传热论文
- 格式:doc
- 大小:23.50 KB
- 文档页数:2
传热学在高新技术领域中的应用摘要: 热传递现象无时无处不在它的影响几乎遍及现代所有的工业部门也渗透到农业、林业等许多技术部门中。
本文介绍了航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等诸多高新技术领域在不同程度上应用传热研究的最新成果。
可以说除了极个别的情况以外,很难发现一个行业、部门或者工业过程和传热完全没有任何关系。
不仅传统工业领域,像能源动力、冶金、化工、交通、建筑建材、机械以及食品、轻工、纺织、医药等要用到许多传热学的有关知识而且诸如航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等很多高新技术领域也都在不同程度上有赖于应用传热研究的最新成果,并涌现出像相变与多相流传热、(超)低温传热、微尺度传热、生物传热等许多交叉分支学科。
在某些环节上,传热技术及相关材料设备的研制开发甚至成为整个系统成败的关键因素。
前言通过对传热学这门课程的学习,了解了传热的基本知识和理论。
发现传热学是一门基础学科应用非常广泛,它会解决许许多多的实际问题更是与机械制造这门学科息息相关。
传热学是研究由温度差异引起的热量传递过程的科学。
传热现象在我们的日常生活中司空见惯。
早在人类文明之初人们就学会了烧火取暖。
随着工业革命的到来,蒸汽机、内燃机等热动力机械相继出现,传热研究更是得到了飞速的发展,被广泛地应用于工农业生产与人们的日常生活之中。
当今世界国与国之间的竞争是经济竞争,而伴随着经济的高速发展也带来了资源、人口与环境等重大国际问题。
传热学在促进经薪发展和加强环境保护方面起着举足轻重的作用。
20世纪以前传热学是作为物理热学的一部分而逐步发展起来的。
20世纪以后,传热学作为一门独立的技术学科获得迅速发展,越来越多地与热力学、流体力学、燃烧学、电磁学和机械工程学等一些学科相互渗透,形成多相传热、非牛顿流体传热、燃烧传热、等离子体传热和数值计算传热等许多重要分支。
现在,机械工程仍不断地向传热学提出大量新的课题。
对流传热优化——场协同提纲:1)强化传热技术的重要性环境问题→节约能源→强化传热技术2)强化对流传热的途径①提高雷诺数:增加流速,减小通道直径等②提高普朗特数:增加流体比热容或黏性③在速度温度梯度一定时减小夹角,使积分I增大3)场协同的概念对流传热中速度场与热流场的相互配合能使无因次流动当量热源强度提高,从而强化换热4)场协同理论在换热器中的应用将场协同理论应用于换热器,从换热器中换热介质温度场相互配合的整体来考虑,在工程应用方面有重要意义。
一、强化传热技术的重要性进入21世纪的人类正面临能源与环境两大挑战。
我国有13亿多人口,是世界上最大的发展中国家,同时,我国的能源资源短缺,人均能源资源就更加不足,优质能源严重匮乏(我国的人均煤炭可采储量为世界人均水平的54%,人均石油剩余可采储量仅为世界人均水平的8%)。
因此,在未来的经济发展过程中,节能将一直作为我国国民经济可持续发展的基本国策,节能和提高能源使用效率将显得尤为重要。
在能源的利用过程中,80%以上的能源都需要通过传热过程和通过换热器来实现。
可见,发展并采用高效节能的传热强化技术对节能具有十分重要的意义。
因此,从节能的角度考虑,需要在理论指导下研发高效节能的强化传热技术,对生活中最常见的对流传热来说,就是要研发同功耗条件下换热显著强化的新型强化换热理论技术。
12 二、强化对流传热的途径一般来说,要实现强化换热有三方面途径:①提高雷诺数,例如增加流速,缩小通道孔径等,就能使换热增强,这是大家所熟知的;②提高普朗特数,改变流动介质的物理性质,例如增加流体的比热容或黏性,将导致普朗特数的增大,这也是已经清楚的规律;③增加无因次积分值。
无因次积分的物理意义就是在x 处热边界层厚度截面内的无因次热源强度的总和。
可以想象,热源强度越大,换热强度就越高。
这个积分的数值一般与流动、物性因素等有关,也就是说,它是Re 、Pr 的函数,即由于积分的复杂性,我们很难写出积分I 的分析表达式。
纳米流体的等效导热率测量传热分析XXX 仪器仪表工程 P1602085236一.问题简介纳米流体作为一种新型的传热流体,具有良好的传热性能。
然而,研究发现纳米流体具有非常强大的非牛顿性,即它的等效导热系数不仅仅与其材料本身有关,而且与其所处的流动环境有关。
进一步说,这种材料的导热系数会随着流体剪切力的变化而变化。
那么,如何得到流体剪切力与等效导热系数之间的关系呢?有一种方法是通过试验来测定,装置图如下:被测流体处于两个薄圆筒壁之间,其中外圆筒旋转,内圆筒静止,通过外圆筒的旋转来带动流体做旋转运动并产生剪切力。
内圆筒布置有加热膜,通过直流电源产生的电流来加热。
由于不同的转速会使得流体的等效导热系数发生变化,从而影响壁面温度。
那么,就可以通过一些传热分析来得到剪切力与等效导热系数之间的关系。
