第七章平面直角坐标系章末知识复习
- 格式:ppt
- 大小:989.50 KB
- 文档页数:16
平面直角坐标系是平面上用来描述点位置的一种特定的坐标系。
它由两个互相垂直的坐标轴x轴和y轴所构成,x轴和y轴的交点称为原点O。
在平面直角坐标系中,每一个点都可以唯一确定两个坐标值(x,y),其中x称为横坐标,y称为纵坐标。
我们可以通过绘制点在坐标系上的位置来表示点的坐标。
当x轴取正方向为右侧,y轴取正方向为上方时,点在坐标系中的位置可以称为一个有序数对(x,y)。
在平面直角坐标系中,我们可以根据两点之间的距离、两点之间的斜率等概念来进行计算。
1.距离公式:设平面上两点A(x₁,y₁)和B(x₂,y₂),可以通过以下公式计算出两点之间的距离d:d=√[(x₂-x₁)²+(y₂-y₁)²]2.斜率的概念:斜率是用来描述两点之间直线的倾斜程度的概念。
设平面上两点A(x₁,y₁)和B(x₂,y₂),可以通过以下公式计算出两点确定的直线的斜率k:k=(y₂-y₁)/(x₂-x₁)斜率k可以用来判断直线的方向:当k>0时,直线是向上倾斜的;当k<0时,直线是向下倾斜的;当k=0时,直线是水平的;当x₂-x₁=0时,直线是竖直的。
3.点和直线的位置关系:在平面直角坐标系中,我们可以通过比较点到直线的距离来判断点和直线的位置关系。
当点在直线上时,点与直线的距离为0;当点在直线上方时,点与直线的距离为正数;当点在直线下方时,点与直线的距离为负数。
4.点的对称性:在平面直角坐标系中,我们可以通过对称中心来判断点的对称位置。
设平面上有点A(x,y),如果将点A关于原点O对称,则新的点A'的坐标为(-x,-y)。
同样地,我们还可以将点A关于x轴、y轴以及其他直线进行对称。
5.坐标系的变换:可以通过平移、旋转、镜像、缩放等变换对平面直角坐标系进行改变。
平移是指将坐标系沿着平行于x轴或y轴的方向移动一定距离。
旋转是指将坐标系绕原点O或其他点旋转一定角度。
镜像是指将所有点关于条直线、一些点或一些平面进行对称。
平面直角坐标系知识点总结1、 在平面内,两条互相垂直且原点重合的数轴组成了平面直角坐标系;2、 坐标平面上的任意一点 P 的坐标,都和惟一的一对 有序实数对( a ,b )一一对应;其中 a 为横坐标, b 为纵坐标;3、 x 轴上的点,纵坐标等于 0; y 轴上的点,横坐标等于 0;Y坐标轴上的点不属于任何象限; bP(a,b)4、 四个象限的点的坐标具有如下特征:1象限横坐标 x纵坐标 y -3 -2 -1 0 1a x-1第一象限正正-2第二象限负 正-3第三象限负负第四象限正负小结:(1)点 P ( x , y )所在的象限横、纵坐标 x 、 y 的取值的正负性;(2)点 P( x , y )所在的数轴横、纵坐标 x 、 y 中必有一数为零;y5、 在平面直角坐标系中,已知点 P (a , b ) ,则 a; bP ( a ,b ) (1) 点 P 到 x 轴的距离为 b ; (2)点 P 到 y 轴的距离为 ab (3) 点 P 到原点 O 的距离为 PO = a 2 b 2Oax6、 平行直线上的点的坐标特征:a) 在不 x 轴平行的直线上, 所有点的纵坐标相等;YAB点 A 、B 的纵坐标都等于 m ;m Xb) 在不 y 轴平行的直线上,所有点的横坐标相等; YC点 C 、D 的横坐标都等于 n ;n7、 对称点的坐标特征:a) 点 P (m , n ) 关于 x 轴的对称点为 P 1 (m ,-n ) , 即横坐标丌变,纵坐标互为相反数; b) 点 P (m , n ) 关于 y 轴的对称点为 P 2 (-m , n ) , 即纵坐标丌变,横坐标互为相反数; c) 点 P (m , n ) 关于原点的对称点为 P 3 (-m ,-n ) ,即横、纵坐标都互为相反数;yyyPPn P2nn PO mX- m- mmXOm XO- n P 1- nP 3关于 x 轴对称关于 y 轴对称 关于原点对称d) 点 P (a , b )关于点 Q (m , n ) 的对称点是 M (2m-a ,2n-b ); 8、 两条坐标轴夹角平分线上的点的坐标的特征:a) 若点 P ( m , n )在第一、三象限的角平分线上,则 m = n ,即横、纵坐标相等; b) 若点 P ( m , n )在第二、四象限的角平分线上,则 m = -n ,即横、纵坐标互为相反数;yyn PP nOm X m OX在第一、三象限的角平分线上在第二、四象限的角平分线上9、 用坐标点表示移(1)点的平移将点(x , y )向右(或向左)平移 a 个单位,可得对应点(x+a , y ){或(x-a , y )},可记为“右加左减,纵不变”;将点(x , y )向上(或向下)平移 b 个单位,可得对应点(x , y+b ){或(x , y-b )},可记为“上加下减,横不变”;(2)图形的平移把一个图形各个点的横坐标都加上(或减去)一个正数 a ,相应的新图像就是把原图形向右(或向左)平移 a 个单元得到的。
知识梳理1. 平面直角坐标系(1)有序数对①定义:我们把有顺序的两个数a与b组成的数对,叫作有序数对。
②表示方法:(a,b)。
③应用:利用有序数对表示位置等。
(2)平面直角坐标系及点的坐标①定义:在平面内画两条数轴,互相垂直、原点重合;水平数轴为x轴(或横轴),取向右为正方向;竖直数轴为y轴(或纵轴),取向上为正方向。
②坐标平面内点的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-);x轴上的点(x,0),y轴上的点(0,y),原点(0,0);第一、三象限角平分线上的点(x,y)x=y;第二、四象限角平分线上的点(x,y)x=-y。
③应用:由点的位置确定点的坐标,由点的坐标确定点的位置。
2. 坐标方法的简单应用(1)用坐标表示地理位置①用平面直角坐标系表示地理位置。
②用方向和距离表示平面内物体的位置。
(2)用坐标表示平移①点的平移点(x,y)(x+a,y);点(x,y)(x-a,y);点(x,y)(x,y+a);点(x,y)(x,y-a)。
②图形的平移:图形上各对应点的平移,平移前后图形的大小、形状完全相同。
例题1(济南中考)定义:在平面直角坐标系x O y中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P、Q的“实际距离”。
如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5。
环保低碳的共享单车,正式成为市民出行喜欢的交通工具。
设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为__________。
思路分析:由题意可得:M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2),此时M到A,B,C的实际距离都为5。
故答案为:(1,﹣2)。
答案:(1,﹣2)例题2 (卢龙县期末)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动。
本章复习°込載字目际【知识与技能】1. 通过实例认识有序数对,感受它在确定点的位置中的作用.2. 认识平面直角坐标系,了解点与坐标的对应关系;在给定的直角坐标系中,能根据坐标(坐标为整数)描出点的位置,能由点的位置写出点的坐标(坐标为整数).3•能建立适当的平面直角坐标系描述物体的位置,体会平面直角坐标系在解决实际问题中的应用.4. 在同一平面直角坐标系中,能用坐标表示平移变换•通过研究平移与坐标的关系,使学生看到平面直角坐标系是数与形之间的桥梁,感受代数问题与几何问题的相互转换•5. 结合实例,了解可以用不同的方式确定物体的位置.【过程与方法】先以请学生口答的形式回顾本章各知识点,然后教师将本节各知识点及知识结构框图出示在屏幕上,供学生复习时参考.在此基础上,对学生进行典型题、热点题的综合训练,以提高解题能力,加深对本章知识的理解•【情感态度】教材密切联系生活实际,从实际需要出发学习平面直角坐标系,激发学生的求知欲.