北京市东城区2016届高三下学期综合练习(一)数学理试题含解析
- 格式:doc
- 大小:937.70 KB
- 文档页数:13
东城区2015-2016学年度第一学期期末教学统一检测本试卷共5贞.150分•芳试时K 120分钟•考住务必将答至答在答題卡上■仗试卷I:作答无效•考试结束后•将本试总和答題卞一并交何.第一部分(选择题共40分)一■选择理(共8小0 ■毎小& 5分,共40分•在毎小題列出的囚个选项中■选出符合求的一项)1 •已知集合1丿=(1・2・3出几集合A»n>3>4h B={2・4}・那么集合(CM)nB-3•设i为谨数烦位.如果复数z满足(l-2i)z=5i^那么厂的虚邪为A. - IB. IC. •D.-i4•已知刃€«0・1〉・令a = b肛2. h二4『=2-・那么之树的大小关系为A. b<c<aB. b<a<cC. a<b<cD. c<u<b5・Ci知克线/的倾斜角为i斜卒为点.那么"a>y M是7A®的A.充分而不必耍条件B.必耍而不充分条件C.充分必姿条件D.既不充分也不必耍条件高三數学(现科)第1页(共5页)高三数学(理科)2016. 1側(左)现图A.⑵B・{4}C. {1.3} I). 24}11 9 cm Jf 1i ~ +1 • 0V#£26•已知旳数x •如果关丁丄的方程/Cr〉=A有两个不同的实根•那* lnx» x>2么实数百的取值范隔2A・(l.+vo〉B・[^・ + oo) C・[e+.+8) D.[ln2・+8)7.过抛物线;/=2仇r(p>0)的魅点F的f[线交粗物线于A・B丙点•点O泉坐标原点.如架I BF| =3, | BF|>|AF| ・ZBFO=¥・那么 | AF| 的伙为、夕A. 1B.yC.2 I). |&如图所示•正方体AHCD-A f B,C,D,的梭长为1, F・F分别圧梭八人'・CC'的中点.过血线EF的平面分別与梭BB'.DD'交丁M,M设BM-小.* (0・1〉,给出以卜四个命题:①四边形MENF为平行四边形I②若四边形MENF血枳Sr /(X). x€(0,l).则/(z)冇九小侑;③若四棱锥人一MENF的体积V=-p(x). ze<0.1>.则p(“为恋瓯数;④若多而体AHCD-MENF^J体枳V = A(.r),苏I),则AQ)为单浏函数. 只中假命题为• • •A.①B•②C•③D•④高三敷爭(瓦科)第2页(拱$员)第二部分(G选择&兵110 分〉二、填空11(共6小逊■毎小JR 5分,共30分)9•在△ ABC中・a・6分别为角八•〃的对边.如果〃一30°«: - IO5S a " •那么b .0在平而向M Q.b中・已知a = (】・3)・ b=(2.y)・如果a • b = 5・那么y= ___ ;如果|a + b| = |a — b|・那么y= ____ •丁一yWlO.11. 已知『q海足约束条件1—,£2・那么的歧大值为・才$312. 如來險数/Cr)-rsiar+«的图象过点GJ〉. R /(z)-2.那么•13. 如來平面直角坐标系中的f»iAA(«-l.a+D.B(a.a)X于虫线,对称.那么直线?的方程为•M•数列{“.}満足:如和+“…>2如5>lmWN・),给出卜•述命吆*①若数列2」溝足:如 >尙・则a>“. ,(”>】・”€'•)皿立;②存在甜数c使扫a.>r(W€N->成立:③若 /> + q>m + /t(其中)•则a»+y>“.=a. i④存在席数/使得“A心? 5-】>d3€N・)郁成立.上述命題正珂的是_.(吗出所冇正晞结论的*仍〉三、解答题(共6小麵,共80分.解答虫禹出文字说明,演算步廉或证明过程)15•(本小題共13分)设S.、#一个公比为曲>0心\)的等比数列•巾,・3“八2心成等力数列.且它的询4项和S< = 15.< I〉求数列"・>的通项公式:< 11〉令6=a. + 2”・5=l・2・3……)•求敷列仏}的前肪项和.高三软竽(理科〉第3页〈共5页)16. (4-小题共13分〉已知函数/(x) = sin2x+2 73sinTcosi* —cos:^(^6 R).<I )求/4〉的皿小正周期和在Co.xZJ:的单训递减区间;(【I)若a为第四欽限角,且cosa-y,求/(f+ jf)的fft.17. (本小题典14分)如图.在P-ABCD中.底丽ABCD为正方形,PA丄底面ABCD・AB=AP.E为披PD的中点.(I )证明:AELCD;(II)求il^AE弓平而PHD所成卅的正弦值;(山)若尸为人3中点,棱PC上是否存在一点M・使得FM丄八(:・若存在.求出耀的值.若不存在,说明埋山.18. (本小題共13分〉已知桶圆$ I话=讥>〃>0》的焦点是斤・幵,H. |F,F?| = 2、离心率为*・(I >求椭B0C的方程;(II〉若过椭圆右很点丘的直线/交椭圆FA,B两点•求\AF Z\• IF屮I的取值范国.高三散学〈理科)第4页(共5贞)19. (4:小題从I I分)(2知西数/<-r) -- ----- a(.r —< [)当a亠1时.试求/(j->/t(U/(D)处的切线方程(<n)当“wo时,试求/a》的单河风何:(111)若/<x)ft(OJ)内有极(TL试求"的取值范用.20•(本小聽共13分》已知初线(・.