常用的几种电流互感器接线图
- 格式:doc
- 大小:202.00 KB
- 文档页数:4
电流互感器接线图我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结各种电流互感器接线图,供参考使用。
一测量用电流互感器接线方法测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。
1普通电流互感器接线图电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。
电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。
注:某些电流互感器一次标称,L1、L2,二次侧标称K1、K2。
2穿心式电流互感器接线图穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。
二电流互感器接线图电流互感器接线总体分为四个接线方式:1.单台电流互感器接线图只能反映单相电流的情况,适用于需要测量一相电流的情况。
单台电流互感器接线图2.三相完全星形接线和三角形接线形式电流互感器接线图三相电流互感器能够及时准确了解三相负荷的变化情况。
(三相完全星形电流互感器接线图)3.两相不完全星形接线形式电流互感器接线图在实际工作中用得最多,但仅限于三相三线制系统。
它节省了一台电流互感器,根据三相矢量和为零的原理,用A、C相的电流算出B相电流。
两相不完全星形接线形式电流互感器接线图4.两相差电流接线形式电流互感器接线图也仅用于三相三线制电路中,这种接线的优点是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资。
两相差电流接线形式电流互感器接线图5.其它接线方式5.1 原边串联、副边串联电流互感器原边串联、副边串联接线图如下所示,串联后效果:互感器变比不变,二次额定负荷增大一倍。
电流互感器原边串联、副边串联接线图5.2 原边串联、副边并联电流互感器原边串联、副边并联接线图如下所示,串并联后效果:互感器变比减小一倍,二次额定负荷增大一倍。
常用电压互感器的接线电压互感器在三相电路中常用的接线方式有四种,如下图1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图1(a)。
2.两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。
如图1(b)。
3.三个单相电压互感器接成Y0/Y0形,如图1(c)。
可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。
4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。
接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。
辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。
当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。
当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。
V/V型的接线图分析V/V连接的两个电压互感器二次侧两个开口端之间的电压与其一次侧的两个开口端电压存在对应的相量关系。
也就是说,二次侧两个开口端及公共端之间的电压也同样满足电源三相电压的关系。
因此,虽然“B相无电压”(未施加任何电压),输出端的电量仍然是三相电量。
左图是正确接线,从相量图看三相平衡;右图是错误接线,从相量图看三相不平衡。
图1 (正确)图2(错误)图3根据ab和ub的线电压可以计算出ca线电压,。
若二次侧ab相接反,从相量图看,则ca线电压变为。
电压互感器几种常见接地点的作用一次侧中性点接地由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。
如下图所示。
因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。
当系统中发生单相接地时,系统中会出现零序电流。
如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV就不会动作,发不出接地信号。
对于三相五柱式电压互感器,其一次侧中性点同样要接地。
电流互感器和电压互感器的接线方式————————————————————————————————作者:————————————————————————————————日期:电力系统中的二次设备——继电保护及全自动装置等绝大多数是根据发生故障时电增大、电压降低的特点而工作的,这些电气一般都是通过电流互感器和电压互感器的副圈加到二次设备上.故在此将电流互感器、电压互感器的接线方式加以说明。
