第06章 点缺陷和线缺陷-3
- 格式:pdf
- 大小:11.86 MB
- 文档页数:51
一、概述1、晶体缺陷:晶体中原子(离子、分子)排列的不规则性及不完整性。
种类:点缺陷、线缺陷、面缺陷。
1) 由上图可得随着缺陷数目的增加,金属的强度下降。
原因是缺陷破坏了警惕的完整性,降低了原子间结合力,从宏观上看,即随缺陷数目增加,强度下降。
2) 随着缺陷数目的增加,金属的强度增加。
原因是晶体缺陷相互作用(点缺陷钉扎位错、位错交割缠结等),使位错运动的阻力增加,强度增加。
3) 由此可见,强化金属的方向有两个:一是制备无缺陷的理想晶体,其强度最高,但实际上很难;另一种是制备缺陷数目多的晶体,例如:纳米晶体,非晶态晶体等。
二、点缺陷3、点缺陷:缺陷尺寸在三维方向上都很小且与原子尺寸相当的缺陷(或者在结点上或邻近的微观区域内偏离晶体结构正常排列的一种缺陷),称为点缺陷或零维缺陷。
分类:空位、间隙原子、杂质原子、溶质原子。
4、肖特基空位:原子迁移到晶体表面或内表面正常结点位置使晶体内形成的空位。
5、弗仑克尔空位:原子离开平衡位置挤入点阵间隙形成数目相等的空位和间隙原子,该空位叫做弗仑克尔空位。
6、空位形成能EV:在晶体中取出一个原子放在晶体表面上(不改变晶体表面积和表面能)所需的能量。
间隙原子形成能远大于空位形成能,所以间隙原子浓度远小于空位浓度。
7、点缺陷为热平衡缺陷,淬火、冷变形加工、高能粒子辐照可得到过饱和点缺陷。
8、复合:间隙原子和空位相遇,间隙原子占据空位导致两者同时消失,此过程成为复合。
9、点缺陷对性能的影响:点缺陷使得金属的电阻增加,体积膨胀,密度减小;使离子晶体的导电性改善。
过饱和点缺陷,如淬火空位、辐照缺陷,还可以提高金属的屈服强度。
三、线缺陷10、线缺陷:线缺陷在两个方向上尺寸很小,另外一个方向上延伸较长,也称为一维缺陷。
主要为各类位错。
11、位错:位错是晶体原子排列的一种特殊组态;位错是晶体的一部分沿一定晶面与晶向发生某种有规律的错排现象;位错是已滑移区和未滑移区的分界线;位错是伯氏矢量不为零的晶体缺陷。
2.1 点缺陷一点缺陷的类型及形成1 定义点缺陷:在三维方向上尺寸都很小(远小于晶体或晶粒的线度)的缺陷。
2 点缺陷的类型金属中常见的基本点缺陷有:空位、间隙原子和置换原子。
图1所示。
在晶体中,位于点阵结点上的原子并非静止的,而是以其平衡位置为中心作热振动。
原子的振动能是按几率分布,有起伏涨落的。
当某一原子具有足够大的振动能而使振幅增大到一定限度时,就可能克服周围原子对它的制约作用,跳离其原来的位置,使点阵中形成空结点,称为空位。
空位就是未被占据的原子位置。
原子离开正常格点,跳到间隙位置,或者说,间隙原子就是进入点阵间隙中的原子。
间隙原子可以是晶体中正常原子离位产生,也可以是外来杂质原子。
置换原子:位于晶体点阵位置的异类原子。
图1 点缺陷的类型空位和间隙原子3 点缺陷形成的物理模型点缺陷形成最重要的环节是原子的振动。
在前面的学习中我们已经知道:晶体中的原子在其所处的原子相互作用环境中受到两种作用力:(1)原子间的吸引力;(2)原子间的斥力。
这两个力的来源与具体表述,请同学们回忆学过的知识。
在这对作用力的平衡条件下,原子有各自的平衡位置。
重要的是原子在这个平衡位置上不是静止不动,而是以一定的频率和振幅作振动,这就是原子的热振动。
温度场对这一振动行为起主要作用。
温度越高,振动得越快,振幅越大。