的方程为:i^r 11〉・1・=】>.<【〉分別求出”二1・” =2时.曲线C.所冊成的图形的滴枳,< II〉若5(”€2〉衣朋曲线C.所阳成的图形的面积.求证:S.(N€N-以于”是递增的;'5)若方程上・+>*=^5A2・”W?OdwHO・没右正整数解.求证:曲线C.(W>2>M6N*〉上任一点对应的坐标(x.y). .r.y不能全尺有理数.高三做孕(理科)事5页(*S M>东城区2015-2016学年度第-学期期末教学统一检测裔三数学(理科)参考答案及评分标准2016. 1 一、选择題二■填空超9. 2 72. 10. U- ・】1・5& 12. X0. 14•①④.三、廉答1915•解:(I圈为一个公比为g(g>0・</工1)的等比数列.所以= “I矿'・心*0・因为4““3“,・2山成等矗数列.所以6g = 4® +2“)•即—34/4-2=0.H得g=2或gh】(含).乂它的询 4 项和S,工15.1!)^^- = !5(v>0.<?#l).解冯5^1.所以2・'• .......................................................................................................... 9分(II )W 为九FT.+2机所以i^ = ia. + V2; = 2- + n(w4 1)-1. ............................................................... 13 分•—1 •* I •—>16. 解” 1〉由己知 /<x)^>ii/ar4 2 ySsiiurcosx—co>\r IX>52X—2sin(2x~b所以故小正周期丁守一几3 Z由計2*n<2r-矜蓼亠2虹""•得手卜后W/W罟+及irMW龙.故旳数“ 0在[0・O上的单调递滥区间泉石7:・|■町. ...............9分<l] )W为a为第四徐琨用・H cose二g •所以0g--£・浙三啟学(仗科〉冬脅怎案第I页(*50所以 /(号讨辔〉三f -|-) = — 2sina —y. 13分17. ( I )证明:因为卩人丄磺面ABCD.CDC平A AHCD.所以”人丄(。
北京市东城区2012-2013学年度第二学期综合练习(一)高三数学 (理科)学校_____________班级_______________姓名______________考号___________ 本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知全集{1,2,3,4}U =,集合{1,2}A =,那么集合U A ð为(A ){3} (B ) {3,4} (C ){1,2} (D ){2,3} 【答案】B【解析】因为{1,2}A =,所以={3,4}U A ð,选B.(2)已知ABCD 为平行四边形,若向量AB =a ,AC =b ,则向量BC 为 (A )-a b (B )a +b(C )-b a (D )--a b 【答案】C【解析】因为=BC AC AB -,所以=BC b a -,选C.(3)已知圆的方程为22(1)(2)4x y -+-=,那么该圆圆心到直线3,1x t y t =+⎧⎨=+⎩(t 为参数)的距离为(A )2 (B (C )2 (D 【答案】C【解析】圆心坐标为(1,2),半径2r =,直线方程为20x y --=,所以圆心到直线的距离为2d ===,选 C.(4)某游戏规则如下:随机地往半径为1的圆内投掷飞标,若飞标到圆心的距离大于12,则成绩为及格;若飞标到圆心的距离小于14,则成绩为优秀;若飞标到圆心的距离大于14且小于12,则成绩为良好,那么在所有投掷到圆内的飞标中得到成绩为良好的概率为 (A )316 (B )14 (C )34 (D )116【答案】A【解析】到圆心的距离大于14且小于12的圆环面积为22113()()2416πππ-=,所以所有投掷到圆内的飞标中得到成绩为良好的概率为331616ππ=,选A.(5)已知数列{}n a 中,12a =,120n n a a +-=,2log n n b a =,那么数列{}n b 的前10项和等于(A )130 (B )120 (C )55 (D )50 【答案】C【解析】由120n n a a +-=得12n n a a +=,所以数列{}n a 为公比数列,公比2q =,所以111222n n n n a a q --==⨯=,所以22log log 2n n n b a n ===,为等差数列。
