2018届浙江省杭州市高三第二次高考科目教学质量检测数学试题(全WORD版)
- 格式:doc
- 大小:314.00 KB
- 文档页数:7
浙江省杭州市2018-2019学年高三下学期第二次模拟考试数学(理)试题第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求。
1、下列函数中,在区间(0,+∞)上为增函数的是( )A .1y x -=B .1()2x y =C . 1y x x=+D . ()ln 1y x =+【答案】D考点:基本初等函数的单调性.2、设a ∈R ,则“32a =-”是“直线1: 210l ax y +=-与直线()2: 140l x a a y +++=垂直”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 【解析】试题分析:若直线1: 210l ax y +=-与直线()2: 140l x a a y +++=垂直,所以2(1)0a a a ++=,得0a =或32a =-,所以“32a =-”是“直线1: 210l ax y +=-与直线()2: 140l x a a y +++=垂直”的充分不必要条件.考点:充分必要条件的判断.3、将一个长方体截掉一个小长方体,所得几何体的俯视图与侧视图如右图所示,则该几何体的正视图为( )A .B .C .D .【答案】C 【解析】试题分析:根据俯视图和侧视图可知,该集合的直观图如下图所示:据此可知该几何体的正视图为选项C . 考点:空间几何体的三视图.4、设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题正确的是( )A .m n αβαβ⊥⊥⊥,,且,则m n ⊥B .////m n αβ,, 且//αβ,则//m nC .m n m n αβ⊥⊂⊥,, ,则αβ⊥D .////m n m n ααββ⊂⊂,,,,则//αβ【答案】A 【解析】试题分析:选项B 中,m 与n 还可能异面,或相交,故不正确;选项C 中,α与β还可能平行或相交,故不正确;选项D 中,α与β还可能相交,故不正确;据此选项A 正确. 考点:线线、线面、面面的垂直、平行关系的判断.5、已知F 是抛物线24y x =的焦点,A B , 是抛物线上的两点,12AF BF +=,则线段AB 的中点到y 轴的距离为( )A . 4B . 5C . 6D . 11【答案】B【解析】试题分析:∵212A B AF BF x x +=++=,∴10A B x x +=,∴52A Bx x +=,∴线段AB 的中点到y 轴的距离为5,故选B .考点:直线与抛物线的位置关系.6、将函数()()2sin 42f x x π=+的图象向右平移()0ϕϕ>个单位,再将图象上每一点的横坐标缩短到原来的12倍(纵坐标不变),所得图象关于直线4x π=对称,则ϕ的最小值为( )A .18πB . 12πC . 34πD . 38π【答案】D考点:函数()sin y A x ωϕ=+的图象变换.7、在平面直角坐标系xOy 中,已知点A 是半圆)42(0422≤≤=+-x y x x 上的一个动点,点C 在线段OA 的延长线上,当OA OC ⋅=20时,点C 的轨迹为 ( )A . 椭圆一部分B .抛物线一段C . 线段D . 圆弧【答案】C 【解析】试题分析:作出半圆()224024x x y x -+=≤≤的图形,如下图,设点()C a b ,,由于点C 在线段OA 的延长线上,所以 O A 与 O C 的方向相同,故OC OA λ=,且0λ>,当点A 在点()22M ,时, 2220OC OA a b a b⎧⋅=+=⎪⎨=⎪⎩,解得5b =.当点A 在点()22N -,时,()2220OC OA a b a b⎧⋅=+-=⎪⎨=-⎪⎩,解得5b =-.综上可得,则点C 的纵坐标的取值范围是[55]-,,故点C 的轨迹是一条线段,其两个端点的坐标分别为()()5,5,5,5A B -. 考点:轨迹方程.8、已知点(x ,y )的坐标满足条件302602290x y a x y x y --<⎧⎪+->⎨-+>⎪⎩,且x ,y 均为正整数。
2017-2018学年杭州市第二次高考科目教学质量检测高三数学检测试卷考生须知:1.本卷满分150分,考试时间120分钟.2.答题前,在答题卷密封线内填写学校、班级和姓名.3.所有答案必须写在答题卷上,写在试卷上无效.4.考试结束,只需上交答题卷.选择题部分(共40分)一、选择题:(本大题共10 小题,每小题 4 分,共40 分)1. 已知集合A={x | x>1},B={x | x<2},则A∩B=()A. { x | 1<x<2}B. {x | x>1}C. {x | x>2}D. {x | x≥1}【答案】A【解析】由题意,根据集合交集运算定义,解不等式组,可得,故选A.2. 设a∈R,若(1+3i)(1+a i)∈R(i 是虚数单位),则a=()A. 3B. -3C.D. -【答案】B【解析】由题意,根据复数乘法的运算法则,得,结合条件,得,即,故正解答案为B.3. 二项式的展开式中x3项的系数是()A. 80B. 48C. -40D. -80【答案】D【解析】由题意,根据二项式定理展开式的通项公式得,,由,解得,则所求项的系数为,故正解答案为D.4. 设圆C1:x2+y2=1 与C2:(x-2)2+(y+2)2=1,则圆C1与C2的位置关系是()A. 外离B. 外切C. 相交D. 内含【答案】A【解析】由题意知,圆的圆心为,半径为,圆的圆心为,半径为,因为两圆心距为,又,则,所以两圆的位置关系为相离,故正确答案为A. 点睛:此题主要考查解析几何中圆的标准方程,两圆的位置关系,以及两点间的距离公式的应用等有关方面的知识与技能,以属于中低档题型,也是常考考点.判断两圆的位置关系,有两种方法,一是代数法,联立两圆方程,消去其中一未知数,通过对所得方程的根决断,从而可得两圆关系;一是几何法,通计算两圆圆心距与两圆半径和或差进行比较,从而可得两圆位置关系.5. 若实数x,y 满足约束条件,设z=x+2y ,则()A. z≤0B. 0≤z≤5C. 3≤z≤5D. z≥5【答案】D【解析】由题意,先作出约束条件的可行域图,如图所示,将目标函数转化为,作出其平行直线,将其在可行域范围内上下平移,则当平移至顶点时,截距取得最小值,即,故正确答案为D.6. 设a>b>0,e 为自然对数的底数.若a b=b a,则()A. ab=e2B. ab=C. ab>e2D. ab<e2【答案】C【解析】由题意,对等式两边取自然对数,,则,构造函数,则,由时,得,由,得,即当,有,又,且,则,所以,故选C.7. 已知0<a<,随机变量ξ 的分布列如下:当 a 增大时,()A. E(ξ)增大,D(ξ)增大B. E(ξ)减小,D(ξ)增大C. E(ξ)增大,D(ξ)减小D. E(ξ)减小,D(ξ)减小【答案】A【解析】由题意,得根据离散型随机变量的均值与方差的计算公式得,,则易当变大时,均值也随之增大,而与的差距也越大,故方差也增大,故正确答案为A.8. 已知a>0 且a≠1,则函数f (x)=(x-a)2ln x()A. 有极大值,无极小值B. 有极小值,无极大值C. 既有极大值,又有极小值D. 既无极大值,又无极小值【答案】C【解析】由题意,,由,得或,由方程,结合函数图象,易知此方程有解,根据函数单调性与极值关系,可知函数具有极大值,也有极小值,故选C.9. 记M 的最大值和最小值分别为M max 和M min.若平面向量a,b, c 满足| a |=| b |=a•b=c•(a +2b-2c)=2.则()A. |a-c|max=B. |a+c|max=C. |a-c|min=√D. |a+c|min=【答案】A【解析】根据题意,建立平面直角坐标系,不妨取,,则,设,由,得,即对应点在以圆心为,半径为的圆周上,则,故正确答案为A.