2019年高考数学一轮复习 热点难点精讲精析 4.1平面向量
- 格式:doc
- 大小:834.50 KB
- 文档页数:10
知识点总结4 平面向量一.平面向量向量的线性运算向量运算加法减法数乘几何表示首尾相接 指向终点起点重合 指向对顶点起点重合 指向被减向量(1)|λa |=|λ||a |,(2)当λ>0时,λa 与a 方向相同;当λ<0时,λa 与a 方向相反; 当λ=0时,λa =0一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量, 即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →,特别地,一个封闭图形,首尾连接而成的向量和为零向量. 2.平面向量基本定理e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是平面内两个不共线向量,那么对这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1⃗⃗⃗ +λ2e 2⃗⃗⃗ . 我们把不共线的向量e 1⃗⃗⃗ ,e 2⃗⃗⃗ 叫做表示这一平面的一组基底. 3.“爪”子定理形式1:在△ABC 中,D 是BC 上的点,如果|BD |=m ,|DC |=n ,则AD ⃗⃗⃗⃗⃗ =n m+nAB⃗⃗⃗⃗⃗ +m m+nAC⃗⃗⃗⃗⃗ , 特别地,若D 为线段BC 的中点,则AD ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ . 形式2:在△ABC 中,D 是BC 上的点,且BD →=λBC →,则AD →=λAC →+(1-λ)AB →,特别地,若D 为线段BC 的中点,则AD ⃗⃗⃗⃗⃗ =12AB⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ . 二.平面向量的坐标运算1.平面向量的正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.2.向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2.3.向量加法、减法、数乘运算及向量的模:设坐标表示 a =(x 1,y 1),b⃗ =(x 2,y 2),则 a +b ⃗ =(x 1+x 2,y 1+y 2), a −b ⃗ =(x 1−x 2,y 1−y 2), λa =(λx 1,λy 1), |a |=x 21+y 21.三.平面向量的数量积 1.向量a 与b⃗ 的夹角 已知两个非零向量a 和b ⃗ .作OA =a ,OB ⃗⃗⃗⃗⃗ =b ⃗ ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b ⃗ 的夹角. 当θ=0°时,a 与b ⃗ 同向; 当θ=180°时,a 与b⃗ 反向. 如果a 与b ⃗ 的夹角是90°,我们说a 与b ⃗ 垂直,记作a ⊥b ⃗ . 2.平面向量的数量积(1)若a ,b ⃗ 为非零向量,夹角为θ,则a ∙b ⃗ =|a |∙|b ⃗ |cosθ. (2)设a =(x 1,y 1),b ⃗ =(x 2,y 2),则a ∙b ⃗ =x 1x 2+y 1y 2. 3.平面向量数量积的运算律 (1)a ∙b ⃗ =b ⃗ ∙a (交换律);(2)λa ∙b ⃗ =λ(a ∙b ⃗ )=a ∙(λb ⃗ ) (结合律); (3)(a +b ⃗ )∙c =a ∙c +b ⃗ ∙c (分配律). 4.平面向量数量积运算的常用公式 (1) (a +b ⃗ )∙(a −b ⃗ )=(a )2−(b⃗ )2. (2)(a +b ⃗ )2=(a )2+(b ⃗ )2+2a ∙b ⃗ =|a |2+|b ⃗ |2+2a ∙b ⃗ . (3)(a −b ⃗ )2=(a )2+(b ⃗ )2−2a ∙b ⃗ =|a |2+|b ⃗ |2−2a ∙b ⃗ . (4)极化恒等式:a ∙b ⃗ =14[(a +b ⃗ )2−(a −b ⃗ )2]; (平行四边形模式)a ∙b⃗ =14[|AC |2−|DB |2] 5.利用数量积求长度(1)若a =(x,y),则|a |=√(a )2=√a ∙a =√x 2+y 2.(2)若A (x 1,y 1),B (x 2,y 2),则:|AB |=√(x 2−x 1)2+(y 2−y 1)2.6.利用数量积求夹角:设a ,b ⃗ 为非零向量,若a =(x 1,y 1),b ⃗ =(x 2,y 2),θ为a ,b ⃗ 的夹角, 则cosθ=a⃗ ∙b ⃗ |a ⃗ ||b ⃗ |=1212√x 1+y 1∙√x 2+y 27.向量的投影向量a 在向量b ⃗ 上的投影为:|a |cosθ=a⃗ ∙b ⃗|b ⃗ |. 向量a 在向量b ⃗ 上的的投影向量为:|a |cosθ∙b ⃗|a ⃗ |=a ⃗ ∙b ⃗|b⃗ |∙b ⃗|b ⃗ |. 四.平面向量的平行与垂直1.两个非零向量平行、垂直的充要条件 若a =(x 1,y 1),b⃗ =(x 2,y 2),则 (1)a ∥b ⃗ ⇔a =λb ⃗ (b ⃗ ≠0⃗ )⇔x 1x 2=y 1y 2⇔x 1y 2-x 2y 1=0.(2)a ⊥b ⃗ ⇔a ·b ⃗ =0⇔x 1x 2+y 1y 2=0. (3)与a 同方向的单位向量为:a⃗ |a ⃗ |=√x 2+y2y)=(√x 2+y2√x 2+y 2),与a 共线的单位向量为:±a ⃗ |a ⃗ |=√x 2+y 2y)=√x 2+y 2√x 2+y 2).2.