半导体基础知识
- 格式:docx
- 大小:104.82 KB
- 文档页数:5
一.名词解释:1..什么是半导体?半导体具有那些特性?导电性介于导体与绝缘体之间的物质称为半导体热敏性:导电能力受温度影响大,当环境温度升高时,其导电能力增强。
可制作热敏元件。
光敏性:导电能力受光照影响大,当光照增强时候,导电能力增强。
可制作光敏元件。
掺杂性:导电能力受杂质影响极大,称为掺杂性。
2.典型的半导体是SI和Ge , 它们都是四价元素。
Si是一种化学元素,在地壳中含量仅次于氧,其核外电子排布是?。
3.半导体材料中有两种载流子,电子和空穴。
电子带负电,空穴带正电,在纯净半导体中掺入不同杂质可得到P型和N型半导体,常见P型半导体的掺杂元素为硼,N型半导体的掺杂元素为磷。
P型半导体主要空穴导电,N型半导体主要靠电子导电。
4. 导体:导电性能良好,其外层电子在外电场作用下很容易产生定向移动,形成电流,常见的导体有铁,铝,铜等低价金属元素。
5.绝缘体:一般情况下不导电,其原子的最外层电子受原子核束缚很强,只有当外电场达到一定程度才可导电。
惰性气体,橡胶等。
6.半导体:一般情况下不导电,但在外界因素刺激下可以导电,例如强电场或强光照射。
其原子的最外层电子受原子核的束缚力介于导体和绝缘体之间。
Si,Ge等四价元素。
7. 本征半导体:无杂质的具有稳定结构的半导体。
8晶体:由完全相同的原子,分子或原子团在空间有规律的周期性排列构成的有一定几何形状的固体材料,构成晶体的完全相同的原子,分子,原子团称为基元。
9.晶体结构:简单立方,体心立方,面心立方,六角密积,NACL结构,CSCL结构,金刚石结构。
10.七大晶系:三斜,单斜,正交,四角,六角,三角,立方。
11.酸腐蚀和碱腐蚀的化学反应方程式:SI+4HNO3+HF=SIF4+4NO2+4H2OSI+2NaOH+H2O=Na2SiO3+2H212.自然界的物质,可分为晶体和非晶体两大类。
常见的晶体有硅,锗,铜,铅等。
常见的非晶体有玻璃,塑料,松香等。
晶体和非晶体可以从三个方面来区分:1.晶体有规则的外形 2.晶体具有一定的熔点 3.晶体各向异性。
半导体基础知识1.什么是导体、绝缘体、半导体?容易导电的物质叫导体,如:⾦属、⽯墨、⼈体、⼤地以及各种酸、碱、盐的⽔溶液等都是导体。
不容易导电的物质叫做绝缘体,如:橡胶、塑料、玻璃、云母、陶瓷、纯⽔、油、空⽓等都是绝缘体。
所谓半导体是指导电能⼒介于导体和绝缘体之间的物质。
如:硅、锗、砷化镓、磷化铟、氮化镓、碳化硅等。
半导体⼤体上可以分为两类,即本征半导体和杂质半导体。
本征半导体是指纯净的半导体,这⾥的纯净包括两个意思,⼀是指半导体材料中只含有⼀种元素的原⼦;⼆是指原⼦与原⼦之间的排列是有⼀定规律的。
本征半导体的特点是导电能⼒极弱,且随温度变化导电能⼒有显著变化。
杂质半导体是指⼈为地在本征半导体中掺⼊微量其他元素(称杂质)所形成的半导体。
杂质半导体有两类:N型半导体和P型半导体。
2.半导体材料的特征有哪些?(1)导电能⼒介于导体和绝缘体之间。
(2)当其纯度较⾼时,电导率的温度系数为正值,随温度升⾼电导率增⼤;⾦属导体则相反,电导率的温度系数为负值。
(3)有两种载流⼦参加导电,具有两种导电类型:⼀种是电⼦,另⼀种是空⽳。
同⼀种半导体材料,既可形成以电⼦为主的导电,也可以形成以空⽳为主的导电。
(4)晶体的各向异性。
3.简述N型半导体。
常温下半导体的导电性能主要由杂质来决定。
当半导体中掺有施主杂质时,主要靠施主提供电⼦导电,这种依靠电⼦导电的半导体叫做N型半导体。
例如:硅中掺有Ⅴ族元素杂质磷(P)、砷(As)、锑(Sb)、铋(Bi)时,称为N型半导体。
4.简述P型半导体。
当半导体中掺有受主杂质时,主要靠受主提供空⽳导电,这种依靠空⽳导电的半导体叫做P型半导体。
例如:硅中掺有Ⅲ族元素杂质硼(B)、铝(Al)、镓(Ga)、铟(In)时,称为P型半导体。
5.什么是半绝缘半导体材料?定义电阻率⼤于107Ω*cm的半导体材料称为半绝缘半导体材料。
如:掺Cr的砷化镓,⾮掺杂的砷化镓为半绝缘砷化镓材料。
掺Fe的磷化铟,⾮掺杂的磷化铟经退⽕为半绝缘磷化铟材料。
半导体基础知识 Prepared on 24 November 2020一.名词解释:1..什么是半导体半导体具有那些特性导电性介于导体与绝缘体之间的物质称为半导体热敏性:导电能力受温度影响大,当环境温度升高时,其导电能力增强。
可制作热敏元件。