点睛:此题主要考查平面向量的模、数量积的坐标表示及运算,以及坐标法、圆的方程的应用等有关方面的知识与技能,属于中高档题型,也是常考考点.在解决此类问题中,需要根据条件,建立合理的平面直角坐标系,将向量关系转化为点位置关系,通对坐标运算,将其结果翻译为向量结论,从而问题可得解.10. 已知三棱锥S-ABC 的底面ABC 为正三角形,SA<SB<SC,平面SBC,SCA,SAB 与平面ABC 所成的锐二面角分别为α1,α2,α3,则()A. α1<α2B. α1>α2C. α2<α3D. α2>α3【答案】A【解析】由题意,设三角形的高分别为,三棱锥的高为,易知,根据正弦函数的定义得,,所以,又均为锐角,所以,故正确答案为A.非选择题部分(共110 分)二、填空题(本大题共7 小题,第11-14 题,每小题 6 分,15-17 每小题 4 分,共36 分)11. 双曲线= 1的渐近线方程是________,离心率是_______.【答案】(1). (2).【解析】由可得双曲线的渐近线方程是,且双曲线中,.12. 设各项均为正数的等比数列{a n}的前n项和为Sn,若S4=80,S2=8,则公比q=______,a5=_______.【答案】(1). 3(2). 16213. 一个几何体的三视图如图所示,则该几何体的体积是________,表面积是________.【答案】(1). (2).【解析】由三视图知,该几何体是由四分之一球与半个圆锥组合而成,则该组合体的体积为,表面积为,从而问题可得解.14. 在△ABC中,若sin A∶sin B∶sin C=2∶3∶4,则cos C=______;当BC=1时,则△ABC的面积等于______.【答案】(1). -(2).【解析】由题意,根据正弦定理得,,设,根据余弦得,;由,则,又,根据三角形面积公式得,从而问题可得解.15. 盒子里有完全相同的6个球,每次至少取出1个球(取出不放回),取完为止,则共有_______种不同的取法(用数字作答).【答案】32【解析】由题意,一次可以取球的个数为1,2,3,4,5,6个,则若一次取完可由1个6组成,有1种;二次取完可由1与5,2与4,3与3组成共5种;三次取完由1,1,4或1,2,3或2,2,2组成共10种;四次取完有1,1,1,3或1,1,2,2组成共10种;五次取完,由1,1,1,1,2个组成共5种;六次取完由6个1组成共有1种,综上得,共有32种.点睛:此题主要考查数学中计数原理在实际问题中的应用,属于中档题型,也是常考考点.计数原理是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解计数问题最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具.16. 设函数f(x)(x∈R)满足|f(x)-x2|≤,|f(x)+1-x2|≤,则f(1)=______.【答案】【解析】由,得,由,得,则当时,有,又,从而可知,从而问题可得解.17. 在△ABC 中,角A,B,C 所对的边分别为a,b,c.若对任意λ∈R,不等式恒成立,则的最大值为_____.【答案】2三、解答题:(本大题共5小题,共74分)18. 已知函数f(x)=(Ⅰ)求f(x)的最小正周期和最大值;(Ⅱ)求函数y=f(-x)的单调减区间.【答案】(1)见解析;(2)(+2kπ,+2kπ)(k∈Z).【解析】试题分析:(Ⅰ)由已知,根据诱导公式,可将函数的解析式进行化简整理,再根据正弦函数周期的计算公式,可求出原函数的最小正周期,根据正弦函数的值域,可求出原函数的最大值;(Ⅱ)由(Ⅰ)可得函数的解析式,根据正弦函数的单调减区间,从而问题可得解.试题解析:(Ⅰ)因为sin(x+)=cos(x-),所以f (x)=2sin(x+)=-2sin(x+).所以函数f (x)的最小正周期是2π,最大值是2.(Ⅱ)因为f (-x)=2sin(x-),所以单调递减区间为(+2kπ,+2kπ)(k∈Z).点睛:此题主要考查三角函数中诱导公式的应用,以及三角函数的最小正周期、单调区间、最值等有关方面的知识与技能,属于中档题型,也是常考考点.解决此类问题过程中,常需要通过诱导公式、三角恒等变换公式将函数解析式进行化归,即含一种三角函数名、一个角的解析式,再进行求解运算.19. 如图,在等腰三角形ABC中,AB=AC,∠A=120°,M为线段BC的中点,D为线段BC上一点,且BD =BA,沿直线AD将△ADC翻折至△ADC′,使AC′⊥BD.(Ⅰ)证明:平面AMC′⊥平面ABD;(Ⅱ)求直线C′D与平面ABD所成的角的正弦值.【答案】(1)见解析;(2).【解析】试题分析:(Ⅰ)由题意,可根据面面垂直的判定定理进行求解,将问题转化为线面垂直,再转化为线线垂直,即先证,,则平面,从而问题可得解;(Ⅱ)由题意,可作出所求线面角,再根据正弦函数值的定义进行求解,从而问题可得解,或可采用向量法进行求解亦可. 试题解析:(Ⅰ)有题意知AM⊥BD,又因为AC′⊥BD,所以BD⊥平面AMC,因为BD平面ABD,所以平面AMC⊥平面AB D.(Ⅱ)在平面AC′M中,过C′作C′F⊥AM交AM于点F,连接F D.由(Ⅰ)知,C′F⊥平面ABD,所以∠C′DF为直线C′D与平面所成的角.设AM=1,则AB=AC=2,BC=,MD=2-,DC=DC′=3-2,AD=-.在Rt△C′MD中,=9-4.设AF=x,在Rt△C′FA中,AC′2-AF2=MC′2-MF2,即 4-x2=(9-4)-(x-1)2,解得,x=2-2,即AF=2-2.所以C′F=2.故直线与平面所成的角的正弦值等于=.20. 已知函数f(x)=(Ⅰ)求函数f(x)的导函数f ′(x);(Ⅱ)证明:f(x)<(e为自然对数的底数).【答案】(1);(2)见解析.【解析】试题分析:(Ⅰ)由题意,根据函数导数的计算公式、法则进行运算,从而问题可得解;(Ⅱ)由题意,可将不等式的证明转化为求函数的单调性、最值的问题,通过研究函数的单调性,求出函数的最值,再根据最值点的范围,从而问题可得解.试题解析:(I).(Ⅱ)设,则函数g(x)在单调递减,且,,所以存在,使g(x0)=0,即,所以x0+1-(2x0+1)ln x0=0,所以f′(x)=0,且f (x)在区间(0,x0)单调递增,区间(x0,+∞)单调递减.所以f (x)≤f (x0)==.21. 如图,过抛物线M:y=x2上一点A(点A不与原点O重合)作抛物线M的切线AB交y轴于点B,点C是抛物线M上异于点A的点,设G为△ABC的重心(三条中线的交点),直线CG交y轴于点D.(Ⅰ)设A(x0,x02)(x0≠0),求直线AB的方程;(Ⅱ)求的值.【答案】(1)y=2x0x-;(2).【解析】试题分析:(Ⅰ)由题意,根据导数的几何意义,求出切线的斜率,再根据直线的点斜式进行运算求解,从而问题可得解;(Ⅱ)由(Ⅰ)可根据切线的方程求线段的中点,联立直线与抛物线方程消去,根据韦达定理,可得点纵坐标的关系式,利用重心坐标性质建立关系式,从而求出点的纵坐标,从而问题可得解.试题解析:(Ⅰ)因为y′=2x,所以直线AB的斜率k=y′=2x0.所以直线AB的方程y-x0=2x0(x-x0),即y=2x0x-.(Ⅱ)由题意得,点B的纵坐标y B=-,所以AB中点坐标为.设C(x1,y1),G(x2,y2),直线CG的方程为x=my+x0.由,联立得m2y2+(mx0-1)y+=0.因为G为△ABC的重心,所以y1=3y2.由韦达定理,得y1+y2=4y2=,y1y2=3.所以,解得mx0=.所以点D的纵坐标y D=,故.22. 