三点共线的充要条件的三种形式(1)A ,P ,B 三点共线⇔AP =λAB (λ≠0)(2)A ,P ,B 三点共线⇔OP =(1-t )·OA +t OB (O 为平面内异于A ,P ,B 的任一点,t ∈R )(3)A ,P ,B 三点共线⇔OP =x OA +y OB (O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1). 五.奔驰定理与三角形“四心”1.奔驰定理:如图,已知P 为ABC 内一点,则有0PBCPACPABSPA SPB SPC ++=.2.奔驰定理的推论及四心问题推论O 是ABC 内的一点,且0x OA y OB z OC ⋅+⋅+⋅=,则::::BOCCOAAOBS SSx y z =已知点O 在ABC 内部,有以下四个推论: ①若O 为ABC 的重心,则0OA OB OC ++=;①若O 为ABC 的外心,则sin 2sin 2sin 20A OA B OB C OC ⋅+⋅+⋅=;或OA OB OC == ①若O 为ABC 的内心,则0a OA b OB c OC ⋅+⋅+⋅=;备注:若O 为ABC 的内心,则sin sin sin 0A OA B OB C OC ⋅+⋅+⋅=也对.①若O 为ABC 的垂心,则tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,或OA OB OB OC OC OA ⋅=⋅=⋅。
特别提醒:①,sin()sin ,sincos 22A B C A B C A B C π++=-+==: ②锐角三角形⇒sin sin cos 2A B B π⎛⎫>-= ⎪⎝⎭⇒sin sin sin cos cos cos A B C A B C ++>++.(2)正弦定理:2sin sin sin a b c R A B C===(R 为三角形外接圆的半径). 注意:①正弦定理的一些变式: ()sin sin i a b A B :=:;()sin 2a ii A R =;()2sin iii a R A =; ②已知三角形两边及一边的对角,求解三角形时,若运用正弦定理,则务必注意可能有两解. (3)余弦定理:2222222cos ,cos 2b c a a b c bc A A bc +-=+-=等, 解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化.(4)面积公式:111sin ()222a S ah ab C r a bc ===++(其中r 为三角形内切圆半径). (5)大边对大角:当出现多个解时,常用于判断哪些是符合题意的解、哪些不是.在三角形中,sin sin A B A B >⇔>,这是“正弦定理+大边对大角”的应用.14. 致命易错点提示:(1)特殊角三角函数值、诱导公式和三角变换公式使用错误;(2)大题第一步化简错误(应在化简完后立刻检验);(3)已知三角函数值求角、同角三角函数之间的互化、三角函数值域和最值的研究经常会忽略角的范围.第五部分 平面向量1. 向量有关概念:(1)向量的概念:既有大小又有方向的量,叫向量. 向量常用有向线段来表示.注意向量和数量的区别.(2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的.(3)单位向量:长度为一个单位长度的向量叫做单位向量.(与AB 共线的单位向量有两个:AB±,一个同向,一个反向).(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性.(5)相反向量:长度相等方向相反的向量叫做相反向量, a 的相反向量是-a .(6)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行.提醒:①两个向量平行与两条直线平行是不同的两个概念,两个向量平行包含基线平行与重合两种情况, 但两条直线平行不包含两条直线重合.②三点A B C 、、共线⇔AB ∥AC .2. 向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意前为起点,后为终点.(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等.(3)坐标表示法:在平面直角坐标系内,以与x 轴、y 轴正方向同向的两个单位向量i ,j 为基底,则平面内任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示.如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.3. 平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2.如:(1)若(1,1),a b ==(1,1),(1,2)c -=-,则c =______(用,a b 表示)(答:1322a b -). (2)已知ABC ∆中,点D 在BC 边上,且−→−−→−=DB CD 2,−→−−→−−→−+=AC s AB r CD ,则s r +的值是___(答:0).4. 实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:(1);a a λλ=(2)当λ0>时,λa 的方向与a 的方向相同;当λ0<时,λa 的方向与a 的方向相反;当λ=0时,0a λ=,注意:λa ≠0. 5. 平面向量的数量积:(1)两个向量的夹角:对于非零向量a ,b ,作,OA a OB b ==,AOB θ∠=()0θπ≤≤称为向量a ,b 的夹角.当θ=0时,a ,b 同向;当θ=π时,a ,b 反向;当θ=2π时,a ,b 垂直.(2)平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积,或点积),记作:b a ⋅,即b a ⋅=cos a b θ.