7.5平面向量的数乘运算-教学设计公开课
- 格式:docx
- 大小:95.87 KB
- 文档页数:4
数学平面向量的运算教案一、引言数学中的向量是一种特殊的量,它具有大小和方向。
平面向量是指在平面上表示的向量。
本教案将介绍平面向量的基本运算,包括加法、减法、数乘、点乘和叉乘。
二、平面向量的表示平面向量可用有序数对表示,记作AB→,其中A和B是向量的起点和终点。
向量的模表示为|AB→|。
三、平面向量的加法1. 定义:设有平面向量AB→和CD→,则它们的和为EF→,其中E是向量AB→和CD→的终点,F是向量EF→的起点。
2. 表示:AB→ + CD→ = EF→。
3. 计算:向量的相加按照横纵坐标分别相加。
AB→ + CD→ = (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)。
四、平面向量的减法1. 定义:设有平面向量AB→和CD→,则它们的差为EF→,其中E是向量AB→的终点,F是向量EF→的起点。
2. 表示:AB→ - CD→ = EF→。
3. 计算:向量的相减按照横纵坐标分别相减。
AB→ - CD→ = (x1, y1) - (x2, y2) = (x1 - x2, y1 - y2)。
五、数乘1. 定义:数乘是指将一个向量乘以一个实数。
2. 表示:kAB→。
3. 计算:向量的数乘即将向量的坐标分别乘以该实数。
kAB→ = k(x, y) = (kx, ky)。
六、平面向量的点乘1. 定义:设有平面向量AB→和CD→,则它们的点乘为AB→·CD→= |AB→| |CD→| cosθ,其中θ为向量AB→和CD→的夹角。
2. 表示:AB→·CD→。
3. 计算:向量的点乘即将对应坐标相乘再相加。
AB→·CD→ = (x1, y1) · (x2, y2) = x1x2 + y1y2。
七、平面向量的叉乘(仅限于三维向量)1. 定义:设有平面向量AB→和CD→,则它们的叉乘为AB→×CD→= |AB→| |CD→| sinθn,其中θ为向量AB→和CD→的夹角,n为垂直于平面的单位向量。
6.2.3向量的数乘运算课标解读课标要求核心素养1.通过实例分析,掌握平面向量数乘运算及运算规则.2.理解平面向量数乘运算的几何意义.(重点)3.理解两个平面向量共线的含义.(难点)1.运用向量数乘运算律进行向量运算,培养数学运算核心素养.2.通过对比实数的运算律理解向量数乘的运算律,培养类比推理的能力.3.通过共线定理的应用培养直观想象核心素养.一只兔子第1秒钟向东跑了2米,第2、3秒钟又向东各跑了2米.问题1:兔子3秒的位移一共是多少?答案设兔子第1秒的位移是向量a,则3秒的位移是向量3a.问题2:若兔子向西跑3秒,则向量是多少?答案-3a(用a表示向东跑1秒).1.向量的数乘定义实数λ与向量a的积是一个①向量记法λa长度|λa|=|λ||a|方向λ>0λa的方向与a的方向②相同λ<0λa的方向与a的方向③相反几何意义λa中的实数λ是向量a的系数λ>0λa可以看作是把向量a沿着a的方向扩大④|λ|倍得到λ<0λa可以看作是把向量a沿着a的反方向缩小|λ|倍得到特别提醒当λ=0时,λa=0.当λ≠0时,若a=0,也有λa=0.思考1:实数与向量能否进行加减运算?提示不能.2.向量的数乘运算的运算律设λ,μ为实数,那么(1)λ(μa)=(λμ)a;(2)(λ+μ)a=⑤λa +μa; (3)λ(a+b )=λa +λb.思考2:向量数乘运算律与实数乘法运算律有什么关系? 提示两种运算律类似,(2)(3)式是向量因式不同的分配律. 3.向量的线性运算(1)向量的加、减、数乘运算统称为向量的线性运算,向量线性运算的结果仍是⑥向量. (2)对于任意向量a,b 以及任意实数λ、μ1、μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b. 思考3:向量的线性运算法则与实数的运算法则有什么关系? 提示在形式上类似. 4.共线向量定理向量a(a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使⑦b =λa. 思考4:λ与向量a,b 的方向有什么关系?提示若λ>0,则a 与b 同向;若λ<0,则a 与b 反向.探究一向量的线性运算例1(1)化简下列各式:①3(6a+b)-9(a +13b);②12[3a +2b -(a +12b)]-2(12a +38b); ③2(5a-4b+c)-3(a-3b+c)-7a.(2)已知向量a,b,m,n 满足a=3m+2n,b=m-3n,试用向量a,b 表示向量m,n. 解析(1)①原式=18a+3b-9a-3b=9a. ②原式=12(2a +32b)-a-34b=a+34b-a-34b=0. ③原式=10a-8b+2c-3a+9b-3c-7a=b-c. (2)a=3m+2n ①,b=m-3n ②, 则①×3+②×2得3a+2b=11m, 即m=311a+211b. ①-②×3得a-3b=11n,即n=111a-311b. 思维突破向量的线性运算的技巧向量的线性运算类似于代数多项式的运算.(1)实数运算中去括号、移项、合并同类项、提取公因式等方法在向量线性运算中也可以使用.(2)这里的“同类项”“公因式”指向量,实数看作是向量的系数. 1-1化简下列各式:(1)2(3a-2b)+3(a+5b)-5(4b-a); (2)16[2(2a+8b)-4(4a-2b)]; (3)(m+n)(a-b)-(m-n)(a+b).解析(1)原式=6a-4b+3a+15b-20b+5a=14a-9b. (2)原式=16×(4a+16b-16a+8b)=16×(-12a+24b)=-2a+4b. (3)原式=m(a-b)+n(a-b)-m(a+b)+n(a+b) =(m+n-m+n)a+(-m-n-m+n)b =2na-2mb.探究二共线向量定理及其应用例2设两个非零向量a 与b 不共线.(1)若AB ⃗⃗⃗⃗⃗ =a+b,BC ⃗⃗⃗⃗⃗ =2a+8b,CD ⃗⃗⃗⃗⃗ =3(a-b),求证:A 、B 、D 三点共线; (2)试确定实数k,使ka+b 与a+kb 共线. 解析(1)证明:∵AB ⃗⃗⃗⃗⃗ =a+b,BC ⃗⃗⃗⃗⃗ =2a+8b, CD ⃗⃗⃗⃗⃗ =3(a-b),∴BD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =2a+8b+3(a-b)=2a+8b+3a-3b=5(a+b)=5AB ⃗⃗⃗⃗⃗ . ∴AB ⃗⃗⃗⃗⃗ 、BD ⃗⃗⃗⃗⃗⃗ 共线, 又∵AB ⃗⃗⃗⃗⃗ 与BD⃗⃗⃗⃗⃗⃗ 有公共点B,∴A 、B 、D 三点共线. (2)∵ka+b 与a+kb 共线, ∴存在实数λ,使ka+b =λ(a+kb), 即ka+b =λa +λk b,∴(k-λ)a =(λk -1)b. ∵a 、b 是不共线的两个非零向量, ∴k-λ=λk -1=0,∴k 2-1=0,∴k=±1. 思维突破用向量法证明三点共线的关键与步骤(1)关键:能否找到一个实数λ,使得b =λa(a 、b 为这三点构成的任意两个向量). (2)步骤:先证明向量共线,然后指出两向量有公共点,从而证得三点共线.2-1如图,在平行四边形ABCD 中,点M 是AB 的中点,点N 在线段BD 上,且有BN=13BD,求证:M,N,C 三点共线.证明设AB ⃗⃗⃗⃗⃗ =a,BC ⃗⃗⃗⃗⃗ =b,则MN ⃗⃗⃗⃗⃗⃗⃗ =MB ⃗⃗⃗⃗⃗⃗ +BN ⃗⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +13BD ⃗⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +13(AD ⃗⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ )=12a+13(b-a)=16a+13b,MC ⃗⃗⃗⃗⃗⃗ =MB ⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =12a+b=3×(16a +13b)=3MN ⃗⃗⃗⃗⃗⃗⃗ ,∴MC ⃗⃗⃗⃗⃗⃗ ,MN ⃗⃗⃗⃗⃗⃗⃗ 共线,又MC ⃗⃗⃗⃗⃗⃗ 与MN⃗⃗⃗⃗⃗⃗⃗ 有公共点M,∴M,N,C 三点共线.探究三向量线性运算的应用例3(易错题)已知点E,F 分别为四边形ABCD 的对角线AC,BD 的中点,设BC ⃗⃗⃗⃗⃗ =a,DA ⃗⃗⃗⃗⃗ =b,试用a,b 表示EF⃗⃗⃗⃗⃗ . 解析如图所示,取AB 的中点P,连接EP,FP. 在△ABC 中,EP 是中位线, 所以PE⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ =12a. 