通过本章学习,让学生初步感受数形结合的思想,让学生体验到由于平面直角坐标系的引入,架起了数与形之间的桥梁,加深了知识间的相互联系,获得了解决数学问题的一个强有力工具•通过介绍笛卡尔的故事,激发学生学习数学的热情,通过向数学家学习,帮助学生树立远大的目标,树立远大的志向.【教学重点】平面直角坐标系,坐标的应用.【教学难点】坐标的应用.、知识框图,整体把握二、回顾思考,梳理知识本章的主要内容包括平面直角坐标系的有关概念,点的坐标的对应关系,用坐标表示地理位置和用坐标表示平移等•教材首先从实际生活中常见的表示位置的方法出发,引出有序数对的概念,结合数轴上确定点的位置的方法,引出平面直角坐标系,建立点与坐标的对应关系•坐标方法的简单应用包括两个方面的内容:1.用坐标表示地理位置,从中了解到了建立平面直角坐标系的技巧和一般方法;2.用坐标表示平移.探讨点或图形顶点的坐标规律变化引起的点或图形的平移.通过“数学活动”的学习,了解到用其他方法(如用极坐标) ,也可表示一个地点的地理位置.三、典例精析,复习新知例1指出下列各点所在的象限或坐标轴.1A(-1, -2.5),B(3,-4), C (-— , 5),32D (7, 9),E (-n,0),F (0, -— ),G (7.1, 0),3H (0, 10), K (0, 0).解:方法1:画一个平面直角坐标系,先大致地描出各点,再作出判断.方法2:可用下表提供的规律直接判断.点所在的象限或坐标轴横坐标纵坐标笫•象限+十第二象限—十第三象限——第四象限+—戈轴的正半轴上 +0 工轴的负半轴上 —0 y 轴的止半轴上 0 + y 轴的负半轴上0 — 原点A 在第三象限,B 在第四象限,C 在第二象限,D 在第一象限,E 在x 轴负 半轴上,F 在y 轴负半轴上,G 在x 轴正半轴上,H 在y 轴正半轴上,K 在原点 上.例2如图是一台雷达探测相关目标得到的结果,若记图中目标A 的位置为(2, 90。
第七章平面直角坐标系知识点归纳及典型例题(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第七章平面直角坐标系的复习资料一、本章的主要知识点(一)有序数对:有顺序的两个数a与b组成的数对。
1、记作(a ,b);2、注意:a、b的先后顺序对位置的影响。
(二)平面直角坐标系1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形;2、构成坐标系的各种名称;3、各种特殊点的坐标特点。
(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。
二、特殊位置点的特殊坐标:六、用坐标表示平移:见下图23五、经典例题知识一、坐标系的理解例1、平面内点的坐标是( )A 一个点B 一个图形C 一个数D 一个有序数对学生自测1.在平面内要确定一个点的位置,一般需要________个数据;在空间内要确定一个点的位置,一般需要________个数据.2、在平面直角坐标系内,下列说法错误的是( )A 原点O 不在任何象限内B 原点O 的坐标是0C 原点O 既在X 轴上也在Y 轴上D 原点O 在坐标平面内知识二、已知坐标系中特殊位置上的点,求点的坐标点在x 轴上,坐标为(x,0)在x 轴的负半轴上时,x<0, 在x 轴的正半轴上时,x>0点在y 轴上,坐标为(0,y )在y 轴的负半轴上时,y<0, 在y 轴的正半轴上时,y>0第一、三象限角平分线上的点的横纵坐标相同;坐标点(x ,y )xy>0第二、 四象限角平分线上的点的横纵坐标相反;坐标点(x ,y )xy<0例1 点P 在x 轴上对应的实数是3 ,则点P 的坐标是 ,若点Q 在y 轴上 对应的实数是31,则点Q 的坐标是 , 例2 点P (a-1,2a-9)在x 轴负半轴上,则P 点坐标是 。
41、点P(m+2,m-1)在y 轴上,则点P 的坐标是 .2、已知点A (m ,-2),点B (3,m-1),且直线AB ∥x 轴,则m 的值为 。