规定:零向量与任一向量的数量积是0.注意数量积是一个实数,不再是一个向量.如:①2=5=,3-=⋅b a ,则a b +等于____.) ②已知非零向量,a b 满足a b a b ==-,则,a a b 〈+〉的大小为____.(答:30)(3)b 在a 上的投影为||cos b θ,它是一个实数,但不一定大于0. 如:已知3||=→a ,5||=→b ,且12=⋅→→b a ,则向量→a 在→b 上的投影为____.(答:512) (4)b a ⋅的几何意义:数量积b a ⋅等于a 的模||a 与b 在a 上的投影数量的积.(5)向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则:①0=⋅⇔⊥b a b a .②当a ,b 同向时,b a ⋅=a b ,特别地,22||a a a a =⋅=,||a = 当a 与b 反向时,b a ⋅=-a b .当θ为锐角时,b a ⋅>0,且 a b 、不同向,0a b ⋅>是θ为锐角的必要非充分条件.当θ为钝角时,b a ⋅<0,且 a b 、不反向,0a b ⋅<是θ为钝角的必要非充分条件.③非零向量a ,b 夹角θ的计算公式:||||cos b a b a =θ ④||||||b a b a ≤⋅.如 :已知)2,(λλ=→a ,)2,3(λ=→b ,如果→a 与→b 的夹角为锐角,则λ的取值范围是______.(答:43λ<-或0λ>且13λ≠) 6.向量的运算:(1)几何运算:①向量加法:利用“平行四边形法则”进行.向量加法还可利用“三角形法则”:设,AB a BC b ==,那么向量AC叫做a 与b 的和,即a b AB BC AC +=+=.②向量的减法:用“三角形法则”:设,,AB a AC b a b AB AC CA ==-=-=那么, 由减向量的终点指向被减向量的终点.注意:此处减向量与被减向量的起点相同.(2)坐标运算:设1122(,),(,)a x y b x y ==,则:①向量的加减法运算:12(a b x x ±=±,12)y y ±.②实数与向量的积:()()1111,,a x y x y λλλλ==.③若1122(,),(,)A x y B x y ,则()2121,AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.④平面向量数量积:2121y y x x b a +=⋅.⑤向量的模:222222||,||a x y a a x y =+==+.⑥两点间的距离:若()()1122,,,A x y B x y ,则||AB =.7. 向量的运算律: (1)交换律:a b b a +=+,()()a a λμλμ=,a b b a ⋅=⋅.( 2 ) 结合律:()(),a b c a b c a b c a b c ++=++--=-+,)()()(b a b a b a λλλ⋅=⋅=⋅.(3)分配律:()(),a a a a b a b λμλμλλλ+=++=+, c b c a c b a ⋅+⋅=⋅+)(.如:在下列命题中:① →→→→→→→⋅-⋅=-⋅c a b a c b a )(.② →→→→→→⋅⋅=⋅⋅c b a c b a )()(. ③ 2()a b →→-2||a →=22||||||a b b →→→-⋅+. ④ 若0=⋅→→b a ,则0=→a 或0=→b . ⑤ 若,a b c b ⋅=⋅则a c =.⑥22a a =. ⑦2a bb a a ⋅=.⑧222()a b a b ⋅=⋅. ⑨222()2a b a a b b -=-⋅+.其中正确的是______.(答:①⑥⑨)提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约). (2)向量的“乘法”不满足结合律,即c b a c b a )()(⋅≠⋅.(为什么?)8. 向量平行(共线)的充要条件://a b a b λ⇔=22()(||||)a b a b ⇔⋅=1212x y y x ⇔-=0.如:(1)已知(1,1),(4,)a b x ==,2u a b =+,2v a b =+,且//u v ,则x =___.(答:4).(2)设(,12),(4,5),(10,)PA k PB PC k ===,则k =_____时,A,B,C 三点共线.(答:-2或11)9. 向量垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=.如:已知(1,2),(3,)OA OB m =-=,若OA OB ⊥,则m = .(答:32)10.向量中一些常用的结论:(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用.(2)||||||||||||a b a b a b -≤±≤+,特别地,当 a b 、同向或有0⇔||||||a b a b +=+≥||||||||a b a b -=-. 当 a b 、反向或有0⇔||||||a b a b -=+≥||||||||a b a b -=+.当 a b 、不共线⇔||||||||||||a b a b a b -<±<+. (这些和实数比较类似)(3)在ABC ∆中,①若()()()112233,,,,,A x y B x y C x y ,则其重心坐标为123123,33x x x y y y G ++++⎛⎫ ⎪⎝⎭. 如 :若ABC ∆的三边的中点坐标分别为(2,1)、(-3,4)、(-1,-1),则ABC ∆的重心坐标为_______.(答:24(,)33-) ②1()3PG PA PB PC =++⇔G 为ABC ∆的重心, 特别地,0PA PB PC P ++=⇔为ABC ∆的重心.