二.模型的建立以及传热分析首先是模型的简化:(1)假设流体仅仅做圆周运动,即没有轴向和径向的运动。
(2)假设粘性导致的耗散可以忽略。
(3)假设内外薄壁圆筒的热阻可以忽略。
在上述假设下,该问题可以简化为一维,稳态,无内热源的圆筒导热问题。
初始能量方程为:经过简化可得: 0r 1=⎪⎭⎫ ⎝⎛dr dt r d d r λ 定解条件为:i r r = , i t t =0r r = , 0t t =经过积分计算可得导热系数为:()()()002/t t l r r In i i -=πφγλ 而剪切力可以通过下式计算:()i r r nr -=0030πγ式中,φ为热流量(即为加热功率),λ为导热系数,γ为剪切力,n 为圆筒转速,r 0为外筒半径,r i 为内筒半径,t 0为外筒表面温度,t i 为内筒壁面温度。
即可通过测得内外壁的温度来得到流体的等效导热系数,再根据剪切力计算公式得到剪切力与等效导热系数之间的关系。
参考文献:[1]孙成珍,白博峰,卢文强,等.剪切流场中纳米流体的等效导热率的实验测量[J].工程热物理学报,2013,34(12):2288-2291.。
传热学的应用及最新进展—多相表面的沸腾换热Xx xx(长沙 410083)摘要:多相系统及过程中存在很多不同的界面,这些界面(气体、液体、固体)彼此依赖、融合,形成多相表面。
相之间的稳定边界企图通过界面自由能值来改变其界面面积,沸腾传热是多相表面传热的很重要部分。
沸腾传热技术被广泛应用于热能动力、核电、地热能、太阳能、石油化工、食品及低温工程等传统工业领域以及空间技术和微电子散热等高新技术领域。
强化沸腾关键技术的突破可有效提高能源利用率和解决狭小空间内高热流密度的散热难题。
纳米多孔铜表面具有高比表面积、优异的热导率、良好的浸润性以及极高的潜在汽泡核心密度,是极具前景的强化沸腾传热表面。
本文详细地介绍了多相表面的沸腾传热以及其在一些领域的相关应用。
关键词:多相界面;沸腾换热;汽泡;EHD中图分类号:文献标识码:文章编号:The application of heat transfer and the latestprogress—The boiling heat transfer with multiphase interfacesJIANG Tao(Central south university institute of science and engineering energy ,Changsha410083)Abstract:In multiphase systems and processes, many different interfaces can exist, depending upon which state( gas, liquid, or solid) is finely dispersed in another.The stable boundary demarcating this region tends to alter the interface area by virtue of its interfacial free energy, The boiling heat transfer is the most important part of multiphase interfaces heat transfer.Boiling heat transfer technology is widely used in traditional industrial areas, likethermal power, nuclear engineering, solar energy, chemical, food engineering and cryogenic engineering, as well as space technology and microelectronics cooling. The development of boiling enhancement technology can improve heat transfer efficiency and provide a solution for the heat dispersing problem in small space with high heat flux. The nanoporous copper surface with high specific surface area, excellent thermal conductivity, good wettability as well as a high density of potential bubble nucleate sites, is a promising heating wall for enhancing boiling heat transfer.Key words:multiphase interfaces;boiling heat transfer;steam bubble;EHD0 引言沸腾传热因在较小的过热度条件下可以获得极大的传热系数,在过去 80 余年的时间内一直是研究的热点。