北京市东城区2012-2013学年度第二学期综合练习(一)高三数学 (理科)学校_____________班级_______________姓名______________考号___________ 本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知全集{1,2,3,4}U =,集合{1,2}A =,那么集合U A ð为(A ){3} (B ) {3,4} (C ){1,2} (D ){2,3} 【答案】B【解析】因为{1,2}A =,所以={3,4}U A ð,选B.(2)已知ABCD 为平行四边形,若向量AB =u u u r a ,AC =u u u r b ,则向量BC uuu r 为(A )-a b (B )a +b (C )-b a (D )--a b 【答案】C【解析】因为=BC AC AB -u u u r u u u r u u u r ,所以=BC b a -u u u r r r,选C.(3)已知圆的方程为22(1)(2)4x y -+-=,那么该圆圆心到直线3,1x t y t =+⎧⎨=+⎩(t 为参数)的距离为(A )2 (B )2(C )2 (D )2【答案】C【解析】圆心坐标为(1,2),半径2r =,直线方程为20x y --=,所以圆心到直线的距离为2d ===,选 C.(4)某游戏规则如下:随机地往半径为1的圆内投掷飞标,若飞标到圆心的距离大于12,则成绩为及格;若飞标到圆心的距离小于14,则成绩为优秀;若飞标到圆心的距离大于14且小于12,则成绩为良好,那么在所有投掷到圆内的飞标中得到成绩为良好的概率为 (A )316 (B )14 (C )34 (D )116【答案】A【解析】到圆心的距离大于14且小于12的圆环面积为22113()()2416πππ-=,所以所有投掷到圆内的飞标中得到成绩为良好的概率为331616ππ=,选A.(5)已知数列{}n a 中,12a =,120n n a a +-=,2log n n b a =,那么数列{}n b 的前10项和等于(A )130 (B )120 (C )55 (D )50 【答案】C【解析】由120n n a a +-=得12n n a a +=,所以数列{}n a 为公比数列,公比2q =,所以111222n n n n a a q --==⨯=,所以22log log 2n n n b a n ===,为等差数列。
数学(理)(北京卷)参考答案第1页(共8页)绝密★考试结束前2016年普通高等学校招生全国统一考试数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分)(1)C (2)C (3)B (4)D (5)C(6)A(7)A(8)B二、填空题(共6小题,每小题5分,共30分) ( 9 )1-(10)60 (11)2(12)6 (13)2(14)2(,1)-∞-三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)由余弦定理及题设得所以222cos 2a c b B ac +-===又因为0πB <∠<, 所以π4B ∠=. (Ⅱ)由(Ⅰ)知3π4A C +=.cos A C+3πcos()4A A =+-()A A A =++A A =+ πsin()4A =+因为3(0,π)4A ∈,所以当π4A ∠=cos A C +取得最大值1.数学(理)(北京卷)参考答案第2页(共8页)(16)(共13分)解:(Ⅰ)由题意知,抽出的20名学生中,来自C 班的学生有8名.根据分层抽样方法,C 班的学生人估计为81004020⨯=人. (Ⅱ)在A 班中取到每个人的概率相同均为15设A 班中取到第i 个人事件为,1,2,3,4,5i A i = C 班中取到第j 个人事件为,1,2,3,4,5,6,7,8j C j =A 班中取到i j A C >的概率为i P所求事件为D则1234511111()55555P D P P P P P =++++ 12131313145858585858=⨯+⨯+⨯+⨯+⨯ 38=(Ⅲ)10μμ<.三组平均数分别为7,9,8.25,总均值08.2μ=但1μ中多加的三个数据7,9,8.25,平均值为8.08,比0μ小, 故拉低了平均值.数学(理)(北京卷)参考答案第3页(共8页)(17)(共14分)解:(Ⅰ)因为平面PAD ⊥平面ABCD ,所以AB ⊥平面PAD . 所以AB ⊥PD .又因为PA ⊥PD , 所以PD ⊥平面PAB .(Ⅱ)取AD 中点为O ,连结CO ,PO .因为PA PD =, 所以PO ⊥AD .又因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD . 因为CO ⊂平面ABCD , 所以PO ⊥CO .因为CD AC ==所以CO ⊥AD .以O 为原点,如图建立空间直角坐标系O xyz -.由题意得 易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,, 则(111)PB =- ,,,(011)PD =-- ,,,(201)PC =- ,,,(210)CD =--,, 设n为平面PDC 的法向量,令00(,1)n x y = ,011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨ ⎪⎝⎭⋅=⎪⎩,,则PB 与平面PCD 夹角θ有数学(理)(北京卷)参考答案第4页(共8页)sin cos ,n PBn PB n PBθ⋅=<>===(Ⅲ)设存在M 点使得BM ∥平面PCD设AMAPλ=,()0,','M y z 由(Ⅱ)知()0,1,0A ,()0,0,1P ,()0,1,1AP =- ,()1,1,0B ,()0,'1,'AM y z =-有()0,1,AM AP M λλλ=⇒-所以()1,,BM λλ=--因为BM ∥平面PCD ,n为PCD 的法向量 所以0BM n ⋅=即102λλ-++=所以1=4λ所以综上,存在M 点,即当14AM AP =时,M 点即为所求.