③PA PB PB PC PC PA P ⋅=⋅=⋅⇔为ABC ∆的垂心.④向量()(0)||||AC AB AB AC λλ+≠的基线经过ABC ∆的内心. (4)P 为12P P 的中点122MP MP MP +⇔=. (5)向量 PA PB PC 、、的终点A B C 、、共线⇔存在实数αβ、,使得PA PB PC αβ=+,且1αβ+=.如:平面直角坐标系中,O 为坐标原点,已知)1,3(A ,)3,1(-B ,若点C 满足=−→−OC −→−−→−+OB OA 21λλ,其中R ∈21,λλ且121=+λλ,则点C 的轨迹是____. (答:直线AB ) 第六部分 数列1.数列的定义:数列是一个定义域为正整数集*N (或它的有限子集{}n ,,3,2,1 )上 的特殊函数,数列的通项公式也就是相应函数的解析式.2. 一般数列的通项n a 与前n 项和n S 的关系:⎩⎨⎧≥-==-)2()1(11n S S n S a n nn 3. 等差数列的概念:(1)等差数列的判断方法:定义法1(n n a a d d +-=为常数).(2)等差数列的通项公式:1(1)n a a n d =+-或()n m a a n m d =+-.(3)等差数列的前n 项和:1()2n n n a a S +=1(1)2n n na d -=+, 注意n S 与中间项的关系.(4)等差中项:若,,a A b 成等差数列,那么A 叫做a 与b 的等差中项,2a b A +=. 4.等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是。
平面向量及其应用【2019年高考考纲解读】 高考对本内容的考查主要有:平面向量这部分内容在高考中的要求大部分都为B 级,只有平面向量的应用为A 级要求,平面向量的数量积为C 级要求,应特别重视.试题类型可能是填空题,同时在解答题中经常与三角函数综合考查,构成中档题. 【重点、难点剖析】 1.向量的概念(1)零向量模的大小为0,方向是任意的,它与任意非零向量都共线,记为0. (2)长度等于1个单位长度的向量叫单位向量,a 的单位向量为±a|a|.(3)方向相同或相反的向量叫共线向量(平行向量).(4)如果直线l 的斜率为k ,则a =(1,k )是直线l 的一个方向向量. (5)|b |cos 〈a ,b 〉叫做b 在向量a 方向上的投影. 2.两非零向量平行、垂直的充要条件 设a =(x 1,y 1),b =(x 2,y 2),(1)若a ∥b ⇔a =λb (λ≠0);a ∥b ⇔x 1y 2-x 2y 1=0. (2)若a ⊥b ⇔a ·b =0;a ⊥b ⇔x 1x 2+y 1y 2=0. 3.平面向量的性质(1)若a =(x ,y ),则|a |=a·a=x2+y2. (2)若A (x 1,y 1),B (x 2,y 2),则 |A B →|=错误!.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a||b|=x1x2+y1y2x21+y21x22+y22.4.当向量以几何图形的形式出现时,要把这个几何图形中的一个向量用其余的向量线性表示,就要根据向量加减法的法则进行,特别是减法法则很容易使用错误,向量MN →=ON →-OM →(其中O 为我们所需要的任何一个点),这个法则就是终点向量减去起点向量.5.根据平行四边形法则,对于非零向量a ,b ,当|a +b |=|a -b |时,平行四边形的两条对角线长度相等,此时平行四边形是矩形,条件|a +b |=|a -b |等价于向量a ,b 互相垂直,反之也成立.6.两个向量夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不单纯就是其数量积小于零,还要求不能反向共线. 【题型示例】题型一、平面向量的线性运算【例1】(2018·全国卷Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________. 【解析】由已知得2a +b =(4,2).又c =(1,λ),c ∥(2a +b ),所以4λ-2=0,解得λ=12.【答案】 12【变式探究】 (2018·全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( ) A.34AB →-14AC →B.14AB →-34AC → C.34AB →+14AC →D.14AB →+34AC →【变式探究】【2016高考新课标2理数】已知向量,且,则( )(A )-8 (B )-6 (C )6 (D )8【答案】D【解析】向量,由得,解得,故选D.【举一反三】设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →),即4AC →-AB →=3AD →, ∴AD →=-13AB →+43AC →. 答案 A【变式探究】在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.解析 MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →) =12AB →-16AC →, ∴x =12,y =-16. 答案 12 -16【变式探究】已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0,若a ∥b ,则mn 等于( )A .-12 B.12C .-2D .2【解析】∵a ∥b ,∴a =λb ,即m e 1+2e 2=λ(n e 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,故mn=-2. 