已知数列{a n}满足a1=1,a n+1=a n+(c>0,n∈N*),(Ⅰ)证明:a n+1>a n≥1;(Ⅱ)若对任意n∈N*,都有,证明:(ⅰ)对于任意m∈N*,当n≥m时,(ⅱ)【答案】(1)见解析;(2)见解析.【解析】试题分析:(Ⅰ)由题意,可采用数学归纳法,以及放缩法对不等式进行证明,从而问题可得解;(Ⅱ)在第(i)中,根据(Ⅰ)的结论,采用放缩法对数列的通项进行放大,再用累加法进行求解即可;在第(ii)中,对参数进行分段讨论,结合(i)中的结论,从而问题可得解.试题解析:(Ⅰ)因为c>0,所以a n+1=a n+>a n(n∈N*),下面用数学归纳法证明a n≥1.①当n=1时,a1=1≥1;②假设当n=k时,a k≥1,则当n=k+1时,a k+1=a k+>a k≥1.所以,当n∈N*时,a n≥1.所以a n+1>a n≥1.(Ⅱ)(ⅰ)当n≥m时,a n≥a m,所以a n+1=a n+≤a n+,所以a n+1-a n≤,累加得a n-a m≤(n-m),所以.(ⅱ)若,当时,,所以.所以当时,.所以当时,,矛盾.所以.因为,所以.点睛:此题主要考查数列中递推公式的应用,以及数学归纳法在证明有关数列不等式中的应用等有关方面的知识与技能,属于中高档题型,也是常考考点.数学归纳法是解决有关数列不等式问题的一种重要方法,只有理解数学归纳法中的递推思想,理解数学归纳法的原理与实质,掌握两个步骤,才能灵活地运用数学归纳法解决有关数列问题.第页11。
2018年浙江省杭州市高考数学二模试卷一、选择题:(本大题共10小题,每小题4分,共40分)1.(4分)已知集合A={x|x>1},B={x|x<2},则A∩B=()A.{x|1<x<2}B.{x|x>1}C.{x|x>2}D.{x|x≥1}2.(4分)设a∈R,若(1+3i)(1+ai)∈R(i是虚数单位),则a=()A.3B.﹣3C.D.﹣3.(4分)二项式的展开式中x3项的系数是()A.80B.48C.﹣40D.﹣804.(4分)设圆C1:x2+y2=1 与C2:(x﹣2)2+(y+2)2=1,则圆C1与C2的位置关系是()A.外离B.外切C.相交D.内含5.(4分)若实数x,y满足约束条件,设z=x+2y,则()A.z≤0B.0≤z≤5C.3≤z≤5D.z≥56.(4分)设a>b>0,e为自然对数的底数,若a b=b a,则()A.ab=e2B.ab=C.ab>e2D.ab<e27.(4分)已知0<a<,随机变量ξ的分布列如下:﹣a当a增大时,()A.E(ξ)增大,D(ξ)增大B.E(ξ)减小,D(ξ)增大C.E(ξ)增大,D(ξ)减小D.E(ξ)减小,D(ξ)减小8.(4分)已知a>0且a≠1,则函数f(x)=(x﹣a)2lnx()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值,又有极小值D.既无极大值,又无极小值9.(4分)记M的最大值和最小值分别为M max和M min.若平面向量,,满足||=||=•=•(+2﹣2)=2.则()A.||max=B.||max=C.||min=D.||min=10.(4分)已知三棱锥S﹣ABC的底面ABC为正三角形,SA<SB<SC,平面SBC、SCA、SAB与平面ABC所成的锐二面角分别为α1、α2、α3,则()A.α1<α2B.α1>α2C.α2<α3D.α2>α3二、填空题(本大题共7小题,第11-14题,每小题6分,15-17每小题6分,共36分)11.(6分)双曲线的渐近线方程是,离心率是.12.(6分)设各项均为正数的等比数列{a n}的前n项和为Sn,若S4=80,S2=8,则公比q =,a5=.13.(6分)一个几何体的三视图如图所示,则该几何体的体积是,表面积是.14.(6分)在△ABC中,若sin A:sin B:sin C=2:3:4,则cos C=;当BC=1时,则△ABC的面积等于.15.(4分)盒子里有完全相同的6个球,每次至少取出1个球(取出不放回),取完为止,则共有种不同的取法(用数字作答)16.(4分)设函数f(x)(x∈R)满足|f(x)﹣x2|≤,|f(x)+1﹣x2|≤,则f(1)=.17.(4分)在△ABC中,角A,B,C所对的边分别为a,b,c.若对任意λ∈R,不等式||≥||恒成立,则的最大值为.三、解答题:(本大题共5小题,共74分)18.(14分)已知函数f(x)=sin(x)+cos(x﹣).(Ⅰ)求f(x)的最小正周期和最大值;(Ⅱ)求函数y=f(﹣x)的单调减区间.19.(15分)如图,在等腰三角形ABC中,AB=AC,∠A=120°,M为线段BC的中点,D为线段BC上一点,且BD=BA,沿直线AD将△ADC翻折至△ADC′,使AC′⊥BD.(Ⅰ)证明:平面AMC′⊥平面ABD;(Ⅱ)求直线C′D与平面ABD所成的角的正弦值.20.(15分)已知函数f(x)=(Ⅰ)求函数f(x)的导函数f′(x);(Ⅱ)证明:f(x)<(e为自然对数的底数).21.(15分)如图,过抛物线M:y=x2上一点A(点A不与原点O重合)作抛物线M的切线AB交y轴于点B,点C是抛物线M上异于点A的点,设G为△ABC的重心(三条中线的交点),直线CG交y轴于点D.(Ⅰ)设A(x0,x02)(x0≠0),求直线AB的方程;(Ⅱ)当G在抛物线上时,求的值.22.(15分)已知数列{a n}满足a1=1,a n+1=a n+(c>0,n∈N*),(Ⅰ)证明:a n+1>a n≥1;(Ⅱ)若对任意n∈N*,都有a n证明:(ⅰ)对于任意m∈N*,当n≥m时,a n(n﹣m)+a m (ⅱ)a n.2018年浙江省杭州市高考数学二模试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分)1.(4分)已知集合A={x|x>1},B={x|x<2},则A∩B=()A.{x|1<x<2}B.{x|x>1}C.{x|x>2}D.{x|x≥1}【解答】解:∵A={x|x>1},B={x|x<2},∴A∩B={x|1<x<2}故选:A.2.(4分)设a∈R,若(1+3i)(1+ai)∈R(i是虚数单位),则a=()A.3B.﹣3C.D.﹣【解答】解:(1+3i)(1+ai)=1﹣3a+(3+a)i,∵(1+3i)(1+ai)∈R,∴3+a=0,解得a=﹣3,故选:B.3.(4分)二项式的展开式中x3项的系数是()A.80B.48C.﹣40D.﹣80【解答】解:二项式的展开式的通项为=.取5﹣2r=3,可得r=1.∴二项式的展开式中x3项的系数是=﹣80.故选:D.4.(4分)设圆C1:x2+y2=1 与C2:(x﹣2)2+(y+2)2=1,则圆C1与C2的位置关系是()A.外离B.外切C.相交D.内含【解答】解:圆心C1:(0,0),C2:(2,﹣2),半径R=1,r=1,则|C1C2|===4>1+1,即圆C1与C2的位置关系是相离,故选:A.5.(4分)若实数x,y满足约束条件,设z=x+2y,则()A.z≤0B.0≤z≤5C.3≤z≤5D.z≥5【解答】解:画出约束条件表示的平面区域,如图所示;作出目标函数z=x+2y对应的直线,当直线z=x+2y过A时,其纵截距最小,即z最小,由,解得,即A(3,1),此时z取得最小值为5;所以目标函数z=x+2y的取值范围是[5,+∞).故选:D.6.(4分)设a>b>0,e为自然对数的底数,若a b=b a,则()A.ab=e2B.ab=C.ab>e2D.ab<e2【解答】解:由a>b>0,e为自然对数的底数,设a=4,b=2,则a b=b a,即42=24,故A,B,D均不正确,∴C正确.故选:C.7.(4分)已知0<a<,随机变量ξ的分布列如下:﹣a当a增大时,()A.E(ξ)增大,D(ξ)增大B.E(ξ)减小,D(ξ)增大C.E(ξ)增大,D(ξ)减小D.E(ξ)减小,D(ξ)减小【解答】解:0<a<,由随机变量ξ的分布列,得:E(ξ)=a﹣,∴当a增大时,E(ξ)增大;D(ξ)=(﹣1﹣a+)2×+(0﹣a+)2×(﹣a)+(1﹣a+)2×a=﹣a2+a+=﹣(a﹣)2+,∵0,∴当a增大时,D(ξ)增大.