在△ABD 中,FP 是中位线,所以PF ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ =-12DA ⃗⃗⃗⃗⃗ =-12b.在△EFP 中,EF ⃗⃗⃗⃗⃗ =EP ⃗⃗⃗⃗⃗ +PF ⃗⃗⃗⃗⃗ =-PE ⃗⃗⃗⃗⃗ +PF⃗⃗⃗⃗⃗ =-12·a-12b =-12(a+b).易错点拨在根据平面几何图形进行化简、证明时,要准确应用平面几何图形的性质.应根据题意判断所给图形是不是特殊图形,不能盲目运用特殊图形的性质进行求解.3-1已知四边形ABCD 是一个梯形,AB ∥CD,且AB=2CD,M,N 分别是DC,AB 的中点,已知AB ⃗⃗⃗⃗⃗ =a,AD ⃗⃗⃗⃗⃗ =b,试用a,b 表示BC ⃗⃗⃗⃗⃗ 和MN ⃗⃗⃗⃗⃗⃗⃗ . 解析解法一:如图,连接CN, 易知AN 与DC 垂直且相等, 所以四边形ANCD 是平行四边形. CN ⃗⃗⃗⃗⃗ =-AD ⃗⃗⃗⃗⃗ =-b,又因为CN ⃗⃗⃗⃗⃗ +NB ⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =0, 所以BC⃗⃗⃗⃗⃗ =-CN ⃗⃗⃗⃗⃗ -NB ⃗⃗⃗⃗⃗⃗ =b-12a, MN ⃗⃗⃗⃗⃗⃗⃗ =CN ⃗⃗⃗⃗⃗ -CM ⃗⃗⃗⃗⃗⃗ =CN ⃗⃗⃗⃗⃗ +12AN⃗⃗⃗⃗⃗⃗ =-b+14a. 解法二:因为AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =0, 所以a+BC⃗⃗⃗⃗⃗ +(-12a)+(-b)=0, 所以BC⃗⃗⃗⃗⃗ =b-12a, 又因为在四边形ADMN 中有AD ⃗⃗⃗⃗⃗ +DM ⃗⃗⃗⃗⃗⃗ +MN ⃗⃗⃗⃗⃗⃗⃗ +NA⃗⃗⃗⃗⃗⃗ =0, 所以b+14a+MN⃗⃗⃗⃗⃗⃗⃗ +(-12a)=0, 所以MN⃗⃗⃗⃗⃗⃗⃗ =14a-b. 3-2设O 为△ABC 内任意一点,且满足OA ⃗⃗⃗⃗⃗ +2OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =0,若D,E 分别是BC,CA 的中点. (1)求证:D,E,O 三点共线; (2)求S△ABC S △AOC的值.解析(1)证明:如图,OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =2OD ⃗⃗⃗⃗⃗⃗ ,OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =2OE ⃗⃗⃗⃗⃗ , ∴OA ⃗⃗⃗⃗⃗ +2OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =(OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )+2(OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )=2(2OD ⃗⃗⃗⃗⃗⃗ +OE ⃗⃗⃗⃗⃗ )=0, ∴2OD ⃗⃗⃗⃗⃗⃗ +OE ⃗⃗⃗⃗⃗ =0,∴OD ⃗⃗⃗⃗⃗⃗ 与OE ⃗⃗⃗⃗⃗ 共线,又OD ⃗⃗⃗⃗⃗⃗ 与OE ⃗⃗⃗⃗⃗ 有公共点O, ∴D,E,O 三点共线. (2)由(1)知2|OD ⃗⃗⃗⃗⃗⃗ |=|OE ⃗⃗⃗⃗⃗ |,∴S △AOC =2S △COE =2×23S △CDE =2×23×14×S △ABC =13S △ABC ,∴S△ABC S △AOC=3.1.已知非零向量a,b 满足a=4b,则() A.|a|=|b| B.4|a|=|b| C.a,b 的方向相同 D.a,b 的方向相反答案C ∵a=4b,4>0,∴|a|=4|b|. ∵4b 与b 的方向相同, ∴a 与b 的方向相同.2.(多选题)下列向量中,a,b 一定共线的是() A.a=2e,b=-2e B.a=e 1-e 2,b=-2e 1+2e 2 C.a=4e 1-25e 2,b=e 1-110e 2 D.a=e 1+e 2,b=2e 1-2e 2答案ABCA 中,b=-a,则a,b 共线;B 中,b=-2a,则a,b 共线;C 中,a=4b,则a,b 共线;D 中,a,b 不共线.3.已知向量a=e 1+λe 2,b=2e 1,λ∈R,且λ≠0,若a ∥b,则() A.e 1=0B.e 2=0C.e 1∥e 2D.e 1∥e 2或e 1=0或e 2=0 答案D4.已知x,y 是实数,向量a,b 不共线,若(x+y-1)a+(x-y)b=0,则x=,y=. 答案12;12解析由已知得{x +y -1=0,x -y =0,解得x=y=12.5.已知两个非零向量e 1、e 2不共线,若AB ⃗⃗⃗⃗⃗ =2e 1+3e 2,BC ⃗⃗⃗⃗⃗ =6e 1+23e 2,CD ⃗⃗⃗⃗⃗ =4e 1-8e 2.求证:A 、B 、D 三点共线.证明∵AD⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =2e 1+3e 2+6e 1+23e 2+4e 1-8e 2 =12e 1+18e 2=6(2e 1+3e 2)=6AB ⃗⃗⃗⃗⃗ , ∴AD ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ 共线.又∵AD ⃗⃗⃗⃗⃗ 和AB ⃗⃗⃗⃗⃗ 有公共点A, ∴A 、B 、D 三点共线.数学运算——在几何图形中进行向量线性运算如图所示,已知▱ABCD 的边BC,CD 上的中点分别为K,L,且AK ⃗⃗⃗⃗⃗ =e 1,AL ⃗⃗⃗⃗⃗ =e 2,试用e 1,e 2表示BC ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ .审:几何图形中用已知向量表示待求向量,可考虑用三角形法则或共线定理. 联:结合图形特征,把待求向量放在三角形中,进行加减运算. 解:解法一:设BC⃗⃗⃗⃗⃗ =a,则BK ⃗⃗⃗⃗⃗⃗ =①, AB ⃗⃗⃗⃗⃗ =AK ⃗⃗⃗⃗⃗ +KB ⃗⃗⃗⃗⃗⃗ =e 1-12a,DL⃗⃗⃗⃗⃗ =12e 1-14a. 又AD⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ =a,由AD ⃗⃗⃗⃗⃗ +DL ⃗⃗⃗⃗⃗ =AL ⃗⃗⃗⃗⃗ ,得a+12e 1-14a=e 2, 解得a=②.由CD ⃗⃗⃗⃗⃗ =-AB ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ =e 1-12a,得CD ⃗⃗⃗⃗⃗ =③.解法二:设BC ⃗⃗⃗⃗⃗ =m,CD ⃗⃗⃗⃗⃗ =n,则BK⃗⃗⃗⃗⃗⃗ =12m,DL ⃗⃗⃗⃗⃗ =-12n. 由AB ⃗⃗⃗⃗⃗ +BK ⃗⃗⃗⃗⃗⃗ =AK ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ +DL ⃗⃗⃗⃗⃗ =AL ⃗⃗⃗⃗⃗ , 得④,得m=23(2e 2-e 1),n=⑤,即BC ⃗⃗⃗⃗⃗ =43e 2-23e 1,CD ⃗⃗⃗⃗⃗ =-43e 1+23e 2. 解法三:如图所示,BC 的延长线与AL 的延长线交于点E,则△DLA ≌△CLE.从而AE ⃗⃗⃗⃗⃗ =2AL ⃗⃗⃗⃗⃗ ,CE ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ ,KE ⃗⃗⃗⃗⃗ =32BC⃗⃗⃗⃗⃗ , 由KE ⃗⃗⃗⃗⃗ =AE ⃗⃗⃗⃗⃗ -AK ⃗⃗⃗⃗⃗ ,得32BC⃗⃗⃗⃗⃗ =2e 2-e 1, 即BC⃗⃗⃗⃗⃗ =⑥. 同理可得CD ⃗⃗⃗⃗⃗ =⑦.思:解决此类问题的一般思路是将所表示向量置于某一个三角形内,用加减法进行运算,然后逐步用已知向量表示待求向量,过程中体现数学运算核心素养.答案①12a ②43e 2-23e 1,即BC ⃗⃗⃗⃗⃗ =43e 2-23e 1 ③-43e 1+23e 2④{-n +12m =e 1m -12n =e 2⑤23(-2e 1+e 2)⑥43e 2-23e 1⑦-43e 1+23e 2如图所示,四边形OADB 是以向量OA ⃗⃗⃗⃗⃗ =a,OB⃗⃗⃗⃗⃗ =b 为邻边的平行四边形,又BM=13BC,CN=13CD,试用a,b 表示OM ⃗⃗⃗⃗⃗⃗ 、ON ⃗⃗⃗⃗⃗⃗ 、MN⃗⃗⃗⃗⃗⃗⃗ . 