【答案】 C【变式探究】已知P 为△ABC 所在平面内一点,D 为AB 的中点,若2PD →+PC →=(λ+1)PA →+PB →,且△PBA 与△PBC 的面积相等,则实数λ的值为________.【感悟提升】平面向量的运算主要包括向量运算的几何意义、向量的坐标运算以及数量积的运算律的应用等. (1)已知条件中涉及向量运算的几何意义应数形结合,利用平行四边形、三角形法则求解. (2)已知条件中涉及向量的坐标运算,需建立坐标系,用坐标运算公式求解. (3)解决平面向量问题要灵活运用向量平行与垂直的充要条件列方程.(4)正确理解并掌握向量的概念及运算;强化“坐标化”的解题意识;注重数形结合思想、方程思想与转化思想的应用.注意:在利用数量积的定义计算时,要善于将相关向量分解为图形中的已知向量进行计算.【变式探究】设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.【答案】12【解析】如图,DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,则λ1=-16,λ2=23,λ1+λ2=12.【规律方法】在一般向量的线性运算中,只要把其中的向量当作字母,其运算类似于代数中合并同类项的运算,在计算时可以进行类比.本例中的第(1)题就是把向量DE →用AB →,AC →表示出来,再与题中已知向量关系式进行对比,得出相等关系式,可求相应的系数. 题型二、平面向量的数量积【例2】(2018·上海卷)在平面直角坐标系中,已知点A (-1,0)、B (2,0),E 、F 是y 轴上的两个动点,且|EF →|=2,则AE →·BF →的最小值为________. 【解析】设E (0,m ),F (0,n ), 又A (-1,0),B (2,0), ∴AE →=(1,m ),BF →=(-2,n ). ∴AE →·BF →=-2+mn , 又知|EF →|=2,∴|m -n |=2.①当m =n +2时,AE →·BF →=mn -2=(n +2)n -2=n 2+2n -2=(n +1)2-3.∴当n =-1,即E 的坐标为(0,1),F 的坐标为(0,-1)时,AE →·BF →取得最小值-3. ②当m =n -2时,AE →·BF →=mn -2=(n -2)n -2=n 2-2n -2=(n -1)2-3. ∴当n =1,即E 的坐标为(0,-1),F 的坐标为(0,1)时,AE →·BF →取得最小值-3.综上可知,AE →·BF →的最小值为-3. 【答案】 -3【变式探究】(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43D .-1【解析】解法一:设BC 的中点为D ,AD 的中点为E ,则有PB →+PC →=2PD →,则PA →·(PB →+PC →)=2PA →·PD →=2(PE →+EA →)·(PE →-EA →)=2(PE →2-EA →2).而AE →2=⎝ ⎛⎭⎪⎫322=34,当P 与E 重合时,PE →2有最小值0,故此时PA →·(PB→+PC →)取最小值,最小值为-2EA →2=-2×34=-32.解法二:以AB 所在直线为x 轴,AB 的中点为原点建立平面直角坐标系,如图,则A (-1,0),B (1,0),C (0,3),设P (x ,y ),取BC 的中点D ,则D ⎝ ⎛⎭⎪⎫12,32.PA →·(PB →+PC →)=2PA →·PD →=2(-1-x ,-y )·⎝ ⎛⎭⎪⎫12-x ,32-y =2⎣⎢⎡⎦⎥⎤+⎝ ⎛⎭⎪⎫x -12+y·⎝ ⎛⎭⎪⎫y -32=2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +142+⎝ ⎛⎭⎪⎫y -342-34.因此,当x =-14,y =34时,PA →·(PB →+PC →)取得最小值,为2×⎝ ⎛⎭⎪⎫-34=-32,故选B. 【答案】 B【变式探究】已知|a |=1,b =(-1,1)且a ⊥(a +b ),则向量a 与向量b 的夹角为( ) A.π3 B.π2 C.2π3 D.3π4【解析】设向量a 与向量b 的夹角为θ,因为a ⊥(a +b ),所以a ·(a +b )=0,即|a |2+a ·b =1+|a ||b |cos θ=1+2cos θ=0,cos θ=-22,θ=3π4,故选D. 【答案】 D【变式探究】已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD →在BA →方向上的投影是( ) A .-3 5 B .-322 C .3 5 D.322【解析】依题意得,BA →=(-2,-1),CD →=(5,5),BA →·CD →=(-2,-1)·(5,5)=-15,|BA →|=5,因此向量CD →在BA →方向上的投影是BA →·CD →|BA →|=-155=-35,选A.【答案】 A【变式探究】已知向量a =(-1,2),b =(3,-6),若向量c 满足c 与b 的夹角为120°,c ·(4a +b )=5,则|c |=( )A .1 B. 5 C .2 D .2 5【解析】依题意可得|a |=5,|b |=35,a ∥b .由c ·(4a +b )=5,可得4a ·c +b ·c =5.由c 与b 的夹角为120°,可得c 与a 的夹角为60°,则有b ·c =|b ||c |cos120°=|c |×35×⎝ ⎛⎭⎪⎫-12=-352|c |,a ·c =|a ||c |cos60°=|c |×5×12=52|c |,所以4×52|c |-352|c |=5,解得|c |=25,故选D.【答案】 D【变式探究】如图所示,在梯形ABCD 中,AB ∥CD ,CD =2,∠BAD =π4,若AB →·AC →=2AB →·AD →,则AD →·AC →=________.