC鐩镐氦浜庣偣M,姹侰M锛歁B鐨勫€兼槸_______銆???鍒嗭紝鍏?4鍒嗭級瑙g嗚В?1920锛??紝姣忓皬棰?0鍒嗭紝鍏?0鍒В?21锛庤В鏂圭▼锛?= 22锛庡寲绠€锛屽啀姹傚€硷細鍏朵腑鏄?锛?? 23锛=kx+b鐨勫浘璞′笌x杞翠氦涓庣偣C锛屼笖涓庡弽姣斾緥鍑芥暟y= 鐨勫浘璞¢兘缁忚繃鐐笰锛?2,6锛夊拰鐐笲锛?锛宯锛?(1) 姹傚弽姣斾緥鍑芥暟鍜屼竴娆″嚱鏁拌В鏋愬紡(2) 鐩存帴鍐欏嚭涓嶇瓑寮弅x+b鈮?鐨勮В闆?(3) 姹?AOB鐨勯潰绉?24锛?013骞?鏈?0鏃ワ紝鍥涘窛闆呭畨鍙戠敓浜?.0绾у湴闇囥€傚湪鎶楅渿鏁7200椤跺笎绡锋敮鎻村洓宸濈伨鍖猴紝鍚庢潵鐢变簬鎯呭喌绱ф€ワ紝鎺ユ敹鍒颁笂绾ф寚绀猴紝瑕佹眰鐢熶骇鎬婚噺姣斿師璁″垝澧炲姞20%锛屼笖蹇呴』鎻愬墠5澶╁畬鎴愮敓浜т换鍔★紝璇ュ巶杩呴€熷姞娲句汉鍛樼粍缁囩敓浜э紝瀹?姣忓ぉ鐢熶骇鐨勯《鏁扮殑2鍊嶏紝璇烽棶璇ュ巶瀹為檯姣忓ぉ鐢熶骇澶氬皯椤跺笎绡?浜斻€佽В??2鍒?锛屽叡24鍒嗭В?25锛庡洓宸濊媿20澶╁叏y锛堝崟浣嶏細鍗冨厠锛変笌涓婂競鏃堕棿x1锛夋墍绀猴紝绾㈡槦鐚曠尨妗冪殑浠锋牸z(鍗曚綅锛氬厓/鍗冨厠)涓庝笂甯傛椂闂磝锛堝ぉ锛夌殑2锛夋墍绀恒€?锛?у€硷紱锛?勬棩閿€閲弝涓庝笂甯傛椂闂磝鐨勫嚱鏁拌В殑鍙栧€艰寖鍥淬€?锛?锛夎瘯姣旇緝绗?澶╁拰绗?3?26?绾縴=x涓巠=-x+2浜や簬鐐笰锛岀偣P A涓婁竴鍔ㄧ偣()锛屼綔PQ y=-x+2浜庣偣Q,Q涓鸿竟QMN,璁剧偣P鐨勬í鍧愭爣涓簍銆?锛?锛夋眰浜ょ偣A 鐨勫潗鏍囷紱锛?锛夊啓鍑?鐐筆浠庣偣O杩愬姩鍒扮偣AQMN涓?OAB閲嶅彔鐨勯潰绉痵涓巘鐨勫嚱鏁板叧绯诲紡锛屽苟鍐欏嚭鐩稿簲鐨勮嚜鍙橀噺t鐨勫彇鍊艰寖鍥达紱锛?锛夋槸鍚﹀瓨鍦ㄧ偣Q锛屼娇OCQ鑻??。
2012-2013学年度第二学期期末考试一、选择题(每小题3分,共36分) 1.在式子22,2,,3,1y x xab b a c b a --π中,分式的个数为( B )A .2个B .3个C .4个D .5个2.当x =( B )时,分式x x 242--的值为0。
A. 2B. -2C. ±2D. 63.若A (a ,b )、B (a -1,c )是函数xy 1-=的图象上的两点,且a <0,则b 与c 的大小关系为( B ) A .b <c B .b >c C .b=c D .无法判断4.如图,已知点A 是函数y=x 与y=x4的图象在第一象限内的交点,点B 在x 轴负半轴上,且OA=OB ,则△AOB 的面积为( C )A .2B .2C .22D .4第4题图 第5题图 第8题图 第10题图5.如图,在三角形纸片ABC 中,AC=6,∠A=30º,∠C=90º,将∠A 沿DE 折叠,使点A 与点B 重合,则折痕DE 的长为( ) A .1 B .2 C .3 D .26.△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有( )A .1个B .2个C .3个D .4个7.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是( )A .①B .②C .③D .④8.如图,已知E 是菱形ABCD 的边BC 上一点,且∠DAE=∠B=80º,那么∠CDE 的度数为( )A .20ºB .25ºC .30ºD .35º9.某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80. 下列关于对这组数据的描述错误的是( )A .众数是80B .平均数是80C .中位数是75D .极差是1510.某居民小区本月1日至6日每天的用水量如图所示,那么这6天的平均用水量是( )A .33吨B .32吨C .31吨D .30吨11.如图,直线y=kx (k >0)与双曲线y=x1交于A 、B 两点,BC ⊥x 轴于C ,连接AC 交y 轴于D ,下列结论:①A 、B关于原点对称;②△ABC 的面积为定值;③D 是AC 的中点;④S △AOD =21. 其中正确结论的个数为( )A .1个B .2个C .3个D .4个A B OyxABCDEABEDC第11题图 第12题图 第16题图 第18题图12.如图,在梯形ABCD 中,∠ABC=90º,AE ∥CD 交BC 于E ,O 是AC 的中点,AB=3,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB ;③S △ADC =2S △ABE ;④BO ⊥CD ,其中正确的是( )A .①②③B .②③④C .①③④D .①②③④ 二、填空题(每小题3分,共18分)13. 甲、乙两名学生在5次数学考试中,得分如下: 甲:89,85,91,95,90; 乙:98,82,80,95,95。
2013—2014学年度第二学期期末考试八年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.) 1x 的取值范围是A.3x 2≥B. 3x 2>C. 2x 3≥ D. 2x 3>2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.15.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是 A.平行四边形 B. 菱形 C.正方形 D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限 7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是 A .1.65米是该班学生身高的平均水平 B .班上比小华高的学生人数不会超过25人 C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米10.如图,已知ABCD的面积为48,E 为AB连接DE ,则△ODE 的面积为 A.8 B.6 C.4 D.3第4题图第10题图 B D二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2计算选手的最终演讲成绩。