解析BM⃗⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ =16BA ⃗⃗⃗⃗⃗ =16(OA ⃗⃗⃗⃗⃗ -OB ⃗⃗⃗⃗⃗ )=16(a-b)=16a-16b, ∴OM ⃗⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =b+16a-16b=16a+56b. ∵CN ⃗⃗⃗⃗⃗ =13CD ⃗⃗⃗⃗⃗ =16OD⃗⃗⃗⃗⃗⃗ , ∴ON ⃗⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +CN ⃗⃗⃗⃗⃗ =12OD ⃗⃗⃗⃗⃗⃗ +16OD ⃗⃗⃗⃗⃗⃗ =23OD ⃗⃗⃗⃗⃗⃗ =23(OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗ )=23a+23b, MN ⃗⃗⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗⃗ -OM ⃗⃗⃗⃗⃗⃗ =23a+23b-16a-56b=12a-16b.1.将112[2(2a+8b)-4(4a-2b)]化简成最简形式为() A.2a-bB.2b-a C.a-bD.b-a答案B2.在△ABC 中,如果AD,BE 分别为BC,AC 上的中线,且AD ⃗⃗⃗⃗⃗ =a,BE ⃗⃗⃗⃗⃗ =b,那么BC ⃗⃗⃗⃗⃗ =() A.23a+43bB.23a-23b C.23a-43bD.-23a+43b 答案A3.已知AB ⃗⃗⃗⃗⃗ =a+4b,BC ⃗⃗⃗⃗⃗ =2b-a,CD ⃗⃗⃗⃗⃗ =2(a+b),则() A.A 、B 、C 三点共线B.A 、B 、D 三点共线 C.A 、C 、D 三点共线D.B 、C 、D 三点共线 答案B4.在△ABC 中,已知D 是AB 边上一点,若AD ⃗⃗⃗⃗⃗ =2DB ⃗⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ =13CA ⃗⃗⃗⃗⃗ +λCB ⃗⃗⃗⃗⃗ ,则λ等于() A.23B.13C.-13D.-23答案A 解法一:由AD ⃗⃗⃗⃗⃗ =2DB⃗⃗⃗⃗⃗⃗ , 可得CD ⃗⃗⃗⃗⃗ -CA ⃗⃗⃗⃗⃗ =2(CB ⃗⃗⃗⃗⃗ -CD ⃗⃗⃗⃗⃗ )⇒CD ⃗⃗⃗⃗⃗ =13CA⃗⃗⃗⃗⃗ +23CB ⃗⃗⃗⃗⃗ ,所以λ=23. 解法二:CD ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +23AB ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +23(CB ⃗⃗⃗⃗⃗ -CA ⃗⃗⃗⃗⃗ )=13CA⃗⃗⃗⃗⃗ +23CB ⃗⃗⃗⃗⃗ ,所以λ=23. 5.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A 、C),则AP ⃗⃗⃗⃗⃗ =() A.λ(AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ),λ∈(0,1) B.λ(AB ⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ ),λ∈(0,√22) C.λ(AB⃗⃗⃗⃗⃗ -BC ⃗⃗⃗⃗⃗ ),λ∈(0,1) D.λ(AB ⃗⃗⃗⃗⃗ -BC⃗⃗⃗⃗⃗ ),λ∈(0,√22) 答案A 因为P 是对角线AC 上的一点(不包括端点A 、C),所以存在λ∈(0,1),使得AP ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ ,于是AP ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ ),λ∈(0,1). 6.已知向量a,b 不共线,实数x,y 满足向量等式5xa+(8-y)b=4xb+3(y+9)a,则x=,y=. 答案3;-4解析因为a 与b 不共线,所以{5x =3y +27,8-y =4x,解得{x =3,y =-4.7.若|a|=3,|b|=2,b 与a 反向,则a=b. 答案-32解析因为b 与a 反向,所以a =λb ,λ<0.又|a|=3,|b|=2,所以|a|∶|b |=|λ|, 所以λ=-32,所以a=-32b.8.如图,在四边形ABCD 中,E,F,G,H 分别为BD,AB,AC,CD 的中点,求证:四边形EFGH 为平行四边形.证明∵F,G 分别是AB,AC 的中点, ∴FG ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ .同理,EH⃗⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ . ∴FG ⃗⃗⃗⃗⃗ =EH ⃗⃗⃗⃗⃗⃗ . ∴FG=EH,FG ∥EH,∴四边形EFGH 为平行四边形.9.已知△ABC 和点M 满足MA ⃗⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ +MC ⃗⃗⃗⃗⃗⃗ =0.若存在实数m 使得AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =m AM ⃗⃗⃗⃗⃗⃗ 成立,则m=() A.2B.3C.4D.5答案B 由MA ⃗⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ +MC ⃗⃗⃗⃗⃗⃗ =0可知,M 为△ABC 的重心,故AM ⃗⃗⃗⃗⃗⃗ =23×12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=13(AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ),所以AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =3AM ⃗⃗⃗⃗⃗⃗ ,即m=3.10.(多选题)在△ABC 中,点D 在线段BC 的延长线上,且BC ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ ,点O 在线段CD 上(与点C 、D 不重合),若AO ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +(1-x)AC ⃗⃗⃗⃗⃗ ,则x 可以是() A.-13B.-14C.0D.-√26答案BD 当点O 与点C 重合时,AC ⃗⃗⃗⃗⃗ =0AB ⃗⃗⃗⃗⃗ +(1-0)·AC ⃗⃗⃗⃗⃗ ,此时x=0;当点O 与点D 重合时,AD ⃗⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗⃗ , 此时x=-13.因为点O 在线段CD 上(与点C 、D 不重合),所以-13<x<0.故x 可以是-14,-√26.故选BD. 11.若对于△ABC 内部的一点O,存在实数λ使得OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =λ(OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )成立,则△OBC 与△ABC 的面积比为. 答案1∶2解析如图所示,设D,E 分别是AB,AC 的中点,连接OA,OB,OC,以OA,OB 为邻边作平行四边形OAGB,以OA,OC 为邻边作平行四边形OAFC,连接OG,OF.则OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =OG ⃗⃗⃗⃗⃗ =2OD ⃗⃗⃗⃗⃗⃗ ,OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ =2OE ⃗⃗⃗⃗⃗ ,因为OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =λ(OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ ),所以OD ⃗⃗⃗⃗⃗⃗ =λOE ⃗⃗⃗⃗⃗ , 所以点O 在线段DE 上.又因为D,E 分别是AB,AC 的中点,所以△OBC 与△ABC 的面积比是1∶2.12.如图,四边形ABCD 是一个梯形,AB ⃗⃗⃗⃗⃗ ∥CD ⃗⃗⃗⃗⃗ 且|AB ⃗⃗⃗⃗⃗ |=2|CD ⃗⃗⃗⃗⃗ |,M,N 分别是DC,AB 的中点,已知AB ⃗⃗⃗⃗⃗ =e 1,AD ⃗⃗⃗⃗⃗ =e 2,试用e 1,e 2表示下列向量:AC ⃗⃗⃗⃗⃗ =;MN⃗⃗⃗⃗⃗⃗⃗ =. 答案e 2+12e 1;14e 1-e 2解析因为AB ⃗⃗⃗⃗⃗ ∥CD ⃗⃗⃗⃗⃗ ,|AB ⃗⃗⃗⃗⃗ |=2|CD ⃗⃗⃗⃗⃗ |,所以AB ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ .所以AC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ =e 2+12e 1.MN ⃗⃗⃗⃗⃗⃗⃗ =MD ⃗⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ +AN ⃗⃗⃗⃗⃗⃗ =-12DC ⃗⃗⃗⃗⃗ -AD ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ =-14e 1-e 2+12e 1=14e 1-e 2. 13.已知O,A,M,B 为平面上四点,且OM ⃗⃗⃗⃗⃗⃗ =λOB ⃗⃗⃗⃗⃗ +(1-λ)OA ⃗⃗⃗⃗⃗ (λ∈R ,λ≠1,λ≠0).(1)求证:A,B,M 三点共线;(2)若点B 在线段AM 上,求实数λ的取值范围.解析(1)证明:因为OM ⃗⃗⃗⃗⃗⃗ =λOB ⃗⃗⃗⃗⃗ +(1-λ)OA ⃗⃗⃗⃗⃗ ,所以OM ⃗⃗⃗⃗⃗⃗ =λOB ⃗⃗⃗⃗⃗ +OA ⃗⃗⃗⃗⃗ -λOA ⃗⃗⃗⃗⃗ ,OM ⃗⃗⃗⃗⃗⃗ -OA ⃗⃗⃗⃗⃗ =λOB ⃗⃗⃗⃗⃗ -λOA ⃗⃗⃗⃗⃗ ,即AM ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,又λ∈R ,λ≠1,λ≠0,且AM ⃗⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ 有公共点A,所以A,B,M 三点共线.(2)由(1)知AM ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,若点B 在线段AM 上,则AM ⃗⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ 同向且|AM ⃗⃗⃗⃗⃗⃗ |>|AB ⃗⃗⃗⃗⃗ |(如图所示),所以λ>1.14.平面内有一个△ABC 和一点O(如图),线段OA,OB,OC 的中点分别为E,F,G,线段BC,CA,AB 的中点分别为L,M,N,设OA ⃗⃗⃗⃗⃗ =a,OB⃗⃗⃗⃗⃗ =b,OC ⃗⃗⃗⃗⃗ =c. (1)试用a,b,c 表示向量EL⃗⃗⃗⃗⃗ ,FM ⃗⃗⃗⃗⃗⃗ ,GN ⃗⃗⃗⃗⃗⃗ ; (2)证明:线段EL,FM,GN 交于一点且互相平分.解析(1)因为OE ⃗⃗⃗⃗⃗ =12a,OL ⃗⃗⃗⃗⃗ =12(b+c),所以EL ⃗⃗⃗⃗⃗ =OL ⃗⃗⃗⃗⃗ -OE ⃗⃗⃗⃗⃗ =12(b+c-a). 同理可得FM ⃗⃗⃗⃗⃗⃗ =12(a+c-b), GN ⃗⃗⃗⃗⃗⃗ =12(a+b-c). (2)证明:设线段EL 的中点为P 1,则OP 1⃗⃗⃗⃗⃗⃗⃗ =12(OE ⃗⃗⃗⃗⃗ +OL ⃗⃗⃗⃗⃗ )=14(a+b+c). 设FM,GN 的中点分别为P 2,P 3,同理可求得OP 2⃗⃗⃗⃗⃗⃗⃗ =14(a+b+c),OP 3⃗⃗⃗⃗⃗⃗⃗ =14(a+b+c),所以OP 1⃗⃗⃗⃗⃗⃗⃗ =OP 2⃗⃗⃗⃗⃗⃗⃗ =OP 3⃗⃗⃗⃗⃗⃗⃗ , 即线段EL,FM,GN 交于一点且互相平分.。
【课题】 7.1.5 平面向量的数乘运算江夏职业技术学校 张主枝【教学目标】(1)理解向量的数乘运算的定义(2)掌握共线向量的基本定理【教学重点】数乘运算的定义【教学难点】对向量线性表示的理解和运用【课时安排】2课时【教学过程】一、创设情境 兴趣导入观察图7-15可以看出,向量OC 与向量a 共线,并且 OC =3a .图7−15二、新授知识1.数乘运算的定义:实数λ与向量a 的积是一个向量,记作λa大小: ||||||a a λ=λ (7.3)方向:若||λ≠a 0,则当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反.一般地,有 0a = 0, λ0 = 0 .2.共线向量的基本定理:对于非零向量a 、b ,当0λ≠时,有λ⇔=a b a b ∥ (7.4)3.向量的数乘运算法则:()()111a a a a , ;=-=- ()()()()2a a a ;λμλμμλ==()()3a a a λμλμ+=+ ;()a b a b (4).λλλ+=+4.向量的线性表示:一般地,λa +μb 叫做a , b 的一个线性组合(其中λ,μ均为系数).如果l =λa +μ b ,则称l 可以用a ,b 线性表示.5.向量的线性运算:向量的加法、减法、数乘运算都叫做向量的线性运算.注意:向量加法及数乘运算在形式上与实数的有关运算规律相类似,因此,实数运算中的去括号、移项、合并同类项等变形,可直接应用于向量的运算中.但是,要注意向量的运算与数的运算的意义是不同的.三、巩固知识 典型例题例6 在平行四边形ABCD 中,O 为两对角线交点如图7-16,AB =a ,AD =b ,试用a , b 表示向量AO 、OD .分析 因为12AO AC =,12OD BD =,所以需要首先分别求出向量AC 与BD .解 AC =a +b ,BD =b −a ,因为O 分别为AC ,BD 的中点,所以1122==AO AC (a +b )=12a +12b , OD =12BD =12(b −a )=−12a +12b . 例6中,12a +12b 和−12a +12b 都叫做向量a ,b 的线性组合,或者说,AO 、OD 可以用向量a ,b 线性表示.四、运用知识 强化练习1. 计算:(1)3(a −2 b )-2(2 a +b );(2)3 a −2(3 a −4 b )+3(a −b ).2.设a , b 不共线,求作有向线段OA ,使OA =12(a +b ).3. 在正方形ABCD 中,AB =a ,BC =b 。
【教学过程】 *揭示课题7.2.3 平面向量的数乘运算 *情境导入有一同学从O 点出发,向东行进,1秒后到达A 点,按照相同的走法,问3秒后人在哪里,用向量怎么表示?观察图7-15可以看出,向量OC 与向量a 共线,并且OC =3a .图7−15*引入新知一般地,实数λ与向量a 的积是一个向量,记作λa ,它的模为(7.3)若||λ≠a 0,则当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反.当λ=0时,λa = 0。
实数λ与向量的乘法运算叫做向量的数乘运算。
由上面定义可以得到,对于非零向量a 、b ,当0λ≠时,有(7.4)容易验证,对于任意向量a , b 及任意实数λμ、,向量数乘运算满足如下的法则: ()()111=-=-a a a a , ;()()()()2a a a λμλμμλ== ;()()3a a a λμλμ+=+ ;()()a b a b λλλ+=+4 . 【做一做】请画出图形来,分别验证这些法则.向量加法及数乘运算在形式上与实数的有关运算规律相类似,因此,实数运算中的去括号、移项、合并同类项等变形,可直接应用于向量的运算中.但是,要注意向量的运算与数a a aaOA BC的运算的意义是不同的. *例题讲解例1 在平行四边形ABCD 中,O 为两对角线交点如图7-16,AB =a ,AD =b ,试用a , b 表示向量AO 、OD .例2 计算: (1)(-3)×4a(2)5(a +b )-2(a -b ) (3)(a +4 b -3c )-(2 a -3 b -5c )*练习强化1. 计算:(1)3(a −2 b )-2(2 a +b );(2)3 a −2(3 a −4 b )+3(a −b ).2.设a , b 不共线,求作有向线段OA ,使OA =12(a +b ). *揭示课题7.4.1 平面向量的内积 *情境导入如图7-21所示,水平地面上有一辆车,某人用100 N 的力,朝着与水平线成︒30角的方向拉小车,使小车前进了100 m .那么,这个人做了多少功?我们知道,这个人做功等于力与在力的方向上移动的距离的乘积.如图7-22所示,设水平方向的单位向量为i ,垂直方向的单位向量为j ,则F =x i + y j cos30sin 30=⋅+⋅F i F j ,Fs图7—21︒30O图7-16即力F 是水平方向的力与垂直方向的力的和,垂直方向上没有产生位移,没有做功,水平方向上产生的位移为s ,即W =|F |cos ︒30·|s |=100×23·10=5003 (J ) *引入新知力F 与位移s 都是向量,而功W 是一个数量,它等于由两个向量F ,s 的模及它们的夹角的余弦的乘积,W 叫做向量F 与向量s 的内积,它是一个数量,又叫做数量积.如图7-23,设有两个非零向量a , b ,作OA =a , OB =b ,由射线OA 与OB 所形成的角叫做向量a 与向量b 的夹角,记作<a ,b>.我们规定,0180θ≤≤两个向量a ,b 的模与它们的夹角的余弦之积叫做向量a 与向量b 的内积,记作a ·b , 即(7.10) 上面的问题中,人所做的功可以记作W =F ·s. 由内积的定义可知 a ·0=0, 0·a =0. 由内积的定义可以得到下面几个重要结果:(1) 当<a ,b >=0时,a ·b =|a ||b |;当<a ,b >=180时,a ·b =−|a ||b |. (2) cos<a ,b >=||||⋅a ba b . (3) 当b =a 时,有<a ,a >=0,所以a ·a =|a ||a |=|a |2,即|a |.(4) 当,90a b <>=时,a ⊥b ,因此,a ·b =cos900,a b ⋅=因此对非零向量a ,b ,有a ·b =0⇔a ⊥b.可以验证,向量的内积满足下面的运算律: (1) a ·b =b ·a .(2) (a λ)·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c .注意:一般地,向量的内积不满足结合律,即a ·(b ·c )≠(a ·b )·c .B*例题讲解60,求a·b.例1 已知|a|=3,|b|=2, <a,b>=︒-,求<a,b>.例2 已知|a|=|b|=2,a·b=2*练习强化60,求a·b.1. 已知|a|=7,|b|=4,a和b的夹角为︒2. 已知a·a=9,求|a|.30,求(2a+b)·b.3. 已知|a|=2,|b|=3, <a,b>=︒*归纳小结向量的数乘运算得到的是什么向量?向量的内积运算得到的是什么?。