【举一反三】已知菱形ABCD 的边长为a ,∠ABC =60° ,则BD →·CD →=( ) A .-32a 2B .-34a 2C.34a 2D.32a 2解析 如图所示,由题意,得BC =a ,CD =a ,∠BCD =120°.BD 2=BC 2+CD 2-2BC ·CD ·cos 120°=a 2+a 2-2a ·a ×⎝ ⎛⎭⎪⎫-12=3a 2, ∴BD =3a .∴BD →·CD →=|BD →|·|CD →|cos 30°=3a 2×32=32a 2. 答案 D【变式探究】△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1D .(4a +b )⊥BC →解析 由于△ABC 是边长为2的等边三角形; ∴(AB →+AC →)·(AB →-AC →)=0,即(AB →+AC →)·CB →=0, ∴(4a +b )⊥CB →,即(4a +b )⊥BC →,故选D.答案 D【规律方法】求数量积的最值,一般要先利用向量的线性运算,尽可能将所求向量转化为长度和夹角已知的向量,利用向量的数量积运算建立目标函数,利用函数知识求解最值.【变式探究】设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →=( ) A .20 B. 15C .9D .6解析 AM →=AB →+34AD →,NM →=CM →-CN →=-14AD →+13AB →,∴AM →·NM →=14(4AB →+3AD →)·112(4AB →-3AD →) =148(16AB →2-9AD →2)=148(16×62-9×42)=9,选C. 答案 C题型三、平面向量基本定理及应用例3.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( ) A .3 B .2 2 C. 5 D .2【解析】分别以CB 、CD 所在的直线为x 轴、y 轴建立直角坐标系,则A (2,1),B (2,0),D (0,1). ∵点P 在以C 为圆心且与BD 相切的圆上, ∴可设P ⎝⎛⎭⎪⎫25cos θ,25sin θ. 则AB →=(0,-1),AD →=(-2,0), AP →=⎝ ⎛⎭⎪⎫25cos θ-2,25sin θ-1.又AP →=λAB →+μAD →, ∴λ=-25sin θ+1,μ=-15cos θ+1,∴λ+μ=2-25sin θ-15cos θ=2-sin(θ+φ),其中tan φ=12,∴(λ+μ)max =3.【答案】 A【变式探究】【2016年高考四川理数】在平面内,定点A ,B ,C ,D 满足==,===-2,动点P ,M 满足=1,=,则的最大值是( )(A )(B )(C )(D ) 【答案】B【解析】甴已知易得.以为原点,直线为轴建立平面直角坐标系,如图所示,则设由已知,得,又,它表示圆上的点与点的距离的平方的,,故选B.【变式探究】在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ·b =0,点Q 满足OQ →=2(a +b ).曲线C ={P |OP →=a cos θ+b cos θ,0≤θ<2π},区域Ω={P |0<r ≤|PQ →|≤R ,r <R }.若C ∩Ω为两段分离的曲线,则( ) A .1<r <R <3B .1<r <3≤RC .r ≤1<R <3D .1<r <3<R解析 由已知可设OA →=a =(1,0),OB →=b =(0,1),P (x ,y ),则OQ →=(2,2),曲线C ={P |OP →=(cos θ,sin θ),0≤θ<2π},即C :x 2+y 2=1,区域Ω={P |0<r ≤|PQ →|≤R ,r <R }表示圆P 1:(x -2)2+(y -2)2=r 2与圆P 2:(x -2)2+(y -2)2=R 2所形成的圆环,如图所示,要使C ∩Ω为两段分离的曲线,只有1<r <R <3.答案 A【举一反三】已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________. 解析 ∵a =(2,1),b =(1,-2),∴m a +n b =(2m +n ,m -2n )=(9,-8),即⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,解得⎩⎪⎨⎪⎧m =2,n =5,故m -n =2-5=-3. 答案 -3题型四 平面向量的长度与角度问题例4.【2017课标1,理13】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= . 【答案】【解析】利用如下图形,可以判断出的模长是以2为边长的菱形对角线的长度,所以.【变式探究】若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4B.π2C.3π4D .π【变式探究】对任意向量a ,b ,下列关系式中不恒成立的是( )A .|a ·b |≤|a ||b |B .|a -b |≤||a |-|b ||C .(a +b )2=|a +b |2D .(a +b )(a -b )=a 2-b 2解析 对于A ,由|a ·b |=||a ||b |cos<a ,b>|≤|a ||b |恒成立;对于B ,当a ,b 均为非零向量且方向相反时不成立;对于C 、D 容易判断恒成立.故选B.答案 B【举一反三】已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC .若AE →·AF →=1,CE →·CF →=-23,则λ+μ=( )A.12B.23C.56D.712解析 如图所示,以菱形ABCD 的两条对角线所在直线为坐标轴,建立平面直角坐标系xOy ,不妨设A (0,-1),B (-3,0),C (0,1),D (3,0),由题意得CE →=(1-λ)·CB →=(3λ-3,λ-1),CF →=(1-μ)CD →=(3-3μ,μ-1).因为CE →·CF →=-23,所以3(λ-1)·(1-μ)+(λ-1)(μ-1)=-23,即(λ-1)(μ-1)=13.因为AE →=AC →+CE →=(3λ-3,λ+1). AF →=AC →+CF →=(3-3μ,μ+1),又AE →·AF →=1,所以(λ+1)(μ+1)=2. 由⎩⎪⎨⎪⎧(λ-1)(μ-1)=13,(λ+1)(μ+1)=2,整理得λ+μ=56.选C. 答案 C。