数学(理)(北京卷)参考答案第5页(共8页)(18)(共13分)解:(Ⅰ)()e a x f x x bx -=+所以()e e (1)e a x a x a x f x x b x b ---'=-+=-+因为曲线()y f x =在点(2,(2))f 处的切线方程为(e 1)4y x =-+ 所以(2)2(e 1)4f =-+,(2)e 1f '=- 即2(2)2e 22(e 1)4a f b -=+=-+①2(2)(12)e e 1a f b -'=-+=-②由①②解得:2a =,e b =(Ⅱ)由(Ⅰ)可知:2()e e x f x x x -=+,2()(1)e e x f x x -'=-+令2()(1)e x g x x -=-,所以222()e (1)e (2)e x x x g x x x ---'=---=-所以()g x 的最小值是22(2)(12)e 1g -=-=- 所以()f x '的最小值为(2)(2)e e 10f g '=+=-> 即()0f x '>对x ∀∈R 恒成立所以()f x 在(),-∞+∞上单调递增,无减区间.数学(理)(北京卷)参考答案第6页(共8页)(19)(共14分)解:(Ⅰ)由已知,112c ab a ==, 又222a b c =+,解得2,1,a b c ==所以椭圆的方程为2214x y +=. (Ⅱ)方法一:设椭圆上一点()00,P x y ,则220014x y +=. 直线PA :()0022y y x x =--,令0x =,得0022M y y x -=-. 所以00212y BM x =+- 直线PB :0011y y x x -=+,令0y =,得001N x x y -=-. 所以0021x AN y =+- 0000000000220000000000221122222214448422x y AN BM y x x y x y x y x y x y x y x y x y ⋅=+⋅+--+-+-=⋅--++--+=--+将220014x y +=代入上式得=4AN BM ⋅数学(理)(北京卷)参考答案第7页(共8页)故AN BM ⋅为定值.方法二:设椭圆上一点()2cos ,sin P θθ, 直线PA :()sin 22cos 2y x θθ=--,令0x =,得sin 1cos M y θθ=-. 所以sin cos 11cos BM θθθ+-=-直线PB :sin 112cos y x θθ-=+,令0y =,得2cos 1sin N x θθ=-.所以2sin 2cos 21sin AN θθθ+-=-2sin 2cos 2sin cos 11sin 1cos 22sin 2cos 2sin cos 21sin cos sin cos 4AN BM θθθθθθθθθθθθθθ+-+-⋅=⋅----+=--+=故AN BM ⋅为定值.数学(理)(北京卷)参考答案第8页(共8页)(20)(共13分)解:(Ⅰ)(){}25G A =,. (Ⅱ)因为存在1n a a >,设数列A 中第一个大于1a 的项为k a ,则1k i a a a >≥,其中21i k -≤≤,所以()k G A ∈,()G A ≠∅. (Ⅲ)设A 数列的所有“G 时刻”为12k i i i <<< ,对于第一个“G 时刻”1i ,有11i i a a a >≥,1231i i =- ,,,,则 111111i i i a a a a ---≤≤.对于第二个“G 时刻”()21i i >,有21i i i a a a >≥(2121i i =- ,,,).则212211i i i i a a a a ---≤≤.类似的321i i a a -≤,…,11k k i i a a --≤.于是,()()()()11221211k k k k k i i i i i i i i k a a a a a a a a a a ----+-++-+-=- ≥. 对于N a ,若()N G A ∈,则k i N a a =;若()N G A ∉,则k N i a a ≤,否则由⑵,知1k k i i N a a a + ,,,中存在“G 时刻”,与只有k 个“G 时刻”矛盾. 从而,11k i N k a a a a --≥≥,证毕.。