车逻初中2012—2013学年第二学期期末考试八年级数学(考试时间120分钟 满分150分)一、选择题(本大题有8小题,共24分.把答案填入下表)1.若分式12x x -+的值为0,则 A. 2x =-B. x= 0C. x = 1或2x =-D. x = 12. 若n m <,则下列不等式不一定正确的是A.n m 22<B.0<-n mC.23-<-n mD.22n m <3. 若反比例函数的图象经过点(-1,2),则它的解析式是 A. y = -x 21 B. y = -x 2 C. y = x 2 D. y = x14. 下列计算正确的是A.336x x x += B.236m m m ⋅= C.3= 5. 对4000米长的大运河堤进行绿化时,为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若设原计划每天绿化x 米,则所列方程正确的是A.21040004000=+-x x B.24000104000=--x x C.24000104000=-+x x D.21040004000=--x x6.如图,点D 、E 分别在△ABC 的 AB 、AC 边上,下列条件不能使△ADE ∽△ACB 的是A. ∠ADE =∠CB. ∠AED =∠BC. AD :AC=DE :BCD. AD :AC=AE :ABCE DA第6题图第7题图第8题图7.如图,身高1.6m 的小玲想测量一棵大树的高度,她沿着树影BA 由B 向A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,若AC=0.8m ,BC=3.2m ,则树的高度为A. 4.8mB. 6.4mC. 8mD. 10m 8.如图,两个反比例函数xy 1=和x y 3-=的图象分别是1l 和2l .设点A 在1l 上,xAB ⊥轴交2l 于点B ,y AC ⊥轴交2l 于点C ,则△ABC 的面积为A. 4cm 2B. 6cm 2C. 8cm 2D. 10cm 2 二、填空题(本大题有10小题,共30分.把答案填在对应题号的横线上)9. 当m ▲ 时,42-m 有意义.10. 化简的结果为 ▲ . 11.在比例尺为1:500000的地图上,若甲、乙两地的距离cm 4,则甲、乙的实际距离 是 ▲ km .12.命题“平行四边形的对角线互相平分”的逆命题是 ▲ .13.学校举行中学生运动会,某班需要从3名男生和2名女生中随机抽取一名做志愿者,则女生被选中的概率是 ▲ . 14.关于x 的方程32=-+x ax 无解,则a 的值是 ▲ .15.如果将一张矩形的A4纸沿长边对折,得到两张全等的矩形纸片,恰好与原矩形相似,那么A4纸的长与宽的比为 ▲ . 16. 若点P (m , n )在反比例函数xy 4=的图象上,则243m n m -+的值为 ▲ . 17.已知△ABC 如图所示,A (5,0)、B (6,3) 、C (3,0),将△ABC 以坐标原点O 为位似中心、位似比3:1进行缩小,则缩小后的点B 所对应的点的坐标为 ▲ .18.如图,平行四边形ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,21=CD DE ,若△DEF 的面积为1,则平行四边形ABCD 的面积为 ▲ . 三、解答题(本大题有10小题,共96分) 19.(本题满分8分)解不等式组()⎪⎩⎪⎨⎧≤-->+51325x x x x ,并写出最大整数解.20.(本题满分8分)已知x 是绝对值不大于2的整数,先化简221112x x x x x---÷+,再选择一个合适的x 的值代入求值.第17题图第18题图CBE DA F21.(本题满分8分)计算:(1(2)1)(1-22.(本题满分8分)我市自2013年1月开始实行的《交通新规》规定:在十字路口,机动车应按所需行进方向驶入导向车道. 如图,在一个两车道的十字路口,向左转弯的必须进入第一车道,直行或者向右转弯的进入第二车道.假设每一辆车经过该路口时,左转、直行、右转的可能性的大小均相同.(1)机动车驶入第二条车道的概率是 .(2)如果在第二条车道共有三辆机动车,利用画树状图或列表求车辆可以通行时这三辆车全部直行的概率.23.(本题满分10分)如图,在下列五个关系:①AB∥CD,②AD=BC,③∠A =∠C,④∠B =∠D,⑤∠B +∠C=180°中,选出两个关系作为条件,可以推出四边形ABCD是平行四边形,并以平行四边形定义.......作为依据予以证明.(写出一种即可)已知:在四边形ABCD中,,.求证:四边形ABCD是平行四边形.24.(本题满分10分)“六一”儿童节前,玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.第一、二批玩具每套的进价分别是多少元?25.(本题满分10分)在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D , EF 垂直平分AD 交AB 于点E .(1)证明:△DEF ∽△ADC ; (2)若AE=25 ,AC=32,求AD 的长.26.(本题满分10分)已知一次函数7+-=x y 与反比例函数()00>>=x k xky ,图象相交于A 、B 两点,其中A (1,a )、B (b ,1).(1)求k b a 、、的值; (2)观察图象,直接写出不等式07<-+x xk的解集; (3)若点M (3,0),连接AM 、BM ,探究∠AMB 是否为90°,并说明理由.27.(本题满分12分)暑假到了,即将迎来手机市场的销售旺季.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划投入15.5万元资金,全部用于购进两种手机若干部,期望全部销售后可获毛利润不低于2万元.