平面向量及其应用ABCDK AC 为一条对角线,AB= (2,4),辰(1,3),则 DA=()• ( - 1 , - 1) 【答案】C【解析】DA= C B= AB-辰(2,4) - (1,3) = (1,1).2.在等腰梯形 ABCDK AB= — 2CD M 为BC 的中点,贝U AM=( )1 A 1A 3A 1AA .严 2A D B• 4A 盼 2AD【答案】B 【解析】因为屁=—2CD 所以AB= 2DC 又M 是BC 的中点,所以AM= 2(A B^AC = 2(A B + 荷DC,2 ,,所以BA- 血甲+乎二均3又因为B A' BC = |B A | BC|cos / AB = 1X 1X COS / ABC 所以 cos / AB G^.又 0°w/ AB&180°,所以/ ABC= 30° .故选 A.4 .将OA= (1,1)绕原点O 逆时针方向旋转60°得到 A B 则 A B=()【解析】由题意可得创的横坐标工二迈£呃眇+ 迈;#-乎卜 f 纵坐标丁=7^sin 何+铲)=诳(乎+尊=号虫,则易=:二^,号吗 1 5.△ ABC 外接圆的半径等于 1,其圆心O 满足AO= 2(AB+ AC , |AO = |AC ,则向量 薛在Bi 方向上的投影等 于( )逅V3 A .-B .22A . (2,4)B . (3,5)1 •在平行四边形C. (1,1) C .4AEE +4A DD.1AB + 4A D3.已知向量 A . 30°C. 60°)=4AB+ 2AD 故选 B. 2, ¥,张于 2,则/ ABC=() B . 45°EBA=D. 120°【答案】AA.【答案】【解析】因为B A= 2,C. B.1-,2—1 — ,3 1 — *3 1 + *3 2 , 2 —1+ 3 D.2 ;943 C.2D. 31【答案】C 【解析】由AO= 2(A 內AC 可知0是BC 的中点,即BC 为外接圆的直径,所以|OA = |O B = |OC |.又因为|A0 = | AC = 1,故4 OAC 为等边三角形,即/ AOC= 60°,由圆周角定理可知/ ABG= 30°,且| AB | = 3,所以BA 在誠向上的投影为|BA • cos / ABC= 3X cos 30 ° = 2,故选C. 6 •已知A, B, C 是圆O 上的不同的三点,线段 CO 与线段AE 交于点 D,若 OC=入 OAF 卩 OB 入€ R,卩 €R),则入+卩的取值范围是( )A . (0,1) B. (1 ,+^)C. (1 , - 2]D . ( —1,0)【答案】B 【解析】由题意可得OD- k OC= k 入O AF k 卩OB 0<k <1),又AD, B 三点共线可得k 入+ k ^ = 1, 1则入+ □= “ >1,即卩入+卩的取值范围是(1 ,+^),故选B.k17.已知非零向量 m n 满足4| m = 3| n | , cos 〈m n 〉= 3,若n 丄(t m F n ),则实数t 的值为( )A . 4 B.— 4C・42• t|m ||n| cos 〈 m n 〉+ | n | = 0. 厂3 2 12又 4|m = 3|n | , • t X 4|n | X 3+ | n | = 0 ,解得t = — 4.故选B.8. 如图3-3, BC DE 是半径为1的圆O 的两条直径, 图3-3 3A . — ; B4 1 C.— _ D【答案】B 【解析】T n 丄(tm + n ), ••• n •( t2n F n ) = 0,即 tm • n + |n | = 0 ,归2F O 则F D- FE 等于(B【答案】B【解析】T BF= 2FO圆O的半径为1,94————————————|' 1 2••• FD - FE = (FB OD •(FO+ OE = FO + F0・(0曰 OD + OD O E=々 2+ 0— 1 = -2丿9.设向量 a = (a i ,a ?) ,b = (b i , b 2),定义一种向量积: a ?b = (a i , a 2)?(b , b 2)= (a i b i , a 2b 2).已知向量 m2| b | + 4| b | = I2,解得 |b | = 2(负舍).8 9.0,点P 在y = cos x 的图象上运动,点Q 在y = f (x )的图象上运动,且满足 0Q= n ?OP,n+ n (其中O 为坐标原点),则y = f (x )在区间.|—, A . 4 B . 2 C. 2 2 D . 2 3【答案】A 【解析】因为点 P 在y = cos x 的图象上运动,所以设点P 的坐标为(X 。
高考数学一轮复习平面向量的概念知识点知识点总结
高考复习最忌心浮气躁,急于求成。
指导复习的教师,应给学生一种乐观、镇定、自信的精神面貌。
要扎扎实实地复习,一步一步地前进,下文为大家准备了平面向量的概念知识点的内容。
既有方向又有大小的量叫做向量(物理学中叫做矢量),只有大小没有方向的量
叫做数量(物理学中叫做标量).