故选:A.8.(4分)已知a>0且a≠1,则函数f(x)=(x﹣a)2lnx()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值,又有极小值D.既无极大值,又无极小值【解答】解:∵a>0 且a≠1,函数f(x)=(x﹣a)2lnx,∴f′(x)=2(x﹣a)lnx+=(x﹣a)(2lnx+1﹣),由f′(x)=0,得x=a或2lnx+1﹣=0,由方程2lnx+1﹣=0,作出g(x)=2lnx+1和h(x)=﹣的图象,结合图象得g(x)=2lnx+1和h(x)=﹣的图象有交点,∴方程2lnx+1﹣=0有解,由此根据函数的单调性和极值的关系得到:函数f(x)=(x﹣a)2lnx既有极大值,又有极小值.故选:C.9.(4分)记M的最大值和最小值分别为M max和M min.若平面向量,,满足||=||=•=•(+2﹣2)=2.则()A.||max=B.||max=C.||min=D.||min=【解答】解:平面向量,,满足||=||=•=•(+2﹣2)=2,由•=2×2cos<,>=2,可得cos<,>=,sin<,>=,设==(2,0),=(1,),==(x,y),可得(x,y)•(4﹣2x,2﹣2y)=2,即为x(4﹣2x)+y(2﹣2y)=2,化为x2+y2﹣2x﹣y+1=0,则C在以圆心P(1,),半径r=的圆上运动,且|﹣|表示点A与点C的距离,显然最大值为|AC|+r=+=;最小值为|AC|﹣r=﹣=;且|+|表示点D(﹣2,0)与点C的距离,显然最大值为|DC|+r=+=;最小值为|DC|﹣r=.故选:A.10.(4分)已知三棱锥S﹣ABC的底面ABC为正三角形,SA<SB<SC,平面SBC、SCA、SAB与平面ABC所成的锐二面角分别为α1、α2、α3,则()A.α1<α2B.α1>α2C.α2<α3D.α2>α3【解答】解:由题意设△SBC的高为h1,△SCA的高为h2,三棱锥S﹣ABC的高为h,∵三棱锥S﹣ABC的底面ABC为正三角形,SA<SB<SC,平面SBC、SCA、SAB与平面ABC所成的锐二面角分别为α1、α2、α3,∴h1>h2,根据正弦函数定义得sinα1=,sinα2=,∴sinα1<sinα2,∵α1,α2都是锐角,∴α1<α2.故选:A.二、填空题(本大题共7小题,第11-14题,每小题6分,15-17每小题6分,共36分)11.(6分)双曲线的渐近线方程是y=±x,离心率是.【解答】解:双曲线的渐近线方程是y=±x,a=,b=1,c=,离心率是=,故答案为y=±x,.12.(6分)设各项均为正数的等比数列{a n}的前n项和为Sn,若S4=80,S2=8,则公比q =3,a5=162.【解答】解:由各项均为正数的等比数列{a n},∴q>0.由S4=80,S2=8,则q≠1,∴=80,=8,解得:q=3,a1=2.a5=2×34=162.故答案为:3,162.13.(6分)一个几何体的三视图如图所示,则该几何体的体积是,表面积是6+(6+)π.【解答】解:由题意三视图,可知该几何体左侧是球的四分之一,右侧是一个半圆锥,可知几何体的体积为:=.几何体的表面积为:=6+(6+)π.故答案为:;6+(6+)π.14.(6分)在△ABC中,若sin A:sin B:sin C=2:3:4,则cos C=﹣;当BC=1时,则△ABC的面积等于.【解答】解:∵在△ABC中,若sin A:sin B:sin C=2:3:4,∴a:b:c=2:3:4,设a=2k,则b=3k,c=4k,∴cos C===﹣,当BC=1时,AC=1.5,∴△ABC的面积S===.故答案为:﹣,.15.(4分)盒子里有完全相同的6个球,每次至少取出1个球(取出不放回),取完为止,则共有32种不同的取法(用数字作答)【解答】解:根据题意,分6种情况讨论:①,若6个球一次取完,即一次取出6个球,有1种取法,②,若6个球分2次取完,有1、5,2、4,3、3,4、2,5、1,共5种取法,③,若6个球分3次取完,有1、1、4,1、2、3和2、2、2三种情况,有10种取法,④,若6个球分4次取完,有1、1、2、2和1、1、1、3两种情况,共有10种取法,⑤,若6个球分5次取完,即其中有1次取出2个球,有5种取法,⑥,若6个球分6次取完,每次取出1个球,只有1种情况,共有1+5+10+10+5+1=32种不同的取法;故答案为:32.16.(4分)设函数f(x)(x∈R)满足|f(x)﹣x2|≤,|f(x)+1﹣x2|≤,则f(1)=.【解答】解:∵函数f(x)(x∈R)满足|f(x)﹣x2|≤,|f(x)+1﹣x2|≤,∴|f(1)﹣1|≤,|f(1)|≤,则≤f(1)﹣1≤,≤f(1)≤,即≤f(1)≤,≤f(1)≤,∴f(1)=.故答案为:.17.(4分)在△ABC中,角A,B,C所对的边分别为a,b,c.若对任意λ∈R,不等式||≥||恒成立,则的最大值为.【解答】解:由题意知cos A=,b2+c2=2bc cos A+a2对任意λ∈R,不等式||≥||恒成立⇔(||)min≥||恒成立⇔BC边上的高h大于等于||恒成立.⇔h≥a∵≥,∴a2≤bc sin A,所以b2+c2≤bc(2cos A+sin A),由此可知≤2cos A+sin A≤sin(A+θ),当θ+A=时取得最大值.三、解答题:(本大题共5小题,共74分)18.(14分)已知函数f(x)=sin(x)+cos(x﹣).(Ⅰ)求f(x)的最小正周期和最大值;(Ⅱ)求函数y=f(﹣x)的单调减区间.【解答】解:(Ⅰ)∵sin(x+)=cos(x﹣),∴f(x)=2sin(x+)=﹣2sin (x+).所以函数f(x)的最小正周期是2π,最大值是2.(Ⅱ)因为f(﹣x)=2sin(x﹣),令2kπ+≤x﹣≤2kπ+,求得+2kπ≤x≤+2kπ,所以单调递减区间为[+2kπ,+2kπ](k∈Z).19.(15分)如图,在等腰三角形ABC中,AB=AC,∠A=120°,M为线段BC的中点,D为线段BC上一点,且BD=BA,沿直线AD将△ADC翻折至△ADC′,使AC′⊥BD.(Ⅰ)证明:平面AMC′⊥平面ABD;(Ⅱ)求直线C′D与平面ABD所成的角的正弦值.【解答】(本题满分15分)证明:(Ⅰ)由题意知AM⊥BD,又因为AC′⊥BD,所以BD⊥平面AMC,因为BD⊂平面ABD,所以平面AMC⊥平面ABD.…………(7分)解:(Ⅱ)在平面AC′M中,过C′作C′F⊥AM交AM于点F,连接FD.由(Ⅰ)知,C′F⊥平面ABD,所以∠C′DF为直线C′D与平面ABD所成的角.设AM=1,则AB=AC=2,BC=,MD=2﹣,DC=DC′=3﹣2,AD=﹣.在Rt△C′MD中,MC'2=C′D2﹣MD2=(3﹣2)2﹣(2﹣)2=9﹣4.设AF=x,在Rt△C′F A中,AC′2﹣AF2=MC′2﹣MF2,即4﹣x2=(9﹣4)﹣(x﹣1)2,解得,x=2﹣2,即AF=2﹣2.所以C′F=2.故直线C′D与平面ABD所成的角的正弦值等于=.…………(15分)20.(15分)已知函数f(x)=(Ⅰ)求函数f(x)的导函数f′(x);(Ⅱ)证明:f(x)<(e为自然对数的底数).【解答】(本题满分15分)解:(I)∵函数f(x)=∴=.…………(6分)证明:(Ⅱ)令f′(x)==0.得,设g(x)=﹣lnx=﹣lnx,则函数g(x)在(0,+∞)单调递减,且g()>0,g(e)<0,所以存在,使g(x 0)=0,即,所以x0+1﹣(2x0+1)lnx0=0,所以f′(x)=0,且f(x)在区间(0,x0)单调递增,区间(x0,+∞)单调递减.所以f(x)≤f(x0)==<.…………(15分)21.