(毛利润=(售价-进价)×销售量)(1)若商场要想尽可能多的购进甲种手机,应该安排怎样的进货方案购进甲乙两种手机?(2)通过市场调研,该商场决定在甲种手机购进最多的方案上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.28.(本题满分12分)如图1,在Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点D 是BC 上一定点.动点P 从C 出发,以2cm /s 的速度沿C →A →B 方向运动,动点Q 从D 出发,以1cm /s 的速度沿D →B 方向运动.点P 出发5 s 后,点Q 才开始出发,且当一个点达到B 时,另一个点随之停止. 图2是当50≤≤t 时△BPQ 的面积S( cm 2)与点P 的运动时间t (s )的函数图象. (1)CD = ,=a ;(2)当点P 在边AB 上时,t 为何值时,使得△BPQ 与△ABC 为相似? (3)运动过程中,求出当△BPQ 是以BP 为腰的等腰三角形时的t 值.图1图2)。
一、选一选1、下列多项式中能用平方差公式分解因式的是( ) A 、22)(b a -+ B 、mn m 2052- C 、22y x -- D 、92+-x2、不等式组 ⎪⎩⎪⎨⎧≥<212x x 的解集在数轴上应表示为( )3、某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为82=甲x 分,82=乙x 分;2452=甲s ,1902=乙s ,那么成绩较为整齐的是( ) A .乙班 B .甲班 C .两班一样整齐 D .无法确定 4、△ABC 中,若∠A :∠B :∠C = 2:3:4,则∠C 等于( ) A 、20° B 、40° C 、60° D 、80° 5、如图,△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,DE =1,BC =3,AB =6,则AD 的长为( ) A .1 B .1.5 C .2 D .2.56、某市为了分析全市1万名初中毕业生的数学毕业成绩,共随机抽取40本试卷,每本30份,则这个问题中( )A、个体是每个学生 B、样本是抽取的1200名学生的数学毕业成绩 C、总体是40本试卷的数学毕业成绩 D、样本是30名学生的数学毕业成绩7、下列四个命题:①对顶角相等;②同位角相等;③等角的余角相等;④凡是直角都相等。
其中真命题的个数的是( )A.1个B.2个C.3个D.4个 8、若分式yx yx -+中的x 、y 的值都变为原来的3倍,则此分式的值( ) A 、不变 B 、是原来的3倍 C 、是原来的31 D 、是原来的61密封线9、在一次数学测验中,甲、乙、丙、丁四位同学的分数分别是90、、90、70,若这四个同学得分的众数与平均数恰好相等,则他们得分的中位数是( )A 、100B 、90C 、80D 、70二、填空题:9、某公司行李托运的费用与重量的关系为一次函数,由右图 可知只要重量不超过________千克,就可以免费托运。
2013年八年级(下册)数学期末测试题(考试时间:120分钟满分:150分)姓名:_________ 得分:____________ 说明:本试卷分为A卷和B卷两部分。
卷名A卷B卷总分题号一二三四一二得分A卷第I卷一、选择题(每题只有一个正确答案,每题3分,共30分)1.不等式{EMBED Equation.3 |2x的解集是()+1>A. B. C. D.2.多项式分解因式的结果是()A. B. C. D.3.函数的自变量的取值范围是()A. B. C. D.4.如图,点是线段的黄金分割点,下列结论错误的是()A. B.C. D.4题图5.若∽,若,,则的度数是()A. B. C. D.6.下列调查中,适宜采用普查方式的是()A.调查中国第一艘航母各零件的使用情况B.调查重庆市中学生对利比亚局势的看法C.调查一箱牛奶是否含有三聚氰胺D.调查重庆一中所有学生每天跳绳的时间7.若分式方程(其中k为常数)产生增根,则增根是()A.x=6B.x=5C.x=kD.无法确定8.若()A. B. C. D.9.关的不等式组有四个整数解,则的取值范同是()A.B.C.D.10题图10.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /交AD 于E ,AD =8,AB =4,则DE 的长为( ).A .3B .4C .5D .6第II 卷二、填空题(每题3分,共15分)11、分解因式:2m 2-8m+8=_________12、若__________13、直线与直线在同一平面直角坐标系中的图象如图所示,则关于的不等式的解为___________。
14、已知关于x 的不等式组只有四个整数解,则实数a 的取值范围是_______ 15、符号“”称为二阶行列式,规定它的运算法则为:,请你根据上述规定求出下列等式中的的值.=1 则=___________.三、计算题(每题8分,共24分)16、计算(1) (2)17、解方程(1) (2)18、(1)先化简代数式,然后选取一个使原式有意义的的值代入求值.(2)先化简,再求值:,其中满足方程.四、解答题(13+8+10,共31分)19、(1)某校初三(1)班进行立定跳远训练,以下是李超和陈辉同学六次的训练成绩(单位:m)李超:2.50,2.42,2.52,2.56,2.48,2.58陈辉:2.54,2.48,2.50,2.48,2.54,2.52(1)李超和陈辉的平均成绩分别是多少?(2)分别计算两人的六次成绩的方差,哪个人的成绩更稳定?为什么?(3)若预知参加级的比赛能跳过2.55米就可能得冠军,应选哪个同学参加?为什么?(2)八(3)班学生参加学校组织的“绿色奥运”知识竞赛,老师将学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表,并绘制频数分布直方图.