北京市东城区2015-2016学年度第二学期高三综合练习(一)数学 (文科)本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项)(1)若集合2{3}A x x x =∈<R ,{12}B x x =-<<,则AB =(A ){10}x x -<< (B ){13}x x -<< (C ){02}x x << (D ){03}x x << 【知识点】集合的运算【试题解析】因为,所以,故答案为:B 【答案】B(2)已知直线310ax y +-=与直线3+2=0x y -互相垂直,则a = (A )3- (B )1- (C )1 (D )3 【知识点】两条直线的位置关系 【试题解析】因为直线与直线互相垂直,所以,故答案为:C 【答案】C(3)已知4log 6a =,4log 0.2b =,2log 3c =,则三个数的大小关系是(A )c a b >> (B )a c b >> (C )a b c >> (D )b c a >> 【知识点】对数与对数函数 【试题解析】因为 所以,故答案为:A 【答案】A(4)若,x y 满足0230230x x y x y ≥⎧⎪+-≥⎨⎪+-≤⎩,,,则2u x y =+的最大值为(A )3 (B )52 (C )2(D )32【知识点】线性规划【试题解析】因为可行域如图,在AC 上任何一点取得最大值3.故答案为:A 【答案】A(5)已知数列{}n a 的前n 项和1159131721(1)(43)n n S n -=-+-+-++--,则11S =(A )21-(B )19-(C )19(D )21【知识点】数列的求和 【试题解析】因为故答案为:D 【答案】D(6)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则“a b =”是“A b B a cos cos =”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件【知识点】充分条件与必要条件 【试题解析】因为所以,是充分必要条件 故答案为:C 【答案】C(7)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,,a b i 的值分别为6,8,0,则输出a 和i 的值分别为(A )0,3 (B )0,4 (C )2,3 (D )2,4【知识点】算法和程序框图 【试题解析】因为输出。
市东城区2015-2016学年度第二学期高三综合练习(一)数学 (理科)学校_____________班级_____________________________考号___________本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知复数(1+)i a i ⋅为纯虚数,那么实数a 的值为(A )1- (B )0 (C ) 1 (D )2(2)集合2{},{50}A x x a B x x x =≤=-< | | ,若AB B =,则a 的取值围是(A )5a ≥ (B ) 4a ≥ (C ) 5a < (D )4a < (3)某单位共有职工150名,其中高级职称45人, 中级职称90人,初级职称15人.现采用分层 抽样方法从中抽取容量为30的样本,则各职称 人数分别为(A )9,18,3 (B ) 10,15,5 (C )10,17,3 (D )9,16,5 (4)执行如图所示的程序框图,输出的S 值为 (A )21(B )1 (C ) 2 (D )4(5)在极坐标系中,直线1cos sin =-θρθρ被曲线1=ρ截得的线段长为 (A )21 (B )1 (C )22 (D何体的最长棱长为 (A )2 (B)(C )3 (D(7)已知三点P (5,2)、1F (-6,0)、2F (6,0)那么以1F 、2F 为焦点且过点 P 的椭圆的短轴长为 (A )3(B )6(C )9(D )12(8)已知12e ,e 为平面上的单位向量,1e 与2e 的起点均为坐标原点O ,1e 与2e 夹角为3π. 平面区域D 由所有满足OP λμ=+12e e 的点P 组成,其中1,0,0λμλμ+≤⎧⎪≤⎨⎪≤⎩,那么平面区域D 的面积为(A )12(B(C)2 (D)4第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。
城区2015-2016学年度第二学期高三综合练习(一)理科综合2016.4本试卷共12页,共300分。
考试时长150分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将答题卡交回.以下数据可供解题时参考:可能用到的相对原子质量:H1 C12 O16 Na23 S32第一部分(选择题共120分)本部分共20小题,每小题6分,共120分.在每小题列出的四个选项中,选出最符合题目要求的一项.1.乳酸菌和酵母菌都A.有DNA与蛋白质结合形成的染色体B.能进行ATP和ADP 的相互转化C.可通过无氧呼吸产生二氧化碳D.可通过有丝分裂增殖2.下图是在不同光照强度下测得的桑树与大豆间作(两种隔行种植)和大豆单作(单独种植)时大豆的光合速率。
假设间作与单作农作物间的株距、行距均相同.据图分析,下列叙述正确的是A.与单作相比,间作时大豆植株的呼吸强度没有受到影响B.光照强度为a时,影响大豆植株间作和单作光合速率的主要因素均为CO2 浓度C.光照强度为b时,大豆植株单作固定CO2 的速率为D.大豆植株开始积累有机物时的最低光照强度单作大于间作3.在基因控制蛋白质合成的过程中,不会发生的是()A.基因的空间结构改变B.DNA聚合酶的催化C.消耗四种核糖核苷酸D.识别并转运氨基酸tRNA 4.某地区红树林湿地生态系统在每年的八九月份会发生由桐花树毛颚小卷蛾引起的局部病虫灾害,导致桐花树的枝叶大面积泛黄枯死。