燃气灶的传热摘要:燃气灶在人们日常生活中越来越广泛地应用,燃气已与人们生活息息相关;随着世界性石油危机的不断突现,燃气(本文主要指天然气、液化石油气、人工煤气)作为一种不可再生的能源资源,节约燃气越来越受到人们的重视如何在燃气灶的设计上进一步提高其节能性能,不仅可以使人们从节约燃气中直接受益,而且对于燃气资源的有效利用及燃气资源的保护都具有重要的现实意义。
关键字:燃气灶传热Heat transfer of gas stoveAbstract:Gas stove in the people daily life more and more widely used,the gas has been closely linked with people's lives;with the continuous emergence of world oil crisis,gas (mainly refers to natural gas,liquefied petroleum gas,artificial gas)as a kind ofnon-renewable energy resources,saving gas,people pay more and more attention to how to design of gas stove to further improve the energy-saving performance,not only allows people to benefit directly from the gas saving,but also has important practical significance to the effective use of resources and protection of gas for gas resources.Key Words:Gas stove heat transfer0 引言所谓燃气灶的热效率,通俗地讲就是燃气灶在使用过程中对燃气热能的有效利用率从燃气灶的热效率上可以看出,家用燃气灶具普遍存在着燃气热能利用率不高的现象,有大约40~50%的燃气热能在使用中被浪费不管是从节约能源的角度看,还是站在消费者利益的角度看,提高燃气灶对燃气热能的有效利用率,设计、生产高热效率的家用燃气灶,已成为燃气具行业发展的一个重要方向。
传热学及其在工业上的应用周浪峰200803878 装备10802班摘要:本文首先从传热学的基本概念出发,讲述了传热学的三种基本方式及各自特点。
传热学的普适性不仅表现为在能源动力、石油、冶金、化工、交通、建筑建材、机械、食品、轻工、纺织、医药等传统工业部门中,而且传热学的理论和技术在生产、科学研究等领域也得到了广泛的应用。
传热学理论的应用解决了决定这些部门生产过程的热工艺技术,对一些关键技术的解决起了重要的甚至是决定性的作用。
关键词:传热,热采技术,传热技术首先我们来对传热学作一个概念上的了解。
热量在温度差作用下从一个物体传递至另外一个物体,或者在同一物体的各个部分之间进行传递的过程称为传热。
将传热进行分类的一个基本原则是按照热量传递的不同机理,即热量以何种方式或何种运动形式进行传递。
经过大量归纳总结,人们发现按传热的不同机理,可将传热划分成三种基本方式:热传导、热对流和热辐射。
当物体内有温度差或两个不同温度的物体接触时,在物体各部分之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。
流体中,温度不同的各部分之间发生相对位移时所引起的热量传递过程叫热对流。
流体各部分之间由于密度差而引起的相对运动称为自然对流;而由于机械(泵或风机等)的作用或其它压差而引起的相对运动称为强迫对流(或受迫对流)。
物体通过电磁波传递能量的过程称为辐射。
物体会因各种原因发出辐射能。
由于热的原因,物体的内能转化成电磁波的能量而进行的辐射过程称为热辐射【1】。
实际传热过程一般都不是单一的传热方式,如火焰对炉壁的传热,就是辐射、对流和传导的综合,而不同的传热方式则遵循不同的传热规律。
为了分析方便,人们在传热研究中把三种传热方式分解开来,然后再加以综合。
热科学的工程领域包括热力学和传热学.传热学的作用是利用可以预测能量传递速率的一些定律去补充热力学分析,因后裔只讨论在平衡状态下的系统.这些附加的定律是以三种基本的传热方式为基础的,即导热、对流和辐射。
热传导理论与方法论文题目:农村民居的节能研究现状及发展趋势作者:丁红光学号:1004110035指导老师:徐桂转时间:2013年6月19日农村民居的节能研究现状及发展趋势丁红光河南农业大学机电工程学院郑州市 450002中文摘要:在新世纪能源危机和可持续发展的背景要求下,低碳节能是未来各行各业最基本的发展要求和发展趋势,而农村民居在低碳节能方面亦有很大优化提升空间。