八(3)班“绿色奥运”知识竞赛成绩频数分布表分数段(分)49.5∽59.5 59.5∽69.5 69.5∽79.5 79.5∽89.5 89.5∽99.5 组中值(分)54.5 64.5 74.5 84.5 94.5 频数 a 9 10 14 5频率0.050 0.225 0.250 0.350 b八(3)班“绿色奥运”知识竞赛成绩频数直方图⑴频数分布表中的a=______,b=_______, ⑵把频数分布直方图补充完整; ⑶学校设定成绩在69.5分以上的学生将获得一等奖或二等奖,一等奖奖励作业本15本及奖学金50元,二等奖奖励作业本10本及奖金30元.已知这部分学生共获得作业本335本,请你求出他们共获得的奖金.20、在一次测量旗杆高度的活动中,某小组使用的方案如下:AB 表示某同学从眼睛到脚底的距离,CD 表示一根标杆,EF 表示旗杆,AB 、CD 、EF 都垂直于地面。
八年级数学第1 页共6 页2013-2014学年度(下)八年级期末质量检测数学(满分:150分;考试时间:120分钟) 注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求认真作答,答案写在答题卡上的相应位置.一、精心选一选:本大题共8小题,每小题4分,共32分.1、下列计算正确的是()A .234265+=B .842=C .2733¸=D .2(3)3-=-2、顺次连接对角线相等的四边形的各边中点,所得图形一定是()A .矩形B .直角梯形C .菱形D .正方形3、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是()A .甲B .乙C .丙D .丁4、一组数据4,5,6,7,7,8的中位数和众数分别是()A .7,7 B .7,6.5 C .5.5,7 D .6.5,7 5、若直线y=kx+b 经过第一、二、四象限,则k,b 的取值范围是()(A) k>0, b>0 (B) k>0,b<0 (C) k<0,b>0 (D) k<0,b<0 6、如图,把直线L 沿x 轴正方向向右平移2个单位得到直线L ′,则直线L /的解析式为()A.12+=x yB. 42-=x yC. 22y x =- D. 22+-=x y 7、如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为()(A )4 cm (B )5 cm (C )6 cm (D )10 cm A第7题BCDEEDCBA(第8题A B C D E F 8、如图,ABC D 和DCE D 都是边长为4的等边三角形,的等边三角形,点点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为(的长为( )(A )3(B )23(C )33(D )43二、细心填一填:本大题共8小题,每小题4分,共32分.分. 9、计算123-的结果是的结果是 . 10、实数p 在数轴上的位置如图所示,化简22(1)(2)_______p p -+-=。
DA BC2013年上人教版八年级下数学期末测试题一、选择题(每题4分,共48分) 1、下列各式中,分式的个数有( )31-x 、12+a b 、πy x +2、21--m 、a +21、22)()(y x y x +-、x 12-、115- A 、2个 B 、3个 C 、4个 D 、5个 2、如果把223yx y-中的x 和y 都扩大5倍,那么分式的值( )A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍 3、已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是 A. (2,1)B. (-2,-1)C. (-2,1)D. (2,-1)4、一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为A .10米B .15米C .25米D .30米 5、一组对边平行,并且对角线互相垂直且相等的四边形是( )A 、菱形或矩形B 、正方形或等腰梯形C 、矩形或等腰梯形D 、菱形或直角梯形 6、把分式方程12121=----xx x 的两边同时乘以(x -2), 约去分母,得( )A .1-(1-x)=1B .1+(1-x)=1C .1-(1-x)=x -2D .1+(1-x)=x -2 7、如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、 以上答案都不对(第7题) (第8题) (第9题)8、如图,等腰梯形ABCD 中,AB ∥DC ,AD=BC=8,AB=10,CD=6,则梯形ABCD 的面积是 ( )ABCA 、1516B 、516C 、1532D 、17169、如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( )A 、x <-1B 、x >2C 、-1<x <0,或x >2D 、x <-1,或0<x <2 10、在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为2S 172甲=,2S 256乙=。