(完整版)教案平面向量的数乘运算一、引言平面向量是代数中一个重要的概念,而平面向量的数乘运算是对向量进行伸缩的操作,其在数学和物理中具有广泛的应用。
本教案将详细介绍平面向量的数乘运算及其性质。
二、定义1.1 平面向量平面向量是指具有大小和方向的量,在平面上由箭头表示,箭头的长度表示向量的大小,箭头的指向表示向量的方向。
常用大写字母表示平面向量,如向量A。
1.2 数乘运算数乘运算是指将一个向量与一个实数相乘,得到一个新的向量。
若向量A与实数k进行数乘运算,记作kA,其中k为实数。
数乘运算可改变向量的大小和方向,具体规律将在后文中介绍。
三、性质与规律2.1 数乘运算的基本性质(1)零向量的数乘:0A = 0,其中0为零向量。
零向量的数乘结果仍为零向量。
(2)单位向量的数乘:1A = A,其中1为单位向量。
单位向量的数乘结果与原向量相等。
2.2 数乘运算的规律(1)交换律:kA = Ak,其中k为实数。
数乘运算满足交换律,即数与向量的顺序可以交换。
(2)结合律:(kl)A = k(lA),其中k、l为实数。
数乘运算满足结合律,即数与向量的括号位置可以移动。
(3)分配律:(k + l)A = kA + lA,其中k、l为实数。
数乘运算满足分配律,即数与向量相加后再进行数乘,等价于先进行数乘再相加。
四、数乘运算的几何解释3.1 放缩效应数乘运算改变向量的大小,当k > 1时,数乘结果的向量放大;当0 < k < 1时,数乘结果的向量缩小;当k < 0时,数乘结果的向量方向发生反转。
3.2 平行效应数乘运算可以改变向量的方向,当k > 0时,数乘结果的向量与原向量方向相同;当k < 0时,数乘结果的向量与原向量方向相反;当k = 0时,数乘结果的向量为零向量。
五、数乘运算的应用4.1 向量的单位化将一个非零向量除以它的模长,得到的结果是一个方向与原向量相同的单位向量。
4.2 平面向量加法与数乘运算的关系在平面向量加法中,若向量A与向量B的和为向量C,即C = A + B,那么向量C也可以表示为C = kA + lB的形式,其中k、l为实数。
《向量的减法、向量的数乘》教学设计◆教学目标1.掌握向量减法的运算,并理解其几何意义,理解相反向量的含义,能用相反向量说出向量相减的意义,提升学生的直观想象核心素养.2.能将向量的减法运算转化为向量的加法运算,提升直观想象和逻辑推理核心素养.3.通过实例分析,掌握平面向量数乘运算及运算规则,理解其几何意义,提升学生的直观想象核心素养.◆教学重难点◆教学重点:了解数乘向量的概念,并理解这种运算的意义.教学难点:对向量减法法则及向量数乘运算的应用.◆课前准备PPT课件.◆教学过程一、整体概览问题1:阅读课本,回答下列问题:(1)本节将要研究哪类问题?(2)本节要研究的对象在高中的地位是怎样的?师生活动:学生带着问题阅读课本,老师指导学生概括总结章引言的内容.预设的答案:(1)主要研究向量的减法和数乘运算(2)通过前面的学习,让学生认识了向量,本节延续上一节的学习要求,开始向量的减法运算,数乘运算.理清楚本节和上节的关系,为后面后续学习打好基础,做好铺垫.设计意图:通过章引言内容的预习,让学生明晰下一阶段的学习目标,初步搭建学习内容的框架.二、探索新知1、形成定义问题2:已知向量AD 是向量AB 与向量x 的和,如图所示,你能作出表示向量x 的有向线段吗?师生活动:提示学生利用向量加法的三角形法则.预设的答案:由向量加法的三角形法则可知,向量x 实际上就是向量BD .设计意图:通过向量加法的三角形法则,引出向量的减法实际上就是向量加法的逆运算,增强学生学习的动力.引语:而本节要讲的内容即额为向量的减法和向量的数乘.(板书:向量的减法和向量的数乘)教师讲解:一般地,平面上任意给定两个向量b a ,,如果向量x 能够满足x =b a -,则称x 为向量b a ,的差,并记作x =b a -不难看出,在平面内任取一点O ,作b OB a OA ==,,作出向量BA ,注意到OA BA OB =+,因此向量BA 就是向量b a ,的差(也称BA 为向量b a ,的差向量),即BA OB OA =-,当b a ,不共线时,求b a -的差可用图6-1-17表示,此时向量b a ,正好能构成一个三角形,因此上述求两向量差的作图方法也常称为向量减法的三角形法则.给定一个向量,我们把与这个向量方向相反、大小相等的向量称为它的相反向量,向量a 的相反向量记作-a .因此,AB 的相反向量是-AB ,而且-AB =BA .因为零向量的始点与终点相同,所以00=-注意:(1)任何一个向量与它的相反向量的和都等于零向量.即0)(,0)(=-+=-+BA AB a a(2)一个向量减去另一个向量,等于第一个向量加上第二个向量的相反向量.三、初步应用例1 已知平行四边形ABCD 中,a AB =,b AD =,用b a ,分别表示向量DB AC , 师生活动:教师提示运用向量加法的平行四边形法则和减法的三角形法则,学生观根据提示自己解决问题. 预设的答案:由向量加法的平行四边形可知,b a AD AB AC +=+=,由减法的定义可知b a AD AB DB -=-=. 设计意图:给出两个向量的和向量与差向量的关系,这一结论经常用到,学生应特别注意.例2 已知||1||2a b ==,,求||a b -的取值范围.师生活动:教师引导学生用几何直观进行解释,也可借助软件制作动画,展示整个变化过程,教师给出答案.预设的答案:当a b ,不共线时,由向量减法的三角形法则可知||||||a b a b -,,正好是一个三角形的三条边,从而||||||||||||a b a b a b -<-<+,因此1||3a b <-<,当a b ,共线时,不难看出:如果a b ,方向相同,有||||||||1a b a b -=-=,如果a b ,方向相反,有||||||3a b a b +=-=,综上有1||3a b -≤≤设计意图:揭示问题本质,提高学生的学习兴趣.问题3:a a a ++结果是向量吗?如果是,那么结果向量的模是多少?方向如何?与向量a 的模及方向有什么关系?可否类比实数乘法的定义方法(5+5+5可以表示为3×5),把a a a ++进行简写?师生活动:教师引导学生给出问题答案,并自行定义归纳出数乘向量的定义.预设的答案:我们已经知道,多个向量相加,结果是一个向量.特别地,给定一个向量a ,3个a 相加a a a ++的结果,是一个模为3|a |、方向与a 相同的向量,通常这个向量简单记作3a .设计意图:揭示问题本质,提高学生的学习兴趣.问题4:你能根据上述实例,给出实数λ与任意一个向量a 的乘积λa 的定义吗? 师生活动:学生自行思考并给出答案,教师给出正确答案.预设的答案:一般地,给定一个实数λ与任意一个向量a ,规定它们的乘积是一个向量,记作a ,其中(1)当λ≠0且a ≠0时,A 的模为λ|a |,而且λa 的方向如下:①当λ>0时,与a 的方向相同②当λ<0时,与a 的方向相反(2)当λ=0或a =0时,λa =0设计意图:通过上述问题的讨论,渗透类比、分类讨论以及数形结合的思想,加深学生对数乘向量的理解与认识.教师讲解:上述实数λ与向量a 相乘的运算简称为数乘向量.由定义不难看出,数乘向量的结果是一个向量,而且这个向量与原来的向量共线(平行),即λa ∥a ;数乘向量的几何意义是,把向量沿着它的方向或反方向放大或缩小,特别地,一个向量的相反向量可以看成-1与这个向量的乘积,即-a =(-1)a .当设λ,μ为实数,则①(λ+μ)a =λa +μa ;②λ(μa )=(λμ)a ;③λ(a +b )=λa +λb .数乘向量的定义说明,如果存在实数λ,使得,a b λ=则a b //.