(15分)如图,过抛物线M:y=x2上一点A(点A不与原点O重合)作抛物线M的切线AB交y轴于点B,点C是抛物线M上异于点A的点,设G为△ABC的重心(三条中线的交点),直线CG交y轴于点D.(Ⅰ)设A(x0,x02)(x0≠0),求直线AB的方程;(Ⅱ)当G在抛物线上时,求的值.【解答】解:(Ⅰ)由y=x2可得y′=2x,直线AB的斜率k=y′=2x 0.所以直线AB的方程y﹣x02=2x0(x﹣x0),即y=2x0x﹣x02.(Ⅱ)由题意得,点B的纵坐标y B=﹣x02,所以AB中点坐标为(,0).设C(x1,y1),G(x2,y2),直线CG的方程为x=my+x0.联立方程组,得m2y2+(mx0﹣1)y+x02=0.因为G为△ABC的重心,所以y1=3y2.由韦达定理,得y1+y2=4y2=,y1y2=3y22=.∴=,解得mx0=﹣3±2.所以点D的纵坐标y D=﹣=,故=||=4±6.22.(15分)已知数列{a n}满足a1=1,a n+1=a n+(c>0,n∈N*),(Ⅰ)证明:a n+1>a n≥1;(Ⅱ)若对任意n∈N*,都有a n证明:(ⅰ)对于任意m∈N*,当n≥m时,a n(n﹣m)+a m(ⅱ)a n.【解答】(本题满分15分)证明:(Ⅰ)因为c>0,所以a n+1=a n+>a n(n∈N*),下面用数学归纳法证明a n≥1.①当n=1时,a1=1≥1;②假设当n=k时,a k≥1,则当n=k+1时,a k+1=a k+>a k≥1.所以,当n∈N*时,a n≥1.所以a n+1>a n≥1.…………(5分)(Ⅱ)(ⅰ)当n≥m时,a n≥a m,所以a n+1=a n+≤a n+,所以a n+1﹣a n≤,累加得a n﹣a m≤(n﹣m),所以对于任意m∈N*,当n≥m时,a n(n﹣m)+a m.…………(9分)(ⅱ)若,当m>时,a m>(c﹣)•﹣1=,所以<c﹣.所以当n≥m时,(c﹣)n﹣1≤a n≤(n﹣m)+a m.所以当n>时,(c﹣)n﹣1>(n﹣m)+a m,矛盾.所以c.因为=≤,所以a n.…………(15分)。
2018年杭州市第二次高考科目教学质量检测高三数学检测试卷(理科)考生须知:1.本试卷满分180分,考试时间180分钟.2.答题前,在答题卷密封线内填写学校、班级和姓名.3.所有答案必须写在答题卷上,写在试卷上无效.参考公式:如果事件A,B 互斥,那么 如果事件A 在一次试验中发生的概率是P ,那么)()()(B P A P B A P +=+ n 次独立重复试验中事件A 恰好发生的k 次概率如果事件A,B 相互独立,那么 )...,3,2,1()1()(n k P C k P k n k n n =-=- )()()(B P A P B A P ∙=∙选择题部分(共50分)一、选择题(本大题共18个小题.每小题5分.共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设全集,R U =集合{}012<-=x x A ,{}0)2(≥-=x x x B ,则()B C A U ⋂=( ) A.{}20<<x x B.{}10<<x x C.{}10<x x ≤ D.{}01<<x x -2. 设n S 为公差不为零的等差数列{}n a 的前n 项和,若893a S =,则=5153a S ( )A.18B.18C.19D.213. 设直线012:1=--my x l ,01)1(:2=+--y x m l .则“2=m ”是“21//l l ”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4. 设函数x x x f sin )(2=,则函数)(x f 的图像可能为( )5. 某程序框图如图所示,若该程序运行后输出的结果不大于37,则输入的整数i 的最大值为( )A.3B.4C.5D.66. 设O △ABC 的外心(三角形外接圆的圆心).若3131+=,则BAC ∠的度数为( ) A.30° B.60° C.60° D.90°7. 在△ABC 中,若42cos 52cos 322=+-CB A ,则C tan 的 最大值为( )A.43- B.34- C.42- D.22-8. 设),,()(2R c b a c bx ax x f ∈++=,e 为自然对数的底数.若xx f x x f )(ln )(>'.则( )A.)()(2,2ln )()2(2e f e f e f f ><B.)()(2,2ln )()2(2e f e f e f f <<C. )()(2,2ln )()2(2e f e f e f f <>D.)()(2,2ln )()2(2e f e f e f f >>9. 设21,F F 为椭圆)0(1:22221>>b a by a x C =+与双曲线2C 的公共点左右焦点,它们在第一象限内交于点M ,△21F MF 是以线段1MF 为底边的等腰三角形,且21=MF .若椭圆1C的离心率⎥⎦⎤⎢⎣⎡∈94,83e ,则双曲线2C 的离心率取值范围是( ) A.⎥⎦⎤⎢⎣⎡35,45 B.⎪⎭⎫⎢⎣⎡+∞,23C.(]4,1D.⎥⎦⎤⎢⎣⎡4,2310.在等腰梯形ABCD 中,F E ,分别是底边BC AB ,的中点,把四边形AEFD 沿直线EF 折起后所在的平面记为αα∈p ,,设α与PC PB ,所成的角分别为21,θθ(21,θθ均布为零).若21θθ=,则点P 的轨迹为( )A.直线B.圆C.椭圆D.抛物线非选择题部分(共180分)二、填空题:(本大题共7小题,每小题4分,共28分.) 11. 设i 是虚数单位,若复数i zi -=1,则=z ______.12. 某几何体的三视图如图所示,若该正视图面积为S ,则此几何体的体积是______.13. 若..., (112)3322102++++++=+x a x a x a x a a xn 则3a =_____. 14. 用1,2,3,4,5组成不含重复数字的五位数,数字2不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是_______.(注:用数字作答)15. 若R y x ∈,,设y x y xy x M +-+-=2232,则M 的最小值为_____. 16. 设集合{}R a a a x x x A ∈++-=,022<,{}2<x x B =.若≠A ∅且 B A ⊆,则实数a 的取值范围是______.17. 设抛物线)0(2:2>p px y C =,A 为抛物线上一点(A 不同于原点O ),过焦点F 作直线平行于OA ,交抛物线C 于点Q P ,两点.若过焦点F 且垂直于x 轴的直线交直线OA 于B,则OB OA FQ FP -∙=____________.三、解答题:(本大题共5个小题,共72分.解答应写出文字说明,证明过程或演算步骤.)18.(本题满分18分)设数列{}12-n a 是首项为1的等差数列,数列{}n a 2是首项为2的等比数列,数列{}n a 的前n 项和为)(*∈N n S n ,已知2,45343+=+=a a a a S . (I )求数列{}n a 的通项公式;(II )比较n S 2与22n n +的大小,并说明理由.19.(本题满分18分)已知箱子中装有标号分别为1,2,3,4,5的五个小球.现从该箱子中取钱,每次取一个球(无放回,且每球取到的机会均等).(I )若连续取两次,求取出的两球上标号都是奇数或都是偶数的概率; (II )若取出的球的标号为奇数即停止取球,否则继续取,求取出次数X 的分布列和数学 期望)(X E .20.(本题满分18分)如图,在直三棱柱'''-C B A ABC 中,BC ,2=='=AC AA AB ,π32=∠BAC ,点E D ,分别是 ''B A 的中点.(I )求证://DE 平面''A ACC ; (II )求二面角'--'C AD B 的余弦值.21.(本题满分18分)设椭圆)0(1:2222>>b a by a x =+ℜ的左顶点)0,2(-A ,离心率23=e , 过点)0,1(G 的直线交椭圆ℜ于C B ,两点,直线AC AB ,分别交直线3=x 于N M ,两点.(I )求椭圆ℜ的标准方程;(II )以线段MN 为直径的圆是否过定点,若是,求出所有定点的坐标;若不是,请说明理由.22.(本题满分18分)设函数)1ln()(+-=x e x f x . (I )求函数)(x f 的最小值; (II )已知210x x <≤.求证:1)1(ln1212++-x x e e x x >; (III )设)(ln 1)(x f x x xe x g x -+-=,证明:对任意的正实数a ,总能找到实数)(a m ,使[]a a m g <)(成立.注:e 为自然对数的底数.。