一、选择题(本大题共有6小题,每小题3分,共18分)1.下列关于x 的方程中,一定是一元二次方程的为 ( ▲ )A .20ax bx c ++= B .222(3)x x -=+ C .2350x x+-= D .210x -= 2. 下列各等式中成立的是 ( ▲ )A .2- B .-6.3=-0.6 C .)13)(13(--=-13 D .36=±6 3.下列说法不正确的是 ( ▲ )A .了解玉米新品种“农大108”的产量情况适合作抽样调查B .了解本校八年级(2)班学生业余爱好适合作普查C .明天的天气一定是晴天是随机事件D .为了解A 市20000名学生的中考成绩,抽查了500名学生的成绩进行统计分析,样本容量是500名4.对于反比例函数4y x=-,下列说法不正确...的是( ▲ ) A .点(-2,2)在它的图像上B .它的图像在第二、四象限C .当0x >时,y 随x 的增大而减小D .当0x <时,y 随x 的增大而增大 5.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将△BCE 绕点C •顺时针方向旋转90°得到△DCF ,连接EF .若∠BEC =60°,则∠EFD 的度数为 ( ▲ )A .10°B .15°C .18°D .20°6.某市举行“一日捐”活动,甲、乙两单位各捐款30000元,已知“…”,设乙单位有x 人,则可得方程20%)201(3000030000=+-xx ,根据此情景,题中用“…”表示的缺失的条件应补( ▲ )A .甲单位比乙单位人均多捐20元,且乙单位的人数比甲单位的人数多20%B .甲单位比乙单位人均多捐20元,且甲单位的人数比乙单位的人数多20%C .乙单位比甲单位人均多捐20元,且甲单位的人数比乙单位的人数多20%(第5题图)D .乙单位比甲单位人均多捐20元,且乙单位的人数比甲单位的人数多20%二、填空题(本大题共有10小题,每小题3分,共30分)7.xyzx y xy 61,4,132-的最简公分母是 ▲ . 8.当a = ▲ 时,最简二次根式3-a 与a 212-是同类二次根式. 9.如果方程032=+-c x x 有一个根为1,该方程的另一个根为 ▲ . 10.在●○●○○●○○○●○○○○●○○○○○中,空心圈出现的频率是 ▲ .11.小明要把一篇24 000字的社会调查报告录入电脑.完成录入的时间t (分)与录入文字的速度v (字/分)的函数关系可以表示为 ▲ .12.如果1-a +b -2=0,则a1+b6= ▲ .13.已知关于x 的方程322=-+x mx 无解,则m 的值为 ▲ . 14.近年来某市为发展教育事业,加大了对教育经费的投入,2011年投入3000万元,2013年投入3630万元.则2011年至2013年某市投入教育经费的年平均增长率为 ▲ . 15.如图,在△ABC 中,点D 、E 、F 分别在边BC 、AB 、CA 上,且DE ∥CA ,DF ∥BA .下列四种说法:①四边形AEDF 是平行四边形;②如果∠BAC=90°,那么四边形AEDF 是矩形;③如果AD 平分∠BAC ,那么四边形AEDF 是菱形;④如果AD ⊥BC 且AB=AC ,那么四边形AEDF 是正方形.其中,正确的有 ▲ 个. 16.如图,点A 是双曲线xy 1=(x >0)上的一动点,过A 作AC ⊥y 轴,垂足为点C ,作AC 的垂直平分线交双曲线于点B,交x 轴于点D.当点A 在双曲线上从左到右运动时,对四边形ABCD 的面积的变化情况,小明列举了四种可能:①逐渐变小;②由大变小再由小变大 ;③由小变大再由大变小; ④不变. 你认为正确的是 ▲ .(填序号)三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)(第16题图)(第15题图)17.(本题满分12分) 计算:(1)263275627⋅---÷-; (2)()ba abb b ab a +-÷+-2222.18.(本题满分8分)解下列方程: (1)xx x -+=-22122; (2)()13442+=+x x .19.(本题满分8分)在一个暗箱里放有a 个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%. (1)试求出a 的值;(2)从中任意摸出一个球,下列事件:①该球是红球;②该球是白球;③该球是蓝球.试估计这三个事件发生的可能性的大小,并将三个事件按发生的可能性从小到大的顺序排列(用序号表示事件).20.(本题满分8分)如图,已知△ABC 的三个顶点的坐标分别为A (-6,0)、B (-2,3)、C (-1,0) .(1)请直接写出与点B 关于坐标原点O 的对称点 B 1的 坐标;(2)将△ABC 绕坐标原点O 逆时针旋转90°.画出对应的 △A′B′C′图形,直接写出点A 的对应点A ′的坐标;(3)若四边形A′B′C′D ′为平行四边形,请直接写出第 四个顶点D ′的坐标.21.(本题满分10分)4月23日是“世界读书日”,今年世界读书日的主题是“阅读,让我们(第20题图)的世界更丰富”.某校随机调查了部分学生,就“你最喜欢的图书类别”(只选一项)对学生课外阅读的情况作了调查统计,将调查结果统计后绘制成如下统计图表.请根据统计图表提供的信息解答下列问题:初中生课外阅读情况调查统计表(2)假如以此统计表绘出扇形统计图,则武侠小说对应的圆心角是 ▲ ; (3)试估计该校1500名学生中有多少名同学最喜欢文学名著类书籍?22.(本题满分10分)已知关于x 的一元二次方程23410a x x ---=(). (1)若方程有两个相等的实数根,求a 的值及此时方程的根; (2)若方程有两个不相等的实数根,求a 的取值范围.23.(本题满分10分)如图,点E 、F 为线段BD 的两个三等分点,四边形AECF 是菱形.(1)试判断四边形ABCD 的形状,并加以证明;(2)若菱形AECF 的周长为20,BD 为24,试求四边形ABCD 的面积.24.(本题满分10分)某商店进了一批服装,每件成本为50元,如果按每件60元出售,可销售800件;如果每件提价5元出售,其销售量就将减少100件.如果商店销售这批服装要获利润12000元,那么这种服装售价应定为多少元?该商店应进这种服装多少件?25.(本题满分12分)如图,一次函数y =k 1x +b 与x 轴交于点A ,与反比例函数y =xk 2相交于B 、C 两点,过点C 作CD 垂直于x 轴,垂足为D ,若点C 的横坐标为2,OA =OD ,△COD 的面积为4.