人们一般通过喷施农药杀死小卷蛾,科研人员发现螟黄赤眼蜂能寄生在小卷蛾体内,也可用来防治小卷蛾,下列叙述不正确的是()A.桐花树大面积枯死,导致生态系统的自我调节能力降低B.可用黑光灯灯光诱捕的方法调查小卷蛾的种群密度C.喷施农药使小卷蛾产生抗药性突变,种群抗药基因频率增加D.利用螟黄赤眼蜂进行生物防治,有利于维持生物多样性5.通过下列生物实验操作能达到实验目的的是()A.在植物体细胞杂交中加入灭活的病毒诱导原生质体融合B.在接种酵母菌的新鲜葡萄汁中通入无菌空气制作果酒C.研究温度对酶活性的影响时将酶和反应物分别保温后再混合D.鉴定DNA时向DNA溶液中加入二苯胺摇匀后观察溶液颜色变化6.下列说法不正确的是...A B C D带玻璃塞的试剂瓶聚乙烯盒铁罐车铝制饭盒可用于盛放氢氧化钠溶液可用于盛装食品可用于运输浓硫酸不宜长时间存放酸性或碱性的食物7。
北京市东城区2016届高三下学期综合练习(一)数学理试题本试卷共5 页,共150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷 上作答无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共40 分)一、选择题(本大题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出 符合题目要求的一项)1.已知复数(1)i ai +为纯虚数,那么实数a 的值为A .-1B .0C .1D .22.集合{}|A x x a =≤,{}2|50B x x x =-<,若A B B =,则a 的取值范围是A .a ≥5B .a ≥4C .a < 5D .a <43.某单位共有职工150 名,某中高级职称45 人,中级职称90 人,初级职称15 人,现采用 分层抽样方法从中抽取容量为30 的样本,则各职称人数分别为A .9,18,3B .10,15,5C .10,17,3D .9,16,54.执行如图所示的程序框图,输出的S 值为A .12B .1C .2D .45.在极坐标系中,直线sin cos 1ρθρθ-=被曲线ρ=1截得的线段长为A .12B .2C .1D 6.一个几何体的三视图如图所示,那么该几何体的最长棱长为A .2B .C .3D7.已知三点P (5,2),F 1(-6,0),F 2 (6,0 ),那么以F 1,F 2 为焦点且过点P 的椭圆的短轴长为A .3B .6C .9D .128.已知e 1,e 2为平面上的单位向量, e 1与e 2的起点均为坐标原点O ,e 1与e 2的夹角为3π, 平面区域D 由所有满足12OP e e λμ=+的点P 组成,其中100λμλμ+≤⎧⎪≥⎨⎪≥⎩,那么平面区域D 的面积为A .12 BCD第II 卷(非选择题共110 分)二、填空题(本大题共6 小题,每小题5 分,共30 分)9.在51(2)4x x+的展开式中,x 3项的系数为 (用数字作答) 10.已知等比数列{}n a 中,2342,32a a a ==,那么a 8的值为 .11.如图,圆O 的半径为1, A , B ,C 是圆周上的三点,过点A 作圆O 的切线与OC 的 延长线交于点P .若CP =AC ,则∠COA = ; AP = .12.若sin ()4πα-=35,且(0,)4πα∈,则sin 2α的值为 . 13.某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可获利润以及运输限制如 下表:在最合理的安排下,获得的最大利润的值为.14.已知函数f (x) =|ln x|,关于x的不等式f (x) -f (x0)≥c(x-x 0)的解集为(0,+ ),c 为常数.当x0=1时,c 的取值范围是;当x 0=12时,c 的值是.三、解答题(本大题共6 小题,共80 分.解答应写出文字说明,演算步骤或证明过程)15.(本小题共13 分)在△ABC 中,BC =AC =2,且cos( A+B) 。
高三数学(理)(东城)第1页(共12页)北京市东城区2018-2019学年度第二学期高三综合练习(一)2019.4数学(理科)本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将答题卡交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合2{20},{210},A x x x B x x =+>=+>则A B = (A )12x x ⎧⎫>-⎨⎬⎩⎭(B )12x x ⎧⎫>⎨⎬⎩⎭(C ){0}x x >(D )R(2)在复平面内,若复数(2i)z -对应的点在第二象限,则z 可以为(A )2(B )1-(C )i(D )2+i(3)在平面直角坐标系xOy 中,角α以Ox 为始边,终边经过点(1,)(0)P m m -≠,则下列各式的值一定为负的是(A)sin cos αα+(B)sin cos αα-(C)sin cos αα(D)sin tan αα(4)正方体被一个平面截去一部分后,所得几何体的三视图如图所示,则该截面图形的形状为(A )等腰三角形(B )直角三角形(C )平行四边形(D )梯形高三数学(理)(东城)第2页(共12页)(5)若,x y 满足010,26,x y y y x +⎧⎪+⎨⎪-⎩≥,≤≥则x y -的最大值为(A )0(B )1(C )2(D )4(6)已知直线l 过抛物线28y x =的焦点F ,与抛物线交于A ,B 两点,与其准线交于点C .