光敏性:导电能力受光照影响大,当光照增强时候,导电能力增强。
可制作光敏元件。
掺杂性:导电能力受杂质影响极大,称为掺杂性。
2.典型的半导体是SI和Ge , 它们都是四价元素。
Si是一种化学元素,在地壳中含量仅次于氧,其核外电子排布是。
3.半导体材料中有两种载流子,电子和空穴。
电子带负电,空穴带正电,在纯净半导体中掺入不同杂质可得到P型和N型半导体,常见P型半导体的掺杂元素为硼,N型半导体的掺杂元素为磷。
P型半导体主要空穴导电, N型半导体主要靠电子导电。
4. 导体:导电性能良好,其外层电子在外电场作用下很容易产生定向移动,形成电流,常见的导体有铁,铝,铜等低价金属元素。
5.绝缘体:一般情况下不导电,其原子的最外层电子受原子核束缚很强,只有当外电场达到一定程度才可导电。
惰性气体,橡胶等。
6.半导体:一般情况下不导电,但在外界因素刺激下可以导电,例如强电场或强光照射。
其原子的最外层电子受原子核的束缚力介于导体和绝缘体之间。
Si,Ge等四价元素。
7. 本征半导体:无杂质的具有稳定结构的半导体。
8晶体:由完全相同的原子,分子或原子团在空间有规律的周期性排列构成的有一定几何形状的固体材料,构成晶体的完全相同的原子,分子,原子团称为基元。
9.晶体结构:简单立方,体心立方,面心立方,六角密积, NACL结构,CSCL结构,金刚石结构。
10.七大晶系:三斜,单斜,正交,四角,六角,三角,立方。
11.酸腐蚀和碱腐蚀的化学反应方程式:SI+4HNO3+HF=SIF4+4NO2+4H2OSI+2NaOH+H2O=Na2SiO3+2H212.自然界的物质,可分为晶体和非晶体两大类。
半导体基础知识1. 半导体的概念与分类1.1 半导体的定义半导体是一种电导率介于导体和绝缘体之间的材料,其电导率会随着外界条件(如温度、光照、掺杂等)的变化而变化。
常见的半导体材料有硅(Si)、锗(Ge)、砷化镓(GaAs)等。
1.2 半导体的分类根据半导体材料的类型,可分为元素半导体和化合物半导体。
•元素半导体:如硅(Si)、锗(Ge)等。
•化合物半导体:如砷化镓(GaAs)、氮化镓(GaN)、碳化硅(SiC)等。
根据导电类型,半导体可分为n型半导体和p型半导体。
•n型半导体:掺杂有五价元素(如磷、砷等)的半导体材料。
•p型半导体:掺杂有三价元素(如硼、铝等)的半导体材料。
2. 半导体物理基础2.1 能带结构半导体的导电性能与其能带结构密切相关。
一个完整的周期性晶体结构可以分为价带、导带和禁带。
•价带:充满电子的能量状态所在的带,电子的能量低于价带顶。
•导带:电子的能量高于导带底时,可以自由移动的状态所在的带。
•禁带:价带和导带之间的区域,电子不能存在于这个区域。
2.2 掺杂效应掺杂是向半导体材料中引入少量其他元素,以改变其导电性能的过程。
掺杂分为n型掺杂和p型掺杂。
•n型掺杂:向半导体中引入五价元素,如磷、砷等,使得半导体中的自由电子浓度增加。
•p型掺杂:向半导体中引入三价元素,如硼、铝等,使得半导体中的空穴浓度增加。
2.3 载流子在半导体中,自由电子和空穴是载流子,负责导电。
n型半导体中的载流子主要是自由电子,而p型半导体中的载流子主要是空穴。
2.4 霍尔效应霍尔效应是研究半导体中载流子运动的一种重要物理现象。
当半导体中的载流子在外加磁场作用下发生偏转时,会在半导体的一侧产生电势差,即霍尔电压。
3. 半导体器件3.1 半导体二极管半导体二极管(DIODE)是一种具有单向导电性的半导体器件。
它由p型半导体和n型半导体组成,形成PN结。
当外界电压正向偏置时,二极管导通;反向偏置时,二极管截止。
半导体基础知识(详细篇)
2.1.1 概念
根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。
1. 导体:容易导电的物体。
如:铁、铜等
2. 绝缘体:几乎不导电的物体。
如:橡胶等
3. 半导体:半导体是导电性能介于导体和半导体之间的物体。
在一定条件下可导电。
半导体的电阻率为10-3~109 Ω·cm。
典型的半导体有硅Si和锗Ge 以及砷化镓GaAs等。
半导体特点:
1) 在外界能源的作用下,导电性能显著变化。
光敏元件、热敏元件属于此类。
2) 在纯净半导体内掺入杂质,导电性能显著增加。
二极管、三极管属于此类。
2.1.2 本征半导体
1.本征半导体——化学成分纯净的半导体。
制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”。