(1)求反比例函数和一次函数的关系式; (2)根据所给条件,请直接写出不等式k 1x +b ≤x k 2的解集; (3)若点P (1x ,1y ),Q (2x ,2)是函数xky 2 图象上两点,且1x >2x ,求1y 的取值范围(直接写出结果).(第25题图)26.(本题满分14分)在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M,FH的中点是P.(1)如图1,点A、C、E在同一条直线上,根据图形填空:①△BMF②MP与FH MP与FH(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,解答下列问题:①证明:△BMF是等腰三角形;②(1)中得到的MP与FH的位置关系与数量关系的结论是否仍然成立?证明你的结论;(3)将图2中的CE缩短到图3的情况,(2)中的三个结论还成立吗?(成立的不需要说明理由,不成立的需要说明理由)2014年春学期期末学业质量抽测八年级数学参考答案与评分标准一、选择题(本大题共有6小题,每小题3分,共18分) 1.D ;2.A ;3.D ;4.C ;5.B ;6.C .二、填空题(本大题共有10小题,每小题3分,共30分)7. 3212x y z ;8. 5;9.2;10. 0.75;11.vt 24000=;12. 1+3;13.-4;14. 10﹪;15. 3;16. ④.三、解答题(共10题,102分.下列答案仅供参考........,有其它答案或解法.......,参照标准给分.......) 17. (本题满分12分) (1)原式==)23(2233--- -32(4分)=-2(6分);(2)原式=())(.2a b b b a b a -+- (2分) =b b a a b )).((+-(4分)=ba b 22-(6分).18.(本题满分8分) (1)222--=x x ,(2分)4-=x (3分), 检验:当4-=x 时,x -2≠0,4-=x 是原方程的解(4分);(2)1341682+=++x x x ,0342=++x x (2分), 11-=x ,32-=x (4分).19.(本题满分8分) (1)a =4÷20%=20 (3分);(2)∵%201=P ,%5020102=÷=P (5分),%303=P (7分)∴可能性从小到大排序为:①③② (8分,若直接写出正确结论不扣分).20.(本题满分8分) (1)B 1(2,-3)(2分);(2)作图略(4分),A ′((0,-6)(6分);(3)(3, -5).21.(本题满分10分)(1)400(2分),56(4分),补图(略6分);(2)直角(或填90°)(8分);(3)最喜欢文学名著类书籍有1500×0.14=210(名)(10分).22.(本题满分10分) (1)∵关于x 的一元二次方程23410a x x ---=()有两个相等的实数根,∴30a -≠且164(3)(1)0a ---=(2分),∴1a =-(3分),方程为-4x 2-4x-1=0,解得1212x x ==-(6分);(2)∵关于x 的一元二次方程23410a x x ---=()有两个不相等的实数根,∴30a -≠且164(3)(1)0a --->(8分),∴1a >-且3a ≠(10分). 23.(本题满分10分)(1)四边形ABCD 为菱形.连接AC 交BD 于点O ,∵四边形AECF 是菱形,∴AC ⊥BD ,AO =OC ,EO =OF .又点E 、F 为线段BD 的两个三等分点,∴BE =FD ,∴BO =OD ,∵AO =OC ,∴四边形ABCD 为平行四边形(4分),∵AC ⊥BD ,∴四边形AECF 为菱形(6分);(2)∵四边形AECF 为菱形,且周长为20, ∴AE =5,∵BD=24,∴EF =8,421==EF OE ,AO=3,AC=6(8分),7221=⋅=AC BD S ABCD 四边形(10分).24.(本题满分10分)设销售单价为x 元(1分),根据题意得:60(50)(800100)120005x x ---⨯=(4分),解得701=x ,802=x (7分).当单价为70元时,应进600件;当单价为80元时,应进400件(9分),答:(略)(10分).25.(本题满分12分)(1)由△COD 的面积为4,得C 的坐标为(2,-4),∴82-=k ,∴x y 8-= (2分); ∵OA =OD ,OD =2,∴AO =2,∴A 点坐标为(-2,0), ∴⎩⎨⎧+=-+-=bk b k 112420 ,∴⎩⎨⎧-=-=211b k ,∴y =-x -2 (4分);(2)过点B 作BE ⊥x 轴于点E ,则AE=BE ,设AE=m ,则B (-2-m ,m ),有m (2+m )=8,解得m=2,所以B (-4,2).或令xx 82-=--,∴41-=x ,22=x ,∴B 点的坐标为(-4,2)(6分),观察图象可知,不等式k 1x +b ≤xk 2的解集为-4≤x <0或x ≥2(8分);(3)y 1>2或y 1<0 (12分,两个范围各2分). 26.(本题满分14分)(1)①等腰直角;②MP ⊥FH ,MP=21FH ;(3分) (2)①∵B 、D 、M 分别是AC 、CE 、AE 的中点,∴MB ∥CD ,且MB =CD =BC = BF ,∴△BMF是等腰三角形(5分);② 仍然成立.证明:如图,连接MH 、MD ,设FM 与AC 交于点Q .由①可知MB ∥CD ,MB =CD ,∴四边形BCDM 是平行四边形(6分),∴ ∠CBM =∠CDM . 又∵∠FBQ =∠HDC ,∴∠FBM =∠MDH , ∴△FBM ≌ △MDH (7分 ),∴FM = MH , 且∠MFB =∠HMD ,∴∠FMH =∠FMD -∠HMD =∠AQM -∠MFB =∠FBP = 90°,∴△FMH 是等腰直角三角形(9分 ). ∵P 是FH 的中点,∴MP ⊥FH ,MP=21FH (10分 ); (3)△BMF 不是等腰三角形(11分 ),理由:MB =CD≠BC = BF 且∠FBM >90°(12分,必须同时正确才能得1分 );MP ⊥FH 仍然成立(13分 ),MP=21FH 仍然成立(14分 ).。