杭州市2018届高三数学第二次质量检测(文科附解析)
5
一、选择题(本大题共8个小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的)
1设集合,则()
A. B. c. D.
【答案】B
考点一元二次不等式的解法,二次函数的值域以及两个集合的交集计算.
2若某几何体的三视图(单位)如图所示,且俯视图为正三角形,则该几何体的体积等于()
A. B. c. D.
【答案】c
【解析】
试题分析由三视图可知,该几何体是一个正三棱柱上面截去一个同底的三棱锥.故体积为
,故选c.
考点由几何体的三视图,还原出立体图,根据“长对正,高平齐,宽相等”的原则,计算几何体的体积
和表面积.注意不规则几何体体积和表面积的求法往往要采用叠加或截去的方法.
3设等比数列的前项和为,则“ 且”是“数列单调递增”的()
A.充分不必要条 B.必要不充分条 c.充分必要条 D.即不充分也不必要条
【答案】D
考点等差数列中前项和式,理解它与首项,差之间的关系.用。
浙江省杭州市2018届高三第二次高考科目教学质量检测数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1A x x =>,{}=2B x x <,则A B I =( )A .{}12x x <<B .{}1x x >C .{}2x x >D .{}1x x ≥2.设a R ∈,若1+3)(1)i ai R +∈((i 是虚数单位),则a =( )A .3B .-3C .13D .1-33.二项式512)x x -(的展开式中含3x 项的系数是( )A .80B .48C .-40D .-804.设圆221:1C x y +=与圆222:-2+2)1C x y +=()(,则圆1C 与圆2C 的位置关系是( )A .外离B .外切 C.相交 D .内含5.若实数,x y 满足不等式组2390210x y x y +-≥⎧⎨--≤⎩,设2z x y =+,则( )A .0z ≤B .05z ≤≤ C.35z ≤≤ D .5z ≥6.设0a b >>,e 为自然对数的底数.若b a a b =,则( )A .2ab e =B .21ab e =C.2ab e > D .2ab e < 7.已知10a <<随机变量ξ的分布列如下:当a 增大时( ) A .()E ξ 增大,()D ξ增大 B .()E ξ减小,D ξ()增大C.()E ξ增大,()D ξ减小 D .()E ξ减小,()E ξ减小8.已知0a >,且1a ≠,则函数2()()1f x x a nx =-( )A .有极大值,无极小值B .有极小值,无极大值C.既有极大值,又有极小值 D .既无极大值,又无极小值9.记M 的最大值和最小值分別为max M 和min M .若平面向量..a b c 满足a b a b c ==•=(222)2a b c •+-=则( )A .max 37a c +-=B .max 37a c -+= C.min 37a c +-=D .min 37a c -+= 10.已知三棱锥S ABC -的底面ABC 为正三角形,SA SB SC <<,平面,,SBC SCA SAB 与平面ABC 所成的锐二面角分别为123,,a a a ,则( )A .12a a <B .12a a > C.23a a < D .23a a >第Ⅱ卷(共110分)二、填空题(每题6分,15-17每小题4分,将答案填在答题纸上)11.双曲线2212x y -=的渐近线方程是________,离心率是_________. 12.设各项均为正数的等比数列n a 中,若490a =,210a =则公比q =___________13.一个几何体的三视图如图所示,则该几何体的体积是__________,表面积是 .14.设ABC ∆内切圆与外接圆的半径分别为r 与R .且sin :sin :sin 2:3:4A B C =则cos C =_________;当1BC =时,ABC ∆的面积等于 .15.盒子里有完全相同的6个球,每次至少取出1个球(取出不放回),取完为止,则共有________种不同的取法( 用数字作答). . 16.设函数()()f x x R ∈满足2213(),()144f x x f x x -≤+-≤则(1)f = . 17.在ABC ∆中,角..A B C 所对的边分别为..a b c 若对任意R λ∈,不等式BA BC BC λ-≥u u u u r u u u r u u u r 恒成立,则c b b c+的最大值为___________. 三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)18.已知函数73()sin()cos()44f x x x ππ=+- (Ⅰ)求()f x 的最小正周期和最大值;(Ⅱ)求函数()y f x =-的单调减区间19.如图,在等腰三角形ABC 中,,120AB AC A =∠=o为线段BC 的中点,D 为线段BC 上一点,且BD BA =,沿直线AD 将ADC ∆翻折至'ADC ∆,使'AC BD ⊥.(I)证明;平面'AMC ⊥平面ABD ;(Ⅱ)求直线'C D 与平面ABD 所成的角的正弦值.20.已知函数21()nx f x x x=+ (I)求函数()f x 的导函数'()f x ;(Ⅱ)证明:()2f x e e<+(e 为自然对数的底数) 21.如图,抛物线2:M y x =上一点A (点A 不与原点O 重合)作抛物线M 的切线AB 交y轴于点B ,点C是抛物线M 上异于点A 的点,设G 为ABC ∆的重心(三条中线的交点),直线CG 交y 轴于点D.(Ⅰ)设点02(,)(00)0A x x x ≠求直线AB 的方程: (Ⅱ)求OB OD的值 22.已知数列{}n a 满足111,(0,)n n n c a a a c n N a *+==+>∈ (Ⅰ)证明:11n n a a +>≥;(Ⅱ)若对于任意m N *∈,当n m ≥时,()n m c a n m a am≤-+; (Ⅲ)51n n a -≤2017学年第二学期杭州市高三年级教学质量检测数学试题卷一、选择题1-5: ABDAD 6-10:CACAA二、填空题11.y =143π;6(6+π 14.-1415. 32 16.34 17.三、解答题18.(Ⅰ)因为73()(44sin x cos x ππ+=-), 所以732=-2sin()44()(f x sin x x ππ+=+).所以函()f x 的最小正周期是2π,最大值是2. (Ⅱ)因为3()2sin()4f x x -=+, 所以单调递减区间为5+2)()4k k z ππ∈(19.