一、电流互感器的接线方式在继电保护装置中电流互感器的接线方主要有四种:三相完全星形接线方式;两相完全星形接线方式;两相差接线方式;两相继电器式接线方式。
1.三相完全星形接线方式三相星形接线方式的电流保护装置对各故障(如三相短路、两相短路、两相短路并地、单相接地短路)都能使保护装置起动,足切除故障的要求,而且具有相同的灵敏度如图2-l。
当发生三相短路时,各相都有短路电讯即A相İDA,B相İBD,C相İDC.反应到电流互感器二次例的短路电流分别为İa、İb、İc,它们分别流径A相、B相、C相继电器的线圈,使三只继电器(如图2一1中的a、b、c)动作.当发生A、B两相短路时A、B两相分别有短路电流İDA、İDB,它们流径电流互感器后,反应到其二次测分别为İa、İb,又分别将电流继电器a、b起动,去切除故障.当发生出接地故障好,则A相继电器a起动,切除故障。
电流互感器接成三相完全星形接线方式,适用于大电流接地系统的线路继电保护装置5变压器的保护装置。
1.两相不完全星形接线方式此种接线是用两只电流互感器与两只电流继电器在A、C两相上对应连接起来。
此种接线方式只适用于小电流接地系统中的线路继电保护装置,如6~35KV的线路保护均应采用此种接线方式。
此种接线方式,对各种相间短路故障均能满足继电保护装置的要求.但是此种接线方式不能反应B相接地短路电流,(因B相未装电流互感器和继电器)所以对B相起不到保护作用,故只适用小电流接地系统。
电流互感器的作用及接线方法从通过大电流的电线上,按照一定的比例感应出小电流供测量使用,也可以为继电保护和自动装置提供电源。
比如说现在有一条非常粗的电缆,它的电流非常大。
如果想要测它的电流,就需要把电缆断开,并且把电流表串联在这个电路中。
由于它非常粗,电流非常大,需要规格很大的电流表。
但是实际上是没有那么大的电流表,因为电流仪表的规格在5A 以下。
那怎么办呢?这时候就需要借助电流互感器了。
先选择合适的电流互感器,然后把电缆穿过电流互感器。
这时电流互感器就会从电缆上感应出电流,感应出来的电流大小刚好缩小了一定的倍数。
把感应出来的电流送给仪表测量,再把测量出来的结果乘以一定的倍数就可以得到真实结果。
我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结各种电流互感器接线图,供参考使用。
测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。
电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。
电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。
注:某些电流互感器一次标称,L1、L2,二次则标称K1、K2。
穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。
电流互感器接线总体分为四个接线方式:1.单台电流互感器接线图只能反映单相电流的情况,适用于需要测量一相电流的情况。
单台电流互感器接线图2.三相完全星形接线和三角形接线形式电流互感器接线图三相电流互感器能够及时准确了解三相负荷的变化情况。
三相完全星形电流互感器接线图三相完全角形电流互感器接线图3.两相不完全星形接线形式电流互感器接线图在实际工作中用得最多,但仅限于三相三线制系统。
它节省了一台电流互感器,根据三相矢量和为零的原理,用A、C相的电流算出B相电流。
变压器差动保护电流互感器接线方式
差动保护是变压器的主要保护,它的工作情况的好坏对变压器的正常运行
关系极大。
要想使变压器在正常运行或在变压器外部故障时,差动保护可靠不动,就要设法使变压器的电源侧和负荷侧的CT 二次线电流相位相差,及电流产生的动作安匝相等。
只要满足这两个条件变压器的差动保护在变压器内部正
常时就不会动作。
为使变压器电源侧和负荷侧CT 二次电流相位差,现介绍以下几种接线方式:
第一种接线方式:以我县110kV 变电站1#主变为例。
它的容量为2 万千伏安。
接线组别为丫O/丫O/A1211。
ll 0kV 侧为电源侧,压侧和低压侧为负荷侧,其接线图如下所示因为变压器的接线组别为丫o/丫O/A1211 其低压测线电流Ia、Ib、Ic 分别超前高压侧线电流高压侧CT 二次相电流在减极性时与一次电流同相位。
要想使变压器电源侧和负荷侧CT 二次线电流相位相差。
就设法使变压器低压侧的CT 二次线电流落后于相电流,这样低压侧CT 的连接顺序是a 相的头连C 相的尾;b 相的头连a 相
第二种
接线方式:我们把CT 的接线组别同样用钟表的12 个钟头来表示,那么第一种接线方式,高压侧的CT 为6 点接线,中压侧为12 点接线.低压侧为1 点接线。
第二种接线方式就是把高压侧的CT 接成12 点,中压侧接成6 点.低压侧
接成7 点。
第三种接线方式:把高压侧的CT 二次接成11 点,中压倒为5 点,低压侧接成6 点。