它在物理结构上呈单晶体形态。
电子技术中用的最多的是硅和锗。
硅和锗都是4价元素,它们的外层电子都是4个。
其简化原子结构模型如下图:
外层电子受原子核的束缚力最小,成为价电子。
物质的性质是由价电子决定的。
外层电子受原子核的束缚力最
小,成为价电子。
物质的性质是由
价电子决定的。
2.本征半导体的共价键结构
本征晶体中各原子之间靠得很近,使原分属于各原子的四个价电子同时受到相邻原子的吸引,分别与周围的四个原子的价电子形成共价键。
共价键中的
价电子为这些原子所共有,并为它们所束缚,在空间形成排列有序的晶体。
如下图所示:
硅晶体的空间排列与共价键结构平面示意图
3.共价键
共价键上的两个电子是由相邻原子各用
一个电子组成的,这两个电子被成为束缚电
子。
束缚电子同时受两个原子的约束,如果
没有足够的能量,不易脱离轨道。
因此,在
绝对温度T=0°K(-273°C)时,由于共价
键中的电子被束缚着,本征半导体中没有自
由电子,不导电。
只有在激发下,本征半导
体才能导电
4.电子与空穴
当导体处于热力学温度0°K时,导体中没有自由电子。
当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚,而参与导电,成为自由电子。
这一现象称为本征激发,也称热激发。
自由电子产生的同时,在其原来的共价键中就出现了一个空位,原子的电中性被破坏,呈现出正电性,其正电量与电子的负电量相等,人们常称呈现正电性的这个空位为空穴。
电子与空穴的复合
可见因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。
游离的部分自由电子也可能回到空穴中去,称为复合,如图所示。
本征激发和复合在一定温度下会达到动态平衡。
空穴的移动
由于共价键中出现了空穴,在外加能源的激发下,邻近的价电子有可能挣脱束缚补到这个空位上,而这个电子原来的位置又出现了空穴,其它电子又有可能转移到该位置上。
这样一来在共价键中就出现了电荷迁移—电流。
电流的方向与电子移动的方向相反,与空
穴移动的方向相同。
本征半导体中,产生电流
的根本原因是由于共价键中出现了空穴。
由于
空穴数量有限,所以其电阻率很大
空穴在晶体中的移动(动画)
2.1.3 杂质半导体
在本征半导体中掺入某些微量元素作为杂质,可使半导体的导电性发生显著变化。
掺入的杂质主要是三价或五价元素。
掺入杂质的本征半导体称为杂质半导体。
1. N型半导体
在本征半导体中掺入五价杂质元素,例如磷,可形成 N型半导体,也称电子型半导体。
因五价杂质原子中只有四个价电子能与周围四个半导体原子中的价电子形成共价键,而多余的一个价电子因无共价键束缚而很容易形成自由电子。
k在N型半导体中自由电子是多数载流子,它主要由杂质原子提供;另外,硅晶体由于热激发会产生少量的电子空穴对,所以空穴是少数载流子。
在N型半导体中自由电子是多
数载流子,它主要由杂质原子提供;
另外,硅晶体由于热激发会产生少
量的电子空穴对,所以空穴是少数
载流子。
N型半导体结构
提供自由电子的五价杂质原子因带正电荷而成为正离子,因此五价杂质原子也称为施主杂质。
N型半导体的结构示意图如图所示。
所以,N型导体中的导电离子有两种:自由电子——多数载流子(由两部分组成);
空穴——少数载流子
2. P型半导体
在本征半导体中掺入三价杂质元素,如硼、镓、铟等形成了P型半导体,也称为空穴型半导体。
因三价杂质原子在与硅原子形成共价键时,缺少一个价电子而在共价键中留下一个空穴。
当相邻共价键上的电子因受激发获得能量时,就可能填补这个空穴,而产生新的空穴。
空穴是其主要载流子。
P型半导体结构
在P型半导体中,硼原子很容易由于俘获一个电子而成为一个带单位负电荷的负离子,三价杂质因而也称为受主杂质。
而硅原子的共价键由于失去一个电子而形成空穴。
所以P型半导体的结构示意图如图所示。
P型半导体中空穴是多数载流子,主要由掺杂形成;电子是少数载流子,由热激发形成。
3. 杂质对半导体导电性的影响
掺入杂质对本征半导体的导电性有很大的影响,一些典型的数据如下:
1.T=300 K室温下,本征硅的电子和空穴浓度: n = p =1.4×1010/cmз
2.本征硅的原子浓度: 4.96×1022/cmз
3.掺杂后 N 型半导体中的自由电子浓度: n=5×1016/cmз
以上三个浓度基本上依次相差1000000/cmз 。