2013年下期八年级期末考试试卷数 学一、选择题1、4的平方根是()A、 B、 C、 D、2、以下式子是分式的是()A、 B、 C、 D、3、一个等腰三角形有两边长分别是3、5,则这个三角形的周长是()A、 B、 C、 D、4、数、、、、(两个3之间夹一个0)中,无理数的个数是()A、 B、 C、 D、5、若,则下列式子中正确的是()A、 B、 C、 D、6、下列式子正确的是()A、 B、 C、 D、7、已知△ABC中,CD是AB边上的中线,且CD =AB,则△ABC的形状是()A、直角三角形B、锐角三角形C、钝角三角形D、等边三角形ADEBC8、如图,△ABC中,AB=AC,AC+BC=15,AC的垂直平分线DE交AB于D,那么△DBC的周长是()A、 B、C、 D、二、填空题9、1纳米是0.000000001米,用科学记数法表示是1纳米=__________________米;10、计算=_____________;11、已知,,那么=______________;12、式子中,的取值范围是_________________;13、把“有一个角是60°的等腰三角形是等边三角形”写成“如果……”,“那么……”的形式是_______________________________________________________;14、一栋学生宿舍有一些空宿舍,现有一批学生要入住。
若每间住4人,则有20人无法入住;若每间住8人,则有一间房还余一些空床。
求空宿舍的间数。
解这题时,若设有间空房,那么列的不等式组是______________________________________;15、在实数范围内分解因式:=_______________________;16、=___________,是不小于2的自然数,则=_______________,=_____________________17、计算(1)(2)(3)(4)(5)(6)18、解方程(1)(2)19、解不等式(组)(1)(2)20、如图,杨华想知道河对岸A、B两点的距离,他在河岸B的一边画线段BD使BD⊥AB,并标出BD的中点O,又取点C,使CD⊥BD,C、O、A三点在一条直线上,这样,只要量出CD的长度就可以知道A、B两点的距离了。
2012-2013纳雍二中
八年级下册期末复习试卷
姓名:
一、选一选(每小题3分,共24分)
1、下列多项式中能用平方差公式分解因式的是( ) A 、22)(b a -+ B 、mn m 2052- C 、22y x -- D 、92+-x
2、不等式组 ⎪⎩
⎪
⎨⎧≥<212x x 的解集在数轴上应表示为( )
3、某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为
82=甲x 分,82=乙x 分;2452
=甲
s ,1902=乙s ,那么成绩较为整齐的是( ) A .乙班 B .甲班 C .两班一样整齐 D .无法确定 4、△ABC 中,若∠A :∠B :∠C = 2:3:4,则∠C 等于( ) A 、20° B 、40° C 、60° D 、80° 5、如图,△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,
DE =1,BC =3,AB =6,则AD 的长为( ) A .1 B .1.5 C .2 D .2.5
6、某市为了分析全市1万名初中毕业生的数学毕业成绩,共随机抽取40本试卷,每本30份,则这个问题中( )
A、个体是每个学生 B、样本是抽取的1200名学生的数学毕业成绩 C、总体是40本试卷的数学毕业成绩 D、样本是30名学生的数学毕业成绩
7、下列四个命题:①对顶角相等;②同位角相等;③等角的余角相等;④凡是直角都相等。
其中真命题的个数的是( )
A.1个
B.2个
C.3个
D.4个 8、若分式
y
x y
x -+中的x 、y 的值都变为原来的3倍,则此分式的值( ) A 、不变 B 、是原来的3倍 C 、是原来的3
1
D 、是原来的61
二、填空题:(每题3分,共18分)
9、某公司行李托运的费用与重量的关系为一次函数,由右图 可知只要重量不超过________千克,就可以免费托运。
10、若分式293
x x --的值为零,则x = 。
11、已知线段abcd 成比例线段,其中a=3CM ,b=2CM ,c =6CM ,则d= 12、如图,AB ∥CD ,EG ⊥AB ,垂足为G .若∠1=50°,则∠E = 度。
13、如图,∠A +∠B +∠C +∠D +∠E +∠F =
14、如图,△ABC 中,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,DE =2,BC =3, 则D EBC AD E S S 梯形:∆=
三、解答题:(共58分)
15、把下列各式因式分解:(每小题5分,计10分) ① 9-12t+4t 2 ②2x -4x 2x -23+
16、解不等式组:⎪⎩⎪
⎨⎧-<-+≤-453143)
3(265x
x x x (6分) 17、解方程:)1(718++=+x x x x (6分)
第14题图
第
12题图
第13题图
18、已知x =13+,y =13-,求2
22
2xy y x y x +-的值.(7分)
20、(7分)为了了解中学生的体能情况,抽取了某中学八年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频率分布直方图,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5。
(1)第四小组的频率是__________
(2)参加这次测试的学生是_________人
(3)成绩落在哪组数据范围内的人数最多?是多少?