第四种接线方式,把高压侧的CT 二次接成5 点,中压侧为11 点,低压侧为12 点。
电流互感器二次回路常用接线电流互感器(Current Transformer,CT)是一种用于测量和保护电流的装置,常用于电力系统中。
在电流互感器的应用中,二次回路的接线方式非常重要,本文将介绍电流互感器二次回路常用的接线方式。
1. 直接接线方式直接接线方式是最常见也是最简单的一种接线方式。
在这种方式下,电流互感器的二次绕组直接与测量仪表或保护装置相连。
这种接线方式适用于二次回路较短的情况,可以提供相对准确的测量和保护功能。
2. 间接接线方式间接接线方式是将电流互感器的二次绕组与测量仪表或保护装置之间通过一段导线相连。
这种接线方式适用于二次回路较长的情况,可以降低因线路电阻和电感对测量结果的影响。
3. 双绕组接线方式双绕组接线方式是将电流互感器的二次绕组分成两个独立的回路,分别与测量仪表和保护装置相连。
这种接线方式可以同时满足测量和保护的需求,且能够提供更好的抗干扰性能。
4. 串联接线方式串联接线方式是将多个电流互感器的二次回路串联在一起,再接入测量仪表或保护装置。
这种接线方式适用于需要测量或保护大电流的情况,可以将大电流分成若干个小电流进行测量或保护。
5. 并联接线方式并联接线方式是将多个电流互感器的二次回路并联在一起,再接入测量仪表或保护装置。
这种接线方式适用于需要测量或保护小电流的情况,可以将小电流叠加成一个大电流进行测量或保护。
需要注意的是,在进行电流互感器二次回路接线时,应根据实际情况选择合适的接线方式。
同时,还需要注意接线的可靠性和安全性,确保接线正确无误。
总结起来,电流互感器二次回路常用的接线方式包括直接接线方式、间接接线方式、双绕组接线方式、串联接线方式和并联接线方式。
根据实际需求和具体情况,选择合适的接线方式可以确保电流测量和保护的准确性和可靠性。
电流互感器接线图我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结各种电流互感器接线图,供参考使用。
测量用电流互感器接线方法测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。
普通电流互感器接线图电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。
电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。
注:某些电流互感器一次标称,L1、L2,二次侧标称K1、K2。
2穿心式电流互感器接线图穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。
二电流互感器接线图电流互感器接线总体分为四个接线方式:1.单台电流互感器接线图只能反映单相电流的情况,适用于需要测量一相电流的情况。
单台电流互感器接线图2.三相完全星形接线和三角形接线形式电流互感器接线图三相电流互感器能够及时准确了解三相负荷的变化情况。
(三相完全星形电流互感器接线图)3.两相不完全星形接线形式电流互感器接线图在实际工作中用得最多,但仅限于三相三线制系统。
它节省了一台电流互感器,根据三相矢量和为零的原理,用A、C相的电流算出B相电流。
两相不完全星形接线形式电流互感器接线图4.两相差电流接线形式电流互感器接线图也仅用于三相三线制电路中,这种接线的优点是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资。
两相差电流接线形式电流互感器接线图5.其它接线方式原边串联、副边串联电流互感器原边串联、副边串联接线图如下所示,串联后效果:互感器变比不变,二次额定负荷增大一倍。
电流互感器原边串联、副边串联接线图原边串联、副边并联电流互感器原边串联、副边并联接线图如下所示,串并联后效果:互感器变比减小一倍,二次额定负荷增大一倍。
电流互感器的接线方式、饱和及伏安特性,值得收藏!电流互感器(CT)是电力系统重要的电气设备,它承担着高、低压系统之间的隔离及高压量向低压量转换的职能。
在系统的保护、测量、计量等设备的正常工作中扮演着极其重要的角色。
整理了关于CT的相关知识点与大家分享,具体内容包括以下四个方面:1.电流互感器二次回路接线方式2.电流互感器的饱和3.电流互感器伏安特性4.电流互感器回路接线错误案例分析01电流互感器二次回路接线方式在变电站中,常用的电流互感器二次回路接线方式有单相接线、两相星形(或不完全星形)接线、三相星形(或全星形)接线、三角形接线及和电流接线等,它们根据需要应用于不同场合。
现将各种接线的特点及应用场合介绍如下。
(1)单相接线方式单相式接线,这种接线只有一只电流互感器组成,接线简单。
它可以用于小电流接地系统零序电流的测量,也可以用于三相对称电流中电流的测量或过负荷保护等。
(2)两相星形接线方式两相星形接线,这种接线由两相电流互感器组成,与三相星形接线相比,它缺少一只电流互感器(一般为B相),所以又叫不完全星形接线。