本文通过相关文献的阅读结合实际农村民居现状及发展趋势,介绍了目前我国几种先进的建筑节能技术在农村民居的应用与研究,分析了农村民居未来的发展趋势以及其可能存在的问题,并提出了相应的解决办法。
关键词:低碳节能农村民居节能技术发展趋势[abstract]:the energy crisis in the new century and under the background of sustainable development requirements, low carbon and energy-saving is the future development of all walks of life the most basic requirement and development trend .the rural residence also has a lot to optimize upgrade in terms of low carbon energy saving space. In this paper, through literature reading rural dwellings with the actual situation and development trend, this paper introduces some advanced at present our country of application and research in rural residential building energy saving technology, and the trend of the development of rural dwellings were analyzed and the possible existing problems, and puts forward the corresponding solutions.Key words: low carbon and energy-saving The rural folk house energy-saving technology development tendency growing trend1引言随着21世纪能源危机的出现及可持续发展的要求,低碳节能成为了我国重要的发展战略规划,为确保实现“十二五”节能减排约束性目标,缓解资源环境约束,应对全球气候变化,促进经济发展方式转变,建设资源节约型、环境友好型社会,增强可持续发展能力,各行各业各人积极响应国家号召,投身于节能减排,低碳生活的建设事业中,而农村民居建造中,在保证居民生活舒适经济的前提下,凭借先进科学的建造节能技术、新型节能建材、新能源技术及供热通风节能技术等的应用以及因地制宜充分利用当地资源,其节能减排方面具有巨大的提升潜力。
圆管紊流经济流速计算吉玉辰 1102610316摘要:本文阐述了流速、管径与管网的年折旧费用之间的关系,就经济流速计算公式中的参数确定,推导出计算方法。
考虑流体在紊流状况下,管径在多大时,流速为何值时,管的经济效用能达到最大,最节省。
关键词:年折旧费用 经济流速 动力消耗1、 流速与动力消耗的关系水在管道内流动的阻力(压降)P ∆可按下式计算ρυξρυλ2222∑+=∆d l P (1)式中,λ—沿程阻力系数 圆管紊流时:25.0)Re 68(11.0+=d k λ (2) d —水管内径,m ;l —管道长度,m ;v —流速,m / s ,ξ—局部阻力系数; ρ—水的密度, kg / m 3 ;k —管壁粗糙度,m, 对于一般室内水管而言, 可取k=0.002mR e —流动的雷诺数 νυd =Reν—水的粘滞系数,由于管内的水流量)(2,42πυπυQ d d Q == 所以νπυνπυυ/2)(2Re Q Q =⨯=, 代入(2)式得25.0)/34)(2(11.0πυνπυλQ Q k += (3)当流量为Q (s m /3)时, 消耗在该管段上的动力N (W )为:Q Ql Q d l QP N ⋅+=⋅+=⋅∆=∑∑)24()22(25.222ρυξρυπλρυξρυλ (4) 如果系统的年运行时间为τ( 小时/ 年) , 电费为c( 元/k W )则系统的年运行动力消耗费用为 ()年元/10cos 3-⨯⋅⋅=τc N t r(5) 上式就是流速与动力消耗之间的函数关系式,从式中可以看出动力消耗N 与流速近似成平方关系, 流速的变化对动力消耗的影响很大。
2 、流速与初投资的关系流速除了与动力消耗直接相关外, 还与系统的工程初投资有关当流量一定时, 管内流速大, 则所需的管径小, 反之就大。
在同一个系统中, 管线的长度, 布置方式确定时, 管道系统的初投资主要与管径大小有关。