例3 已知32a e b e ==-,,其中e 为非零向量,判断b a 、是否平行,并求||:||a b 的值.师生活动:学生自行解答,由老师指定学生回答.预设的答案:由2b e =-, 得12e b =-,代入3a e =,得32a b =-,因此//b a ,且||:||a b =3∶2设计意图:判断两个向量是否平行,可以考虑其中一个向量是否可以写成另一个向量与数的乘积.例4 已知,5,e AC e AB =-=判断A ,B ,C 是否共线,如果共线,求出AB ∶AC . 师生活动:学生自行解答,由老师指定学生回答.预设的答案:由已知得5AC AB =-, 因此A ,B ,C 三点共线,且AC =5AB ,即AB ∶AC =1∶5设计意图:利用数乘的方法给出了判断三个不同的点是否共线的方法.巩固练习1.下列各式中不表示向量的是( )A .0·aB .a +3bC .|3a |D .1x -ye (x ,y ∈R ,且x ≠y ) 师生活动:学生自行解答,由老师指定学生回答.预设的答案:C [向量的数乘运算结果仍为向量,显然只有|3a |不是向量.]2.4(a -b )-3(a +b )-b 等于( )A .a -2bB .aC .a -6bD .a -8b师生活动:学生自行解答,由老师指定学生回答.预设的答案:D [4(a -b )-3(a +b )-b =4a -4b -3a -3b -b =a -8b .] 设计意图:通过巩固训练的设置,加深概念的理解和应用.四、归纳小结,布置作业问题5:(1)向量减法的三角形法则是什么?(2)什么是数乘向量?师生活动:学生尝试总结,老师适当补充.预设的答案:(1)一般地,平面上任意给定两个向量b a ,,如果向量x 能够满足x =b a -,则称x 为向量b a ,的差,并记作x =b a -不难看出,在平面内任取一点O ,作b OB a OA ==,,作出向量BA ,注意到OA BA OB =+,因此向量BA 就是向量b a ,的差(也称BA 为向量b a ,的差向量),即BA OB OA =-,当b a ,不共线时,求b a -的差可用图6-1-17表示,此时向量b a ,正好能构成一个三角形,因此上述求两向量差的作图方法也常称为向量减法的三角形法则.(2)一般地,给定一个实数λ与任意一个向量a ,规定它们的乘积是一个向量,记作a ,其中(1)当λ≠0且a ≠0时,A 的模为λ|a |,而且λa 的方向如下:①当λ>0时,与a 的方向相同②当λ<0时,与a 的方向相反(2)当λ=0或a =0时,λa =0实数λ与向量a 相乘的运算简称为数乘向量设计意图:通过梳理本节课的内容,能让学生更加明确向量减法和数乘向量的概念的有关知识.五、目标检测设计1.若两个非零向量a 与(2x -1)a 方向相同,则x 的取值范围为________. 设计意图:考查学生对向量的运算的混合运算能力.2.O 为平行四边形ABCD 的中心,AB →=4e 1,BC →=6e 2,则3e 2-2e 1=________.设计意图:考查学生对数乘向量的简单应用.3.若平面内不共线的四点O ,A ,B ,C 满足OB →=13OA →+23OC →,则|AB →||BC →|=________. 设计意图:考查学生对混合运算的应用.参考答案:1.x >12解析:由定义可知,2x -1>0,即x >12. 2.OD →(或BO →)解析:设点E 为平行四边形ABCD 的边BC 的中点,点F 为AB 边中点,则3e 2-2e 1=BE →+BF →=BO →=OD →.3.2解析:因为OB →=13OA →+23OC →,所以OB →-OA →=13OA →+23OC →-OA →,即AB →=23AC →, 所以|AB →|=23|AC →|,① 同理可得|CB →|=13|CA →|,②①÷②得|AB →||BC →|=2.。
平面向量的数乘运算教学目标:1. 理解平面向量的数乘运算概念。
2. 掌握平面向量的数乘运算规则。
3. 能够运用数乘运算解决实际问题。
教学内容:一、平面向量的数乘运算概念1. 引入实数与向量的乘积,即数乘运算。
2. 讲解数乘运算的定义及性质。
二、平面向量的数乘运算规则1. 讲解数乘运算的分配律。
2. 讲解数乘运算的结合律。
3. 讲解数乘运算的单位向量。
三、数乘运算在坐标系中的应用1. 讲解二维坐标系中向量的数乘运算。
2. 讲解三维坐标系中向量的数乘运算。
四、数乘运算与向量长度的关系1. 讲解数乘运算与向量长度的关系。
2. 讲解数乘运算在求向量长度中的应用。
五、数乘运算在向量运算中的应用1. 讲解数乘运算在向量加法中的应用。
2. 讲解数乘运算在向量减法中的应用。
教学方法:1. 采用讲授法,讲解数乘运算的概念、规则及应用。
2. 利用多媒体演示,直观展示数乘运算在坐标系中的应用。
3. 引导学生通过练习,巩固数乘运算的知识。
教学评估:1. 课堂练习:布置有关数乘运算的题目,检查学生掌握情况。
2. 课后作业:布置有关数乘运算的综合题目,要求学生在规定时间内完成。
3. 单元测试:进行有关数乘运算的测试,了解学生对知识的掌握程度。
教学资源:1. 教学PPT:展示数乘运算的概念、规则及应用。
2. 练习题库:提供丰富的数乘运算题目,供学生练习。
3. 坐标系软件:辅助展示数乘运算在坐标系中的应用。
教学建议:1. 在讲解数乘运算概念时,注意与实数的乘法进行对比,帮助学生理解。
2. 在讲解数乘运算规则时,举例说明,让学生更好地掌握。
3. 在数乘运算的应用部分,注重引导学生思考,提高解决问题的能力。
4. 针对不同程度的学生,合理安排课堂练习和课后作业,提高教学效果。
5. 及时进行教学评估,针对学生的薄弱环节进行有针对性的讲解和辅导。
平面向量的数乘运算教学内容:六、数乘运算与向量坐标的关系2. 举例说明数乘运算在坐标系中的应用。
《向量的数乘运算及其几何意义》教学设计一、教学分析向量具有丰富的实际背景和几何背景,向量既有大小,又有方向.本节学习向量的数乘运算及其几何意义.向量数乘运算以及加法、减法统称为向量的三大线性运算,向量的数乘运算其实是加法运算的推广及简化.教学时从加法入手,引入数乘运算,充分体现了数学知识之间的内在联系.实数与向量的乘积仍然是一个向量,既有大小,又有方向.特别是方向与已知向量是共线向量,进而引出共线向量定理.这样平面内任意一条直线l 就可以用点A和某个向量a 表示了.共线向量定理是本章节的重要的内容,应用相当广泛,且容易出错,尤其是定理的前提条件:向量a 是非零向量.共线向量的应用主要用于证明点共线或线平行等,且与后学的知识有着密切的联系.二、教学目标1、知识与技能通过经历探究数乘运算法则及其几何意义的过程,掌握实数与向量积的定义;理解实数与向量积的几何意义;掌握实数与向量积的运算律.2、过程与方法通过师生互动理解两个向量共线的等价条件,能够运用两向量共线条件判定两向量是否平行,进而判定点共线或直线平行.3、情感态度与价值观通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法(从特殊到一般、分类讨论、转化化归、观察、猜想、归纳、类比、总结等);培养创新能力和积极进取精神;通过解决具体问题,体会数学在实际生活中的重要作用.四、教学重难点教学重点:1.实数与向量积的意义及其几何意义; 2.实数与向量积的运算律;3.两个向量共线的等价条件及其运算. 教学难点:对向量共线的等价条件的理解以及运用. 五、教具选取三角板、投影仪、多媒体辅助教学. 六、教学过程 1、导入新课:一条细绳东西方向摆放,一只蚂蚁在细绳上做匀速直线运动,若蚂蚁向东方向一秒钟的位移对应的向量为a,那么它在同一方向上3秒钟的位移对应的向量怎样表示?是a 3吗?若蚂蚁向西3秒钟的位移对应的向量又怎样表示?是a3-吗?你能用图形表示吗?学生活动:独立思考.教师活动:提问、引导学生作答.设计意图:向量具有丰富的实际背景和几何背景,并且兼具“数”与“形”的特点,它在物理和几何中具有广泛的应用,故本节通过位移的实际背景引入新课. 2、推进新课:探究:已知非零向量a ,试作出a a a ++和)()()(a a a-+-+-,你能说明它的几何意义吗?学生活动:独立观察、思考、总结. 教师活动:提问、引导学生.设计意图:认识和理解向量数乘的几何意义必须从几何直观入手,即通过学生自己作出向量a a a++和)()()(a a a-+-+-,以及独立观察、思考,让学生对向量的伸缩有一个初步的感性认识,进而为下一步对向量的数乘的定义及其几何意义的理性aa a认识做好铺垫.问题1:你能通过上述的具体实例总结出更具一般性的向量数乘的定义吗? 从而推广到一般的向量数乘的定义.我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作aλ,它的长度与方向规定如下:(1)a aλλ=;(2)当0>λ时,a λ的方向与a 一致;当0<λ时,a λ的方向与a的方向相反.