(Ⅰ)有题意知'AM BD ⊥,又因为'AC BD ⊥,所以 BD ⊥平面AMC ,因为BD BD ⊂平面ABD ,所以平面AMC ⊥平面ABD .AB C′DM F(第19题)(Ⅱ)在平面AC M '中,过C ′作C F '⊥AM 交AM 于点F ,连接FD . 由(Ⅰ)知,C F '⊥平面ABD ,所以C DF ∠'为直线C D '与平面ABD 所成的角 设1AM =,则2AB AC BC ==,2MD =DC DC '==2,AD在Rt C MD 'V 中,222222)(2MC C D MD ''=-=-94=-设AF x =,在Rt C FA 'V 中,2222AC AF MC MF ''-=-,即22 49((1)x x -=---,解得,2x =,即2AF =.所以C F '=故直线C D '与平面ABD 所成的角的正弦值等于C F AF '20.(I )1(21)ln ()22()x x x f x x x +-+'=+.(Ⅱ)设111()ln ln 21242x g x x x x x +=-=+-++, 则函数()g x 在(0,)+∞单调递减,且0g >,(e)0g <,所以存在0x ∈,使()00g x =,即10ln 00210x x x +-=+, 所以 121000()0x x lnx +-+= , 所以 )0(f x '=,且) (f x 在区间0(0)x ,单调递增,区间()0x ∞,+单调递减. 所以 () (0) f x f x ≤=ln 0(1)00x x x +=1(21)00x x <+21.(Ⅰ)因为 2y x '=,所以直线AB 的斜率20k y x '==. 所以直线AB 的方程200(0)y x x x x -=-, 即 20y x x =-.(Ⅱ)由题意得,点B 的纵坐标B y =-20x ,所以AB 中点坐标为0(,0)2x . 设()(1)122C x y G x y ,,,,直线CG 的方程为0x my x =+. 由1,022x my x y x ⎧=+⎪⎨⎪=⎩,联立得()2210m y mx y +-+1204x =0. 因为G 为ABC V 的重心,所以312y y =. 由韦达定理,得4122y y y +==102mx m -,312y y =220224x y m =. 所以22(1)00421612mx x m m -=, 解得 0mx=3-± 所以点D 的纵坐标y D=202x x m -=,故||||6||y OB B OD y D==±. 22.(Ⅰ)因为0c >,所以1n n a a +=+n c a *n a n ∈N >(), 下面用数学归纳法证明1n a ≥.①当1n =时,111a ≥=;②假设当n k =时,1a k≥, 则当1n k =+时,1a a k k =++ca k 1a k ≥>. 所以,当*n ∈N 时,1a n≥. 所以 11a a n n ≥>+.(Ⅱ)(ⅰ)当n m ≥时,a a n m≥, 所以 1a a n n =++c a n a n ≤+ca m , 所以 1a a n n ≤-+c a m ,累加得 a a n m ≤-c a m()n m -, 所以 ()c a n m a n m a m-+≤. (ⅱ)若12c >,当822(21)c m c ->-时, 1822()12221(21)c c a c m c c ->--=--,所以12c c a m<-. 所以当n m ≥时,1()1()2c c n a n m a n m a m---+≤≤. 所以当112cm a m a m n c c a m+->--时,1()1()2c c n n m a m a m -->-+,矛盾. 所以 12c ≤. 因为 252222222124c a a c a c c a n n n n a n=++++++≤≤,所以a n。
绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n k n n P k p p k n -=-=L台体的体积公式121()3V S S h =其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则=U A ð A .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线221 3=x y -的焦点坐标是A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是俯视图正视图2211A .2B .4C .6D .84.复数21i- (i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =||2x sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A 1BC .2D .210.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2017-2018学年杭州市第二次高考科目教学质量检测高三数学检测试卷 2018.04.23考生须知:1.本卷满分150分,考试时间120分钟.2.答题前,在答题卷密封线内填写学校、班级和姓名. 3.所有答案必须写在答题卷上,写在试卷上无效. 4.考试结束,只需上交答题卷. 选择题部分(共40分)一、选择题:(本大题共 10 小题,每小题 4 分,共 40 分) 1. 已知集合 A ={x | x >1}, B ={x | x <2},则 A ∩B =( ) A . { x | 1<x <2} B . {x | x >1} C . {x | x >2} D . {x | x ≥1}2.设 a ∈R ,若(1+3i)(1+a i)∈R ( i 是虚数单位),则 a =( ) A . 3 B . -3 C . 13 D . -133. 二项式512)xx -(的展开式中 x 3项的系数是( ) A . 80 B . 48 C . -40 D . -804.设圆 C 1: x 2+y 2=1 与 C 2: (x -2)2+(y +2)2=1,则圆 C 1与 C 2的位置关系是( ) A .外离 B .外切 C .相交 D .内含5. 若实数 x , y 满足约束条件 2x+3y-90x-2y-10≥⎧⎨≤⎩,设 z =x +2y ,则( )A . z ≤0B .0≤z ≤5C . 3≤z ≤5D .z ≥56.设 a >b >0, e 为自然对数的底数. 若 a b =b a ,则( ) A . ab =e 2 B . ab =21eC . ab >e 2D . ab <e 2 7. 已知 0<a <14,随机变量 ξ 的分布列如下: ξ -1 0 1 P3 41 4 -aa当 a 增大时,( )A . E (ξ)增大, D (ξ)增大B . E (ξ)减小, D (ξ)增大C . E (ξ)增大,D (ξ)减小 D .E (ξ)减小, D (ξ)减小 8.已知 a >0 且 a ≠1,则函数 f (x )=(x -a )2ln x ( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值,又有极小值D .既无极大值,又无极小值9. 记 M 的最大值和最小值分别为 M max 和 M min . 若平面向量 a , b , c 满足| a |=| b |=a •b =c •(a +2b -2c )=2. 则( ) A . |a -c |max =372+ B . |a +c |max =372-C.|a-c|min=√372+D.|a+c|min=372-10.已知三棱锥S-ABC 的底面ABC 为正三角形,SA<SB<SC,平面SBC,SCA,SAB 与平面ABC 所成的锐二面角分别为α1,α2,α3,则()A.