管径大时一方面耗用钢材量多, 另一方面随之带来的是管道附件的大小变化及保温材料安装施工量的变化。
化工原理传热论文引言传热是化工领域一个重要的研究课题,它在工业生产过程中起到至关重要的作用。
传热过程涉及到物质的热量通过传导、对流和辐射等方式从一个物体传递到另一个物体。
了解传热原理对于优化工艺参数、提高能源利用效率以及保障工业生产的安全性都具有重要意义。
本文将介绍传热的基本原理以及在化工领域中的应用。
首先,我们将讨论传热的基本概念,包括传热的方式和传热方程。
然后,我们将介绍一些传热现象的具体示例,如换热器、蒸发器和冷凝器。
最后,我们将讨论一些提高传热效率的方法。
传热的基本概念在化工领域中,传热通常发生在两个物体之间。
传热有三种基本方式:传导、对流和辐射。
传导是指热量通过物质内部的热传递。
在传导中,热量通过物质内部分子间的热振动传递。
传导的速率取决于物质的热导率和温度梯度。
对流是指热量通过流体的传递。
在对流中,热量通过流体的运动和分子的碰撞来传递。
对流的速率取决于流体的速度、流体的热导率和表面温度的差距。
辐射是指热量通过电磁辐射的方式传递,不需要介质。
辐射的速率取决于物体的温度和表面特性。
传热方程描述了传热的速率。
对于传导,传热方程可以写为:$$ Q = -\\lambda \\frac{{\\delta T}}{{\\delta x}} \\cdot A $$其中,Q是传热速率,$\\lambda$是物质的热导率,$\\frac{{\\deltaT}}{{\\delta x}}$是温度梯度,A是传热截面积。
对于对流,传热方程可以写为:$$ Q = h \\cdot A \\cdot \\Delta T $$其中,Q是传热速率,ℎ是传热系数,A是传热面积,$\\Delta T$是表面温度差。
对于辐射,传热方程可以写为:$$ Q = \\sigma \\cdot \\varepsilon \\cdot A \\cdot (T_1^4 - T_2^4) $$其中,Q是传热速率,$\\sigma$是斯特藩-玻尔兹曼常数,$\\varepsilon$是辐射率,A是传热面积,T1和T2分别是两个物体的温度。
传热学xiao论文表面张力对膜状凝结换热影响研究摘要对圆管内膜状凝结换热过程进行了理论分析,探讨了重力、表面张力梯度引起的Marangoni 力以及气液界面剪切力对凝结换热Nusselt 数的影响。
建立了含有凝结液膜的物理模型和基于边界层方程组的数学模型,应用相似理论进行了无量纲变换。
结果表明,表面张力梯度对凝结换热过程的影响不可忽略,梯度越大,液膜越薄,Nu 数越大,换热越好。
关键词 Marangoni 效应;膜状凝结;圆管;数值模拟;传热The Effect Of the Interfacial Force To the CondensationAbstract This paper investigated the heat transfer process in the circular pipe and then analysed the effect of the gravity, the shearing force at the gas-liquid interface and the marangoni strength caused by the surface tension on the Nusselt num-bler. In this paper ,both physical model which include the condensation fluid film and mathematical model based on the boundary layer equation were founded and then transformed to a non-dimensional form by applying the similarity theory. The results showed that the effect of the surface tension gradient on the condensed heat process can not be ignored, The greater the gradient was ,the thinner the liquid film was; the bigger the Nu number was,the better the effect of the heat transfer was.Key words Marangoni effect; film condensation,the circular pipe,numerical simulation,heat transfer0 引言进入20世纪80年代以后,随着工程技术的进步,凝结换热现象出现了一些新的情况。