向量的概念既有方向(direction)又有大小(magnitude)的量叫做向量(物理学
中叫做矢量),向量可以用小写黑体字母a,b,c,.表示,也可以用表示向量的有向线段的起点和终点字母表示.只有大小没有方向的量叫做数量(物理学中叫做标量).在自然界中,有许多量既有大小又有方向,如力、速度等.我们为了研究这些量的这个共性,在它们的基础上提取出了向量这个概念.这样,研究清楚了向量的性质,当然用它来研究其它量,就会方便许多.
小编为大家提供的高考数学一轮复习平面向量的概念知识点就到这里了,愿大家都能好好努力,丰富自己,锻炼自己。
2019年高考一轮复习热点难点精讲精析:4.1平面向量
一、平面向量的概念及其线性运算
(一)向量的有关概念
※相关链接※
1、着重理解向量以下几个方面:
(1)向量的模;(2)向量的方向;(3)向量的几何表示;(4)向量的起点和终点。
2、判定两个向量的关系时,特别注意以下两种特殊情况:
(1)零向量的方向及与其他向量的关系;
(2)单位向量的长度及方向。
※例题解析※
【例1】下列结论中,不正确的是 ( )
向量AB ,CD 共线与向量AB //CD 同义;
若向量AB //CD ,则向量AB 与DC 共线;
若向量AB =CD ,则向量BA =DC ;
只要向量a ,b 满足|a |=|b |,就有a =b 。
解答:选。
根据平行向量(或共线向量)定义知,B 均正确;根据向量相等的概念知C 正确,不正确。
【例2】给出下列命题: ①有向线段就是向量,向量就是有向线段;
②若,AB DC = 则BCD 为平行四边形;
③若//,//,a b b c a c = 则;
④若//,//,//a b b c a c 则。
其中正确命题的个数是 ( )
()0 (B )1 (C )2 ()3
思路解析:正确理解向量的有关概念是解决本题的关键。
注意到特殊情况,否定某个命题只要举出一个反倒即
可。
解答:选B 。
①错,向量可用有向线段表示,但并不是有向线段。
②错,因为,AB DC = 则可能、B 、C 、四
点在一条直线上。
③正确。
④错,若0b = ,则对不共线的向量a 与c ,也有a //0 ,0 //c ,但a 与c 不平行。
(二)向量的线性运算
※相关链接※
(1)用已知向量来表示别外一些向量是用向量解题的基本功,除利用向量的加、减法、数乘向量外,还应充分利用平面几何的一些定理;
(2)在求向量时要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线,相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量求解。
注:若为BC 的中点,则1()2
OA OB OC =+ 。
※例题解析※
〖例1〗在
ΔBC 中,
2,//DE N 3
AD AB DE BC AC = 交于E,BC 边上的中线AM 交于。
,,,BC D DN AM AB a AC b a b AE E AN == 用表示向量、、、、、。
思路解析:解本题要进行向量的加、减法外,还有数乘向量运算,如211,,333AB AD DB AB a === 11.33BD AB a =-=- 在进行计算时要充分利用//DE BC ADE ⇒∆∽
ΔBC ,ΔADN ∽ΔABM 等条件。
解答: //22,2333DE BC AE AC b AD AB ⎧⎪⇒==⎨=⎪⎩
.BC AC AB b a =-=- 由ΔADE ∽ΔABC ,得22()33DE BC b a ==- ,又AM 是ΔABC 的中线,DE//BC ,且AM 与DE 交于点N ,得11().23DN DE b a ==- 111()()222
AM AB BM a BC a b a a b =+=+=+-=+ 21()2333ADN ABM AN AM a b AD AB ⎫⎪⇒==+⎬=⎪⎭
∽。