(4)求成绩在100次以上(包括100次)的学生占测试人数的百分率.
21、(7分)今年四川雅安4.20日遭遇地震,全国人民纷纷加入了抗震救灾的行动。
某学校师生自愿加入捐款救灾的行列,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么这两天参加捐款的人数是多少?
99.5 49.5 74.5
124.5 149.5
次数
人数
22、(7分)如图,是大众汽车的标志图案,其中蕴涵着许多几何知识.
根据下面的条件完成证明.
已知:如图8,BC AD
∥,BE AF
∥.
(1)求证:A B
∠∠;
=
(2)若135
∠,求A
DOB=
∠的度数.
23、(8分)某校餐厅计划购买12张餐桌和一批餐椅。
现从甲、乙两商场了解到,同一型号的餐桌报价每张均为200元,餐椅报价每把均为50元。
甲商场称:每购买一张餐桌赠送一把餐椅,乙商场则规定所有餐桌椅均按报价的八五折销售。
那么该校应选择那家商场购买更优惠?
参考答案
一、DBAD CBCA
二、9、 20 10、 -3 11、 40
12、 4 13、 3600 14、 4:5
三、15、①解:原式 ---------(2分) ---------(3分) ②解:原式 ---------(2分)
---------(3分)
16、解:由①得
4≤x ---------(2分) 由②得
2<x ---------(3分) 图略 ---------(5分) 所以解集为:
2<x ---------(6分)
17、解:原式可化为
检验:把x=1代入原式中有
左边=4=右边
所以x=1是原方程的解 ---------(6分)
18、
2
2
2t 2-3)2(123)
(=+-=t t 2
2
1-2)12(2)
(x x x x x -=+--=)
(4---------10
780)1()
7(8)
(2---------0)1(7
)1(80)1(718分
分 ==--=++-=++-+=++-+x x x x x x x x x x x x x x x x x )(6---------1)(5---------)13)(13()
13(-)13(13,13)(4---------xy
)
(2---------y)xy(x ))((分 分 代入上式中有把分 分 解:原式=-+-+-=+=-=+-+=y x y
x y x y x
19、⑴ 0.2 ⑵ 50 ---------(2分)
⑶ 100次至124次人数最多。
为:人204.050=⨯ ---------(4分) ⑷第四组人数为:人102.050=⨯ ---------(5分) 所占人数百分率为:
%6050
10
20=+ ---------(6分)
20、解:设第一天捐款人数为X 则有 ---------(1分)
)
4(--------- 200)
3(--------- 50
6000
4800分 人 分 =+=x x x 第二天人数为:200+50=250人 ---------(5分) 答:-------------------------(6分) 22、(1)∵BC AD ∥,∴B DOE =∠∠, ---------(1分) 又BE AF ∥,∴DOE A =∠∠,--------(2分) ∴A B =∠∠.---------(3分)
(2)∵DOB EOA =∠∠,由BE AF ∥,得180EOA A +=∠∠,----(5分) 又135DOB =∠,∴45A =∠ ---------(6分)
23、解:设学校购买12张餐桌和x 把餐椅,到购买甲商场的费用为y 1元,到乙商场购买的费用为y 2元,则有 ---------(1分) y 1=200×12+50(x-12)=50x+1800
y 2=85%×(200×12+50x)=42.5x+2040 ---------(3分)
①当y 1<y 2 时到甲商城便宜 ②当y 1>y 2 时到乙商城便宜 ③当y 1=y 2 时到那家都一样 即50x+1800<42.5x+2040 即50x+1800>42.5x+2040 即50x+1800=42.5x+2040 解得x<32 -----(5分) 解得x>32 -----(6分) 解得x=32 ------(7分)
答:---------(8分)。