由(1)可知当0=λ时,0=a λ.设计意图:通过引出向量的数乘的定义,让学生体会从特殊到一般的思想方法. 问题2:你能说明它的几何意义吗? 学生活动:小组合作交流,学生单独作答.设计意图:从数学学科这个整体来看,数学的高度抽象性造就了数学的难懂、难学,解决这一问题的基本途径是顺应学习者的认知规律,在可能的情况下,尽量做到从直观入手,从具体开始,逐步抽象.通过师生互动,得到向量数乘的几何意义是把向量a 沿a 的方向或a的反方向放大λ倍或缩小λ倍.问题3:C 在线段AB 上,且25=CB AC ,则=AC AB ;=BC AB . 学生活动:独立思考并踊跃回答. 教师活动:评价.设计意图:通过简单口答题来巩固学生对向量数乘定义的理解及运用.通过活动过程的成功体验提高学生学习的积极性.问题4:数的运算和运算律是紧密相连的,运算律可以有效地简化运算.类比数的乘法的运算律,你能说出数乘向量的运算律吗?归纳总结: (1)a a)()(λμμλ=(2)a a aμλμλ+=+)((3)b a b aλλλ+=+)(问题5:你能解释上述运算律的几何意义吗?归纳总结:)()(a a a-=-=-λλλ, b a b a λλλ-=-)(.问题6:你能从形式上描述向量数乘运算律与思考向量线性运算与以前学习过的哪些运算相类似?师生活动:通过类比得到向量数乘运算律;并且通过师生活动得到向量数乘运算、向量的加法、减法可以进行综合运算;实数运算中去括号、移项、提取公因式等可类比进行向量的线性运算.设计意图:数学中引进一个新的量,自然要看看它的运算及其运算律的问题.向量运算可以与学生熟悉的数的运算进行类比,从中得到启发.而数的运算和运算律是紧密相连的,运算律可以有效地简化运算.类比数的乘法的运算律引出数乘向量的运算律.向量具有明显的几何背景,所以向量的运算及运算律也具有明显的几何意义,尤其是涉及到长度、夹角的几何问题可以通过向量及其运算得到解决.这样了解向量数乘运算律的几何意义就有必要了. 3、例题讲解:例1.计算: 1.a 4)3(⨯-;2.)23()32(c b a c b a +---+. 变式练习:(1)计算:---+)(2)(3;(2)已知:0)(4)2(2)(3 =+---++b a x a x a x 求x.学生活动:独立完成,学生单独回答. 教师活动:提问、及时评价.设计意图:心理学认为:概念一旦形成,必须及时加以巩固,通过例1及巩固练习加深学生对数乘向量运算律的理解.解以向量作为未知数的方程可与求解实数方程类比.归纳总结:向量的加、减、数乘运算统称为向量的线性运算.对于任意的向量b a ,,以及任意实数21,,μμλ,恒有b a b a2121)(λμλμμμλ±=±.设计意图:向量的加、减、数乘运算统称为向量的线性运算.本节作为向量线性运算的最后一节,有必要综合认识向量线性运算.问题7:引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗? 师生活动:(分析总结)对于向量)0(≠a a 、b ,如果有一个实数λ,使a b λ=,那么由向量数乘的定义知a与b 共线,且向量b 是向量)0( ≠a a 模的λ倍,而λ的正负由向量)0( ≠a a 、b 的方向所决定.反过来,已知向量a 与b 共线,0 ≠a ,且向量b 的长度是向量a的长度的μ倍,即a b μ=,那么当a 与b 同方向时,有a b μ=;当a与b 反方向时,有a b μ-=.从上述两方面可知归纳总结:共线向量定理:向量)0(≠a a 、b 共线,当且仅当有一个实数λ,使得a b λ=.问题8:1) a为什么要是非零向量?2) b可以是零向量吗?3) 怎样理解向量平行?与两直线平行有什么异同? 学生活动:合作交流,独立作答. 教师活动:提问、引导、及时评价.设计意图:师生共同活动引出向量共线的定理;引导学生理解向量共线只需看这两个向量的方向相同或是相反,在向量)0( ≠a a 的前提下,向量)0(≠a a 、b 共线,当且仅当有一个实数λ,使得a b λ=;且实数λ的唯一性是由向量a和b 的模和方向同时决定.通过学生合作交流,促进学生合作的集体意识;通过学生独立作答,提高学生分析问题、解决问题的能力. 例2.如图,ABCD 的两条对角线相交于点M ,且b a==,,你能用b a ,表示,,,吗?师生互动:利用向量共线的定理及平行四 边形的性质定理,即平行四边形的对角线互相平分.∵b a AC AB AC+=+=, .b a-=-=结合平行四边形的性质:b a b a AC MA2121)(2121--=+-=-=,,212121b a +==.212121b a+-=-=-=设计意图:综合运用向量的加、减、数乘等向量的线性运算.尤其是应当注意到-=,-=从而可简化解题过程,并且在实际的解题中做到举一反三、融会贯通;通过例3的教学使学生明确:有了向量的线性运算,平面中的点、线段(直线)就可以得到向量表示,这是利用向量解决几何问题的重要步骤. 4、课堂作业(1).在△ABC 中,已知D 是AB 边上的一点,若DB AD 2=,CB CA CD λ+=31,则λ的值为( )32.A31.B31.-C32.-D ,2121)(2121b a b a -=-==Aa(2.)计算:=⎥⎦⎤⎢⎣⎡--+)24()82(2131b a b a.(3).若向量方程0)2(32 =--a x x ,则向量=x.(4).根据下列各小题中的条件,分别判断四边形ABCD 的形状,并给出证明.(1)=; (2)BC AD 31=; (3)==,5、课堂小结一、①aλ的定义及运算律;②向量共线定理)0( ≠a ,⇔=a b λ 向量a与b 共线.二、定理的应用:(1)证明向量共线;(2)证明三点共线:⇒=λA 、B 、C 三点共线; (3)证明两直线平行. 三、你体会到了那些数学思想.特殊到一般,归纳,猜想,类比,分类讨论,等价转化等数学思想. 设计意图:1.知识性内容的总结,可以把课堂教学传授的知识尽快转化为学生的素质.2.运用数学方法,创新素质的小结能让学生更系统,更深刻地理解数学理想方法在解题中的地位和作用,并且逐渐培养学生的良好个性品质.3.由学生口头表述,不仅可以提高学生的综合概括能力,还能提高学生的口头表达能力. 6、课后作业P92 A 组习题11、12题。
教案平面向量的数乘运算教案:平面向量的数乘运算1.引言平面向量是解析几何中重要的概念,它具有方向和大小,可以进行数乘运算。
本教案将介绍平面向量的数乘运算的定义、性质以及应用。
2.数乘运算的定义给定一个平面向量a和一个实数k,称ka为向量a的数乘。
数乘运算的表示:ka = (ka1, ka2)其中,a = (a1, a2)为平面向量a的坐标。
3.数乘运算的性质3.1 结合律对于任意实数k1和k2以及任意平面向量a,有:(k1k2)a = k1(k2a)3.2 分配律对于任意实数k和任意平面向量a、b,有:k(a+b) = ka + kb3.3 数乘的特殊情况当k=0时,有:0a = (0, 0)即零向量。
当k=1时,有:1a = a4.数乘运算的几何意义4.1 放缩向量数乘运算可以改变向量的大小,当k>1时,向量的长度增加;当0<k<1时,向量的长度缩小。
4.2 反向向量当k为负数时,数乘运算具有反向的作用,即翻转向量的方向。
5.数乘运算的应用5.1 平行向量如果两个向量a和b的方向相同或相反,且a≠0,b≠0,那么称它们为平行向量。
数乘运算可以用于判断两个向量是否平行。
若ka=b,其中k为实数,那么向量a和b是平行的。
5.2 等比例分点给定线段AB上一点C,如果AC与CB的长度之比等于一个常数k (k≠0),那么称C为线段AB上的等比例分点。
数乘运算可以用于求解线段上的等比例分点。
例如,如果AC:kCB=1:2,那么C可以表示为:C = (1/3)A + (2/3)B6.练习题请计算以下向量的数乘:6.1 3(2, -4)6.2 (-1/2)(3, 5)7.总结本教案介绍了平面向量的数乘运算的定义、性质以及应用。
数乘运算可以改变向量的大小和方向,用于判断向量的平行关系和求解线段上的等比例分点。
在解析几何中,数乘运算是一个重要的概念,对于进一步理解向量运算和几何问题的求解具有重要的意义。
教案:平面向量的数乘运算教学目标:1. 理解平面向量的数乘运算概念。
2. 掌握平面向量的数乘运算规则。
3. 能够运用数乘运算解决实际问题。
教学内容:一、平面向量的数乘运算概念1. 引入向量的概念,回顾向量的定义和表示方法。
2. 引入数乘运算的概念,解释数乘运算的含义。
二、平面向量的数乘运算规则1. 展示平面向量的数乘运算例子,引导学生总结数乘运算的规律。
2. 讲解平面向量的数乘运算规则,包括标量与向量的乘法以及向量的数乘。
三、数乘运算的性质1. 引导学生思考数乘运算的性质,如交换律、结合律等。
2. 讲解数乘运算的性质,并通过示例进行说明。