α1<α2B.α1>α2C.α2<α3D.α2>α3非选择题部分(共110 分)二、填空题(本大题共7 小题,第11-14 题,每小题6 分,15-17 每小题 4 分,共36 分)11.双曲线222xy-= 1的渐近线方程是________,离心率是_______.12.设各项均为正数的等比数列{a n}的前n项和为Sn,若S4=80,S2=8,则公比q=______,a5=_______.13.一个几何体的三视图如图所示,则该几何体的体积是________,表面积是________.14.在△ABC中,若sin A∶sin B∶sin C=2∶3∶4,则cos C=______;当BC=1时,则△ABC的面积等于______.15.盒子里有完全相同的6个球,每次至少取出1个球(取出不放回),取完为止,则共有_______种不同的取法(用数字作答).16.设函数f(x)(x∈R)满足|f(x)-x2|≤14,|f(x)+1-x2|≤34,则f(1)=.17.在△ABC 中,角A,B,C 所对的边分别为a,b,c.若对任意λ∈R,不等式恒成立,则的最大值为.三、解答题:(本大题共5小题,共74分)18.(本题满分14分)已知函数f(x)=(Ⅰ)求f(x)的最小正周期和最大值;(Ⅱ)求函数y=f(-x)的单调减区间.19.(本题满分15分)如图,在等腰三角形ABC 中,AB =AC ,∠A =120°,M 为线段BC 的中点,D 为线段BC 上一点,且BD =BA ,沿直线AD 将△ADC 翻折至△ADC ′,使AC ′⊥BD . (Ⅰ)证明:平面AMC ′⊥平面ABD ;(Ⅱ)求直线C ′D 与平面ABD 所成的角的正弦值.20.(本题满分15分)已知函数f (x )=2lnxx x(Ⅰ)求函数f (x )的导函数f ′(x ); (Ⅱ)证明:f (x )<12e+e(e 为自然对数的底数).21.(本题满分15分)如图,过抛物线M :y =x 2上一点A (点A 不与原点O 重合)作抛物线M 的切线AB 交y 轴于点B ,点C 是抛物线M 上异于点A 的点,设G 为△ABC 的重心(三条中线的交点),直线CG交y 轴于点D .(Ⅰ)设A (x 0,x 02)(x 0≠0),求直线AB 的方程;(Ⅱ)求|OB||OD|的值.22.(本题满分15分)已知数列{a n }满足a 1=1,a n +1=a n +nca (c >0,n ∈N *), (Ⅰ)证明:a n +1>a n ≥1; (Ⅱ)若对任意n ∈N *,都有证明:(ⅰ)对于任意m ∈N *,当n ≥m 时,()n m mca n m a a -+≤ (ⅱ).512n n a -≤2017学年第二学期杭州市高三年级教学质量检测数学试题参考答案及评分标准一、选择题:(共10小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10 答案ABDADCACAA二、填空题:(共7小题,多空题每题6分,单空题每题4分,共36分) 11.22y x =±;62 12.3;16213.143π;6(613)++π 14.-14;31516 15.32 16.3417.三、解答题:(本大题共5小题,共74分).18.(本题满分14分) (Ⅰ)因为sin(x +74π)=cos(x -34π),所以 f (x )=2sin(x +74π)=-2sin(x +34π).所以函数f (x )的最小正周期是2π,最大值是2.…………7分(Ⅱ)因为f (-x )=2sin(x -34π),所以单调递减区间为(54π+2kπ,94π+2kπ)(k ∈Z ).…………14分19.(本题满分15分)(Ⅰ)有题意知AM ⊥BD ,又因为 AC ′⊥BD , 所以 BD ⊥平面AMC , 因为BD ⊂平面ABD ,所以平面AMC ⊥平面AB D . …………7分由(Ⅰ)知,C ′F ⊥平面ABD ,所以∠C ′DF 为直线C ′D 与平面ABD 所成的角. 设AM =1,则AB =AC =2,BC =3,MD =2-3, DC =DC ′=33-2,AD =6-2. 在Rt △C ′MD 中, 22222(332)(23)MC C D MD ''=-=---=9-43.设AF =x ,在Rt △C ′F A 中,AC ′2-AF 2=MC ′2-MF 2, 即 4-x 2=(9-43)-(x -1)2, 解得,x =23-2,即AF =23-2. 所以 C ′F =2233-.故直线C D '与平面ABD 所成的角的正弦值等于C FAF '=23331--. …………15分20.(本题满分15分)(I )221(21)ln ()()x x xf x x x +-+'=+.…………6分(Ⅱ)设111()ln ln 21242x g x x x x x +=-=+-++, 则函数g (x )在(0,)+∞单调递减,且(e)0g >,(e)0g <, 所以存在0(e,e)x ∈,使g (x 0)=0,即0001ln 021x x x +-=+, 所以 x 0+1-(2x 0+1)ln x 0=0,所以 f ′(x )=0,且f (x )在区间(0,x 0)单调递增,区间(x 0,+∞)单调递减.所以 f (x )≤f (x 0)=000ln (1)x x x +=0011(21)2e ex x <++. …………15分21.(本题满分15分)(Ⅰ)因为 y ′=2x ,所以直线AB 的斜率k =y ′0|x x ==2x 0.所以直线AB 的方程y -x 0=2x 0(x -x 0),即 y =2x 0x -20x .…………6分(Ⅱ)由题意得,点B 的纵坐标y B =-20x ,所以AB 中点坐标为0(,0)x . ABC′D M F (第19题)设C (x 1,y 1),G (x 2,y 2),直线CG 的方程为x =my +12x 0. 由021,2x my x y x ⎧=+⎪⎨⎪=⎩,联立得m 2y 2+(mx 0-1)y +2014x =0.因为G 为△ABC 的重心,所以y 1=3y 2. 由韦达定理,得y 1+y 2=4y 2=021mx m -,y 1y 2=3220224x y m =.所以220042(1)1612mx x m m -=,解得 mx 0=323-±.所以点D 的纵坐标y D =2002643x x m -=±, 故||||436||BDy OB OD y ==±. …………15分22.(本题满分15分)(Ⅰ)因为c >0,所以 a n +1=a n +nca >a n (n ∈N *), 下面用数学归纳法证明a n ≥1. ①当n =1时,a 1=1≥1; ②假设当n =k 时,a k ≥1,则当n =k +1时,a k +1=a k +kca >a k ≥1.所以,当n ∈N *时,a n ≥1. 所以 a n +1>a n ≥1.…………5分(Ⅱ)(ⅰ)当n ≥m 时,a n ≥a m ,所以 a n +1=a n +n c a ≤a n +mca ,所以 a n +1-a n ≤m c a ,累加得 a n -a m ≤mc a (n -m ), 所以 ()n m mca n m a a -+≤. …………9分(ⅱ)若12c >,当282(21)c m c ->-时, 21822()1221(21)m c c a c c c ->--=--,所以12m c c a <-. 所以当n m ≥时,1()1()2n m mcc n a n m a a ---+≤≤.所以当11m m cm a a n c c +->--时,1()1()2m m cc n n m a a -->-+,矛盾.所以12c≤.因为222222125224n n n nnca a c a c c aa+=+++++≤≤,所以512nna-≤.…………15分。