它一般用于小电流接地系统的测量和保护回路,由于该系统没有零序电流,另外一相电流可以通过计算得出,所以该接线可以测量三相电流、有功功率、无功功率、电能等。
反应各类相间故障,但不能完全反应接地故障。
对于小电流接地系统,不完全星形接线不但节约了一相电流互感器的投资,在同一母线的不同出线发生异名相接地故障时,还能使跳开两条线路的几率下降了三分之二。
只有当AC相接地时才会跳开两条线路,AB、BC相接地时,由于B相没有电流互感器,则B相接地的一条线路将不跳闻。
由于小接地电流系统允许单相接地运行2小时,所以这一措施能够提高供电可靠性。
需要指出的是,同一母线上出线的电流互感器必须接在相同的相,否则有些故障时保护将不能动作。
(3)三相星形接线方式三相星形接线又叫全星形接线,这种接线由三只互感器按星形连接而成,相当于三只互感器公用零线。
电压互感器.电流互感器在控制柜里的几种明细的接线图
电流互感器常用的接线
(l)一只电流互感器,如图4所示,主要用于测量负荷平衡的三根电力装置中的一相电流。
(2)星形接线,如图5所示,主要用于测量负荷不平衡的三相电力装置三相四线装置的三相电流。
(3)不完全星形接线,如图6所示,主要用于测显三相三线电力装置中的三相电流。
(4)两相电流差接线,如图7所示,要用于6一10千伏中性点不接地系统中,保护容量较小的高压电机等。
电压互感器在三相电路中常用的接线方式
电压互感器在三相电路中常用的接线方式有四种,如图所示。
1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图(a)。
2.两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,如图(b)。
3.三个单相电压互感器接成Y0/Y0形,如图(c)。
可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。
4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图(d)所示。
接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。
辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。
当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。
当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。
互感器的接线方法互感器是一种用于测量电流和电压的电器设备。
它通常由两个线圈构成,其中一个线圈被称为主线圈,另一个线圈被称为次级线圈。
主线圈中传输的电流或电压会引起次级线圈中的电磁感应,从而导致次级线圈中的电流或电压发生变化。
因此,互感器可以被用于转换电流或电压信号。
在本文中,我们将介绍互感器的接线方法。
1.线圈接法互感器可以通过两种方式接线:串联和并联。
串联方式是将互感器的主线圈与电路中的负载串联,以测量电流。
主线圈所测量的电流会经过互感器传输到次级线圈,次级线圈的输出电流可以被测量或被记录。
串联方式常用于测量高电流。
但是,它需要断电安装,并且测量电路的电阻需要尽可能小,否则会影响性能。
串联方式的接线图如下图所示:并联方式是将互感器的主线圈与电路中的负载并联,以测量电压。
主线圈所测量的电压会经过互感器传输到次级线圈,次级线圈的输出电压可以被测量或被记录。
并联方式常用于测量高电压。
但是,与串联方式相比,它需要更复杂的电路,而且需要注意主线圈和负载之间的电容耦合。
并联方式的接线图如下图所示:2.互感器连接到变压器变压器是一种电气设备,用于转换电压或电流。
它通常由永磁体、铁芯和绕组构成。
变压器的基本原理是在铁芯中产生磁场,该磁场会在绕组中形成电流。
互感器可以与变压器合作以实现更复杂的测量任务。
例如,将互感器连接到变压器的次级侧,可以将变压器的输出电压传输到互感器的输出端。
这种连接方式对于测量变压器的输出电压或电流非常有用。
3.互感器接地在某些情况下,互感器的金属外壳需要被接地,以保护人员和设备不受电流侵害。
如果互感器的金属外壳没有被接地,电气设备的外壳可能会形成悬浮电位,从而可能威胁人员的安全。
因此,金属外壳需要连接到地线上,以保护所有人的安全。
总的来说,互感器在现代电力系统中起着至关重要的作用。
因此,在正确的方式下连接互感器至少应该遵循上述原则,以确保设备的使用安全和有效测量。
电力变压器差动保护误动的原因及处理方法变压器的差动保护,主要用来保护变压器内部以及引出线和绝缘套管的相间短路,并且也可用来保护变压器的匝间短路,保护区在变压器两侧所装电流互感器之间。
但是,在现场多次出现在变压器差动保护范围以外发生短路时,差动保护误动作,导致事故范围扩大,影响正常供电。
变压器差动保护误动作的原因及处理方法如下:一、差动保护电流互感器二次接线错误(一)常用的电流互感器二次接线图1-101 常用的电流互感器二次接线图1-101是工程上常用的一种接线方式。