若点F 是AC的中点,则线段BC 的长为(A)83(B)3(C)163(D)6(7)南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.如图,夹在两个平行平面之间的两个几何体的体积分别为12,,V V 被平行于这两个平面的任意平面截得的两个截面的面积分别为12,,S S 则“12,V V 相等”是“12,S S 总相等”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(8)已知数列{}n a 满足:1a a =,11()2n n na a n a *+=+∈N ,则下列关于{}n a 的判断正确的是(A )0,2,a n ∀>∃≥使得n a <(B )0,2,a n ∃>∃≥使得1n n a a +<(C )0,,a m *∀>∃∈N 总有()m n a a m n <≠(D )0,,a m *∃>∃∈N 总有m n na a +=高三数学(理)(东城)第3页(共12页)第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
北京市东城区2016-2017学年度第二学期高三综合练习(一)数学 (理科)学校_____________班级_______________姓名______________考号___________本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合2{|20}A x x x =--<,{|13}B x x =<<,则A B =U(A ){|13}x x -<< (B ){|11}x x -<< (C ){|12}x x << (D ){|23}x x << (2)已知命题:,2n p n ∀∈N p ⌝是(A),2n n ∀∈N (B),2n n ∀∈N (C),2n n ∃∈N (D),2n n ∃∈>N (3)已知圆的参数方程为1,x y θθ⎧=-+⎪⎨=⎪⎩(θ为参数),则圆心到直线3y x =+的距离为(A )1 (B(C )2 (D)(4)已知m 是直线,,αβ是两个互相垂直的平面,则“m ∥α”是“m β⊥ ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)已知向量,a b 满足2+=0a b ,2⋅=-a b ,则(3+)()⋅-=a b a b(A )1 (B )3 (C )4 (D )5(6)某三棱锥的三视图如图所示,则该三棱锥的体积为 (A )13 (B )23 (C )1 (D )43(7)将函数sin(2)6y x π=+的图象向左平移(0)m m >个单位长度,得到函数()y f x =图象在区间[,]1212π5π-上单调递减,则m 的最小值为 (A )12π (B )6π (C )4π (D )3π (8)甲抛掷均匀硬币2017次,乙抛掷均匀硬币2016次,下列四个随机事件的概率是0.5的是①甲抛出正面次数比乙抛出正面次数多. ②甲抛出反面次数比乙抛出正面次数少. ③甲抛出反面次数比甲抛出正面次数多. ④乙抛出正面次数与乙抛出反面次数一样多. (A )①②(B )①③(C )②③(D )②④第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
东城区2015-2016 学年度第二学期高三综合练习(一)
数学(理科)2016.4
本试卷共5 页,共150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷 上作答无效.考试结束后,将本试卷和答题卡一并交回.
第Ⅰ卷(选择题共40 分)
一、选择题(本大题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出 符合题目要求的一项)
1.已知复数(1)i ai +为纯虚数,那么实数a 的值为
A .-1
B .0
C .1
D .2
2.集合{}|A x x a =≤,{}2|50B x x x =-<,若A B B =,则a 的取值范围是
A .a ≥5
B .a ≥4
C .a < 5
D .a <4
3.某单位共有职工150 名,某中高级职称45 人,中级职称90 人,初级职称15 人,现采用
分层抽样方法从中抽取容量为30 的样本,则各职称人数分别为
A .9,18,3
B .10,15,5
C .10,17,3
D .9,16,5
4.执行如图所示的程序框图,输出的S 值为
A .12
B .1
C .2
D .4
5.在极坐标系中,直线sin cos 1ρθρθ-=被曲线ρ=1截
得的线段长为
A .12
B .2
C .1 D
6.一个几何体的三视图如图所示,那么该几何体的最长棱长为
A .2
B .