而且,每个原子在宏观统计上表现出不同的振动频率和振幅,宏观表现上是谱分布。
这种描述相信能在同学思维空间里建立明确的图象:原子被束缚在它的平衡位置上,但原子却在做着挣脱束缚的努力。
现在我们设想这样一种情况:当温度足够高使得原子的振幅变得很大,以致于能挣脱周围原子对其的束缚(请读者考虑为什么振幅大,原子可以脱离平衡位置)。
因此,这个原子就成为“自由的”,它将会在晶体中以多余的原子方式出现?如果没有正常的格点供该原子“栖身”,那么这个原子就处在非正常格点上即间隙位置。
显然,这就是我们前面所说的间隙式原子。
由于原子挣脱束缚而在原来的格点上留下了空位。
缺陷的分类:根据维度分类
0维:点缺陷
1维:线缺陷
2维:面缺陷
3维:体缺陷
点缺陷:
-晶格规则排列的局部的中断
-在晶格格点上或之间。
1、取代杂质
-占据正常格位
-掺杂剂,如半导体Si中掺杂的P,金刚石中的杂质B
-合金元素,如铝(Al)中的镁(Mg),或者金(Au)中的镍(Ni)-杂质,NaCl中的Li+
2、填隙杂质
-占据格点之间的位置
-合金元素,如铁中的C元素,LaNi5中的H元素
-杂质,如铁中的H元素
3、空位
-未占据的晶格格点
-结晶过程形成
-在极端条件下应用过程中形成
离子晶体中的点缺陷
-特别强调,要求维持电荷中性
1、肖特基点缺陷
-由等量(非必须相等)的阳离子空位和阴离子空位构成
2、弗伦克尔点缺陷
-由一个离子空位和离子填隙构成
3、F心
-由一个离子空位和一个被束缚的电子形成。
第四章晶体结构缺陷晶体缺陷的产生与晶体的生长条件,晶体中原子的热运动以及对晶体的加工工艺等有关。
事实上,任何晶体即使在绝对零度都含有缺陷,自然界中理想晶体是不存在的。
既然存在着对称性的缺陷,平移操作不能复制全部格点,那么空间点阵的概念似乎不能用到含有缺陷的晶体中,亦即晶体理论的基石不再牢固。
但缺陷的存在只是晶体中局部的破坏。
作为一种统计,一种近似,一种几何模型,缺陷存在的比例毕竟只是一个很小的量(这指的是通常的情况),从占有原子百分数来说,晶体中的缺陷在数量上是微不足道的。
因此,整体上看,可以认为一般晶体是近乎完整的。
因而对于实际晶体中存在的缺陷可以用确切的几何图形来描述,这一点非常重要。
它是我们今后讨论缺陷形态的基本出发点。
事实上,把晶体看成近乎完整的并不是一种凭空的假设,大量的实验事实(X射线及电子衍射实验提供了足够的实验证据)都支持这种近乎理想的对称性。
当然不能否认,当缺陷比例过高以致于这种“完整性”无论从实验或从理论上都不复存在时,此时的固体便不能用空间点阵来描述,也不能被称之为晶体。
这便是材料中的另一大类别:非晶态固体。
对非晶固体和晶体,无论在原子结构理论上或是材料学家对它们完美性追求的哲学思想上都存在着很大差异,有兴趣的同学可以对此作进一步的理解。
缺陷是晶体理论中最重要的内容之一。
晶体的生长、性能以及加工等无一不与缺陷紧密相关。
因为正是这千分之一、万分之一的缺陷,对晶体的性能产生了不容小视的作用。
这种影响无论在微观或宏观上都具有相当的重要性。
4.1热力学平衡态点缺陷4.1.1 热缺陷的基本类型点缺陷形成的热力学平衡当晶体的温度高于绝对零度时,晶格内原子吸收能量,在其平衡位置附近温度越高,热振动幅度加大,原子的平均动能随之增加。
热振动的原子在某一瞬间可以获得较大的能量,挣脱周围质点的作用,离开平衡位置,进入到晶格内的其它位置,而在原来的平衡格点位置上留下空位。
这种由于晶体内部质点热运动而形成的缺陷称为热缺陷。