四、数乘运算在实际问题中的应用1. 给出实际问题,引导学生运用数乘运算进行解决。
2. 讲解数乘运算在实际问题中的应用方法,如速度和加速度的合成等。
五、巩固练习1. 提供练习题,让学生独立完成,巩固对数乘运算的理解和应用。
2. 解答学生的问题,给予指导和帮助。
教学资源:1. 教学PPT或黑板,用于展示向量和数乘运算的示例和性质。
2. 练习题,用于巩固学生的理解和应用能力。
教学评估:1. 课堂讲解的清晰度和连贯性。
2. 学生对数乘运算的理解程度和应用能力。
3. 学生练习题的完成情况。
教学时间安排:1. 第一节课:介绍平面向量的数乘运算概念。
2. 第二节课:讲解平面向量的数乘运算规则。
3. 第三节课:讲解数乘运算的性质。
4. 第四节课:讲解数乘运算在实际问题中的应用。
5. 第五节课:巩固练习和解答学生问题。
教案:平面向量的数乘运算(续)六、数乘运算与向量长度的关系1. 回顾向量长度的定义和计算方法。
2. 讲解数乘运算与向量长度的关系,引导学生理解数乘运算对向量长度的影响。
七、数乘运算与向量方向的关系1. 讲解数乘运算与向量方向的关系,包括数乘运算对向量方向的影响。
2. 引导学生通过示例理解数乘运算对向量方向的影响。
八、数乘运算的逆元素1. 引入逆元素的概念,解释数乘运算的逆元素。
平面向量的数乘运算教学目标:1. 理解平面向量的数乘运算概念。
2. 掌握平面向量的数乘运算规则。
3. 能够运用数乘运算解决实际问题。
教学内容:第一章:平面向量数乘运算的概念1.1 向量的概念回顾1.2 数乘运算的定义1.3 数乘运算的性质第二章:平面向量的数乘运算规则2.1 数乘运算的分配律2.2 数乘运算的结合律2.3 数乘运算的单位向量第三章:数乘运算在坐标系中的应用3.1 坐标系的回顾3.2 数乘运算在坐标系中的表示3.3 数乘运算在坐标系中的应用举例第四章:数乘运算与向量长度的关系4.1 向量长度的概念回顾4.2 数乘运算与向量长度的关系4.3 数乘运算在求向量长度中的应用第五章:数乘运算与向量方向的关系5.1 向量方向的概念回顾5.2 数乘运算与向量方向的关系5.3 数乘运算在改变向量方向中的应用教学方法:1. 采用讲授法,讲解平面向量数乘运算的概念、规则及其应用。
2. 通过示例和练习,让学生熟练掌握数乘运算的计算方法。
3. 利用坐标系,直观地展示数乘运算在实际问题中的应用。
教学评估:1. 课堂练习:布置相关的习题,检查学生对数乘运算的理解和掌握程度。
2. 课后作业:布置综合性较强的题目,巩固学生对数乘运算的应用能力。
3. 单元测试:进行全面的测试,评估学生对平面向量数乘运算的整体掌握情况。
教学资源:1. 教学PPT:制作精美的PPT,展示平面向量数乘运算的概念、规则及应用。
2. 坐标系模型:准备实物或电子模型,直观展示数乘运算在坐标系中的应用。
3. 练习题库:收集相关的习题,供课堂练习和课后作业使用。
第六章:数乘运算与向量加法的结合6.1 向量加法的概念回顾6.2 数乘运算与向量加法的结合规则6.3 数乘运算在向量加法中的应用举例第七章:数乘运算与向量减法的结合7.1 向量减法的概念回顾7.2 数乘运算与向量减法的结合规则7.3 数乘运算在向量减法中的应用举例第八章:数乘运算与向量数乘的结合8.1 向量数乘的概念回顾8.2 数乘运算与向量数乘的结合规则8.3 数乘运算在向量数乘中的应用举例第九章:数乘运算在实际问题中的应用9.1 数乘运算在物理学中的应用9.2 数乘运算在工程学中的应用9.3 数乘运算在其他领域的应用第十章:总结与拓展10.1 数乘运算的总结10.2 数乘运算的拓展学习10.3 数乘运算在后续课程中的应用教学方法:1. 采用讲授法,讲解数乘运算与向量加法、减法、数乘的结合规则及其应用。
向量的数乘运算教案教案标题:向量的数乘运算教案教学目标:1. 理解向量的数乘运算的概念和性质;2. 掌握向量的数乘运算的计算方法;3. 能够应用向量的数乘运算解决实际问题。
教学重点:1. 向量的数乘运算的定义和性质;2. 向量的数乘运算的计算方法。
教学难点:1. 理解向量的数乘运算的几何意义;2. 运用向量的数乘运算解决实际问题。
教学准备:1. 教师准备:投影仪、计算工具、教学PPT;2. 学生准备:课本、笔记本、计算工具。
教学过程:一、导入(5分钟)1. 教师引入向量的数乘运算的概念,通过实际例子说明向量的数乘运算的意义和应用;2. 提问学生:你们对向量的数乘运算有什么了解?有什么应用场景?二、概念讲解(10分钟)1. 教师介绍向量的数乘运算的定义和性质,包括数乘的定义、数乘的性质(分配律、结合律等);2. 教师通过几何图形解释向量的数乘运算的几何意义。
三、计算方法(15分钟)1. 教师详细讲解向量的数乘运算的计算方法,包括向量与实数的相乘、向量的分量与实数的乘积等;2. 教师通过示例演示向量的数乘运算的具体计算步骤。
四、练习与讨论(15分钟)1. 学生进行课堂练习,计算给定向量的数乘运算;2. 学生互相讨论解题方法和答案,并与教师进行交流。
五、拓展应用(10分钟)1. 教师引导学生思考向量的数乘运算在实际问题中的应用,如力的合成、速度的变化等;2. 学生尝试应用向量的数乘运算解决实际问题,并与教师分享解题思路和结果。
六、归纳总结(5分钟)1. 教师对本节课的内容进行总结和归纳,强调向量的数乘运算的重要性和应用;2. 学生进行笔记整理,梳理向量的数乘运算的关键点和方法。
七、作业布置(5分钟)1. 教师布置相关练习题作为课后作业,巩固向量的数乘运算的知识;2. 教师提醒学生预习下节课的内容,做好课前准备。
教学反思:本节课通过引入实际例子、概念讲解、计算方法、练习与讨论、拓展应用等环节,全面介绍了向量的数乘运算的概念、性质和计算方法,培养了学生的计算能力和应用能力。
【课题】7.1.5平面向量的数乘运算
江夏职业技术学校吴婷
【教学目标】
(1)理解向量的数乘运算的定义
(2)掌握共线向量的基本定理
【教学重点】数乘运算的定义
【教学难点】对向量线性表示的理解和运用
【课时安排】2课时
【教学过程】
一、创设情境兴趣导入
观察图7-15可以看出,向量OC 与向量a 共线,并且 OC =3a .
图7−15
二、新授知识
1.数乘运算的定义:实数λ与向量a 的积是一个向量,记作λa
大小:||||||a a λ=λ(7.3)
a
a
a a O A B C
方向:若||λ≠a 0,则
当λ>0时,λa 的方向与a 的方向相同,
当λ<0时,λa 的方向与a 的方向相反.
一般地,有0a =0,λ0=0.
2.共线向量的基本定理:对于非零向量a 、b ,当0λ≠时,有
λ⇔=a b a b ∥(7.4)
3.向量的数乘运算法则:
()()111a a a a , ;=-=-()()()()2a a a ;
λμλμμλ== ()()3a a a λμλμ+=+ ;()a b a b (4).λλλ+=+
4.向量的线性表示:一般地,λa +μb 叫做a ,b 的一个线性组合(其中λ,μ均为系数).如
果l =λa +μb ,则称l 可以用a ,b 线性表示.
5.向量的线性运算:向量的加法、减法、数乘运算都叫做向量的线性运算.
三、注意:向量加法及数乘运算在形式上与实数的有关运算规律相类似,因此,实数运算中的去括号、移项、合并同类项等变形,可直接应用于向量的运算中.但是,要注意向量的运算与数的运算的意义是不同的.
巩固知识典型例题
例6在平行四边形ABCD 中,O 为两对角线交点如图7-16,AB =a ,AD =b ,试用a ,b 表示向量AO 、OD .
分析因为12AO AC =
,12OD BD =,所以需要首先别求出向量AC 与BD .
分
图7-16
解AC =a +b ,BD =b −a ,
因为O 分别为AC ,BD 的中点,所以
1122==AO AC (a +b )=12a +12
b , OD =
12BD =12(b −a )=−12a +12b . 四、例6中,12a +12b 和−12a +12
b 都叫做向量a ,b 的线性组合,或者说,AO 、OD 可以用向量a ,b 线性表示.
运用知识强化练习
1.计算:(1)3(a −2b )-2(2a +b );
(2)3a −2(3a −4b )+3(a −b ).
2.设a ,b 不共线,求作有向线段OA ,使OA =12
(a +b ). 3.在正方形ABCD 中,AB =a ,
BC =b 。
(1)用a 、b 表示向量OD ;
(2)用a 、b 表示向量CO 。
五、作业
书P34:习题7.1:T5,6
六、小结 (1)向量的数乘运算的定义
(2)共线向量的基本定理
七、反思
实数λ乘以非零向量a ,是数乘运算,其结果记作λa ,它是一个向量,其方向与向量a 相同,其模为a 的λ倍.由此得到λ⇔=a b a b ∥.对向量共线的充要条件,要特别注意“非
λ≠”等条件.零向量a、b”与“0。