C .3
D 7.已知三点P (5,2),F 1(-6,0),F 2 (6,0 ),那么以F 1,
F 2 为焦点且过点P 的椭圆的短轴长为
A .3
B .6
C .9
D .12
8.已知e 1,e 2为平面上的单位向量, e 1与e 2的起点均为坐标原点O ,e 1与e 2的夹角为3
π, 平面区域D 由所有满足12OP e e λμ=+的点P 组成,其中100λμλμ+≤⎧⎪≥⎨⎪≥⎩
,那么平面区域D 的面
积为
A .12
B
C
D
第II 卷(非选择题共110 分)
二、填空题(本大题共6 小题,每小题5 分,共30 分)
9.在51(2)4x x
+的展开式中,x 3项的系数为 (用数字作答) 10.已知等比数列{}n a 中,2342,32a a a ==,那么a 8的值为 .
11.如图,圆O 的半径为1, A , B ,C 是圆周上的三点,过点A 作圆O 的切线与OC 的 延长线交于点P .若CP =AC ,则∠COA = ; AP = .
12.若sin ()4πα-=35,且(0,)4
πα∈,则sin 2α的值为 . 13.某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可获利润以及运输限制如 下表:
在最合理的安排下,获得的最大利润的值为 .
14.已知函数 f (x ) =|ln x |,关于x 的不等式f (x ) -f (x 0 )≥c (x -x 0)的解集为(0,+∞),c 为 常数.当x 0=1时,c 的取值范围是 ;当x 0=12
时, c 的值是 . 三、解答题(本大题共6 小题,共80 分.解答应写出文字说明,演算步骤或证明过程)
15.(本小题共13 分)
在△ABC 中,BC =
, AC =2,且 cos( A +B)。
(Ⅰ)求AB 的长度;
(Ⅱ)若f (x) =sin(2x +C),求y = f (x)与直线y
16.(本小题共14 分)
已知三棱柱ABC-A1B1C1中,A1 A⊥底面ABC ,∠BAC=90°,A A1=1,AB AC =2,
E ,
F 分别为棱C 1C ,BC 的中点.
(1)求证:AC ⊥A 1B;
(2)求直线EF 与A1B 所成的角;
(3)若G 为线段A1A 的中点,A1在平面EFG 内的射影为H ,求∠HA 1A.
17.(本小题共13 分)
现有两个班级,每班各出4 名选手进行羽毛球的男单、女单、男女混合双打(混双)比
赛(注:每名选手打且只打一场比赛).根据以往的比赛经验,各项目平均完成比赛所
需时间如图表所示,现只有一块比赛场地,各场比赛的出场顺序等可能.
(1)求按女单、混双、男单的顺序进行比赛的概率;
(2)设随机变量X 表示第三场比赛开始时需要等待的时间,求X的数学期望;
(3)若要使所有参加比赛的人等待的总时间最少,应该怎样安排比赛顺序(写出结论即可).
18.(本小题共14 分)
设函数f (x) =a e x -x-1,a∈R .
(1)当a =1时,求f (x)的单调区间;
(2)当x∈(0,+∞)时, f (x) >0恒成立,求a的取值范围;
(3)求证:当x∈(0,+∞)时,
1
ln
2
x
e x
x
-
>
19.(本小题共13 分)
已知抛物线C : y2 =2 px(p>0),其焦点为F,O为坐标原点,直线AB(不垂直于x轴)过点F 且抛物线C交于A,B两点,直线OA与OB的斜率之积为-p .
(1)求抛物线C 的方程;
(2)若M 为线段AB 的中点,射线OM 交抛物线C 于点 D ,求证:||
|| OD
OM
>2
20.(本小题共13 分)
数列{}n a 中, 给定正整数m (m >1),V (m )=111||m i i i a
a -+=-∑.定义:数列{}n a 满足
1i i a a +≤(i =1,2,…,m -1),称数列{}n a 的前m 项单调不增.
(1)若数列{}n a 的通项公式为(1),(*)n n a n N =-∈,求V (5).
(2)若数列{}n a 满足:1,,(1,*,)m a a a b m m N a b ==>∈>,求证:V (m )=a -b 的充分必要条件是数列{}n a 的前m 项单调不增.
(3)给定正整数m (m >1),若数列{}n a 满足:0n a ≥,(n =1,2,…,m ),且数列{}n a 的前m 项和为m 2,求V (m )的最大值与最小值.(写出答案即可)
答案解析
20.。