图中I A、I B、I c及I a、I b、I c分别为变压器高压测及低压侧电流互感器三次绕组三相电流。
对图l-101进行相量分析如下:现假定变压器高、低压侧电流均从其两侧电流互感器的极性端子兀流入,T1流入。
T2流出。
在正常运行情况下,先画出I A、I B、I c相量如图1-102(a)所示.根据图1-101可得:I A1=I A-I B;I`B=I B-I C;I`C=I C-I A.再作出I`A、I`B、I`C相量,如图l-102(b)所示。
由图1-102(a)和图1-102(b)可以看出I`A、I`B、I`C分别当变压器组别为YN,dll时,变压器低压侧电流相图1-101常用的电流互感器二次接线位将超前高压侧电流相位30°,可作出c相量如图l-102(C)所示。
由图1-101可知,I a= I a`、I b= I b`、I c= I C `,故图 l-102(C)同样也适用于 I a`、I b`和I C `。
在上面的分析中,是假定一次电流均从变压器两侧电流互感器的T1流人、T2流出。
如果变压器高压侧电流互感器的一次电流是从T1流入、T2流出,而低压侧电流互感器一次电流从T2流入、T1流出。
那么图1-101中的I a(I a`)、I b(I`b)、I c(I `c)将与图l-102(c)中的相应相量反相。
如图1--102(d)所示。
电流互感器二次回路一、电流互感器二次回路电流互感器是将交流一次侧大电流转换成可供测量、保护等二次设备使用的二次侧电流的变流设备,还可以使二次设备与一次高压隔离,保证工作人员的安全。
电流互感器是单相的,一次侧流过电力系统的一次电流,二次侧接负载ZL(表计、继电器线圈等),一般二次侧额定电流为5A 或1A 。
1.电流互感器的极性和相量图电流互感器一次绕组和二次绕组都是两个端子引出,如图8-l 所示,绕组L1-L2为一次绕组,绕组K1-K2为二次绕组。
在使用电流互感器时,需要考虑绕组的极性。
电流互感器一次绕组和二次绕组的极性通常采用减极性原则标注,即当一次和二次电流同时从互感器一次绕组和二次绕组的同极性端子流入时,它们在铁芯中产生的磁通方向相同。
在图8-1中,L1与K1是同极性端子,同样L2与K2也是同极性端子。
同极性端子还可以用“*”、“·”等符号标注。
电流互感器采用减极性原则标注时,当一次电流从L1(或L2)流人互感器一次绕组时,二次感应电流的规定正方向从K1(或K2)流出互感器二次绕组(这也是二次电流的实际方向),如图8-2(a )所示。
如果忽略电流互感器的励磁电流,其铁芯中合成磁通为:02211=-N I N I (8-1)则 TA n I N N I I 11211/ == (8-2)式中21I 、I ——电流互感器一次电流、二次电流;21、N N ——电流互感器一次绕组匝数、二次绕组匝数;TA n ——电流互感器变化。
可见,此时电流互感器一次电流、二次电流相位相同,如图8-2(b)所示。
2.电流互感器的接线方式电流互感器的接线方式指电流互感器二次数绕组与电流元件线圈之间的线接方式。
常用的接线方式有三相完全星形接线、两相不完全星形接线、两相电流差接线方式等。
例如用于电流保护的常用接线方式如图8-3所示。
图8-3(a)三相完全星形接线,三相都装有电流互感器以及相应的电流元件,能够反应三相的电流,正常情况下中性线电流为0=++=c b a n I I I I ;图8-3(b )两相不完全星形接线,只有两相(一般是A 、C 相)装有电流互感器以及相应的电流元件,只能反应两相的电流,正常情况下中性线电流为b c a n I I I I -=+=。
变压器差动保护电流互感器接线方式差动保护是变压器的主要保护,它的工作情况的好坏对变压器的正常运行关系极大。
要想使变压器在正常运行或在变压器外部故障时,差动保护可靠不动,就要设法使变压器的电源侧和负荷侧的CT二次线电流相位相差,及电流产生的动作安匝相等。
只要满足这两个条件变压器的差动保护在变压器内部正常时就不会动作。
为使变压器电源侧和负荷侧CT二次电流相位差,现介绍以下几种接线方式:第一种接线方式:以我县110kV变电站1#主变为例。
它的容量为2万千伏安。
接线组别为丫O/丫O/A—12—11。
ll 0kV侧为电源侧,压侧和低压侧为负荷侧,其接线图如下所示因为变压器的接线组别为丫o/丫O/A—12—11其低压测线电流Ia、Ib、Ic分别超前高压侧线电流高压侧CT二次相电流在减极性时与一次电流同相位。
要想使变压器电源侧和负荷侧CT二次线电流相位相差。
就设法使变压器低压侧的CT二次线电流落后于相电流,这样低压侧CT的连接顺序是a相的头连C相的尾;b相的头连a相第二种接线方式:我们把CT的接线组别同样用钟表的12个钟头来表示,那么第一种接线方式,高压侧的CT为6点接线,中压侧为12点接线.低压侧为1点接线。
第二种接线方式就是把高压侧的CT接成12点,中压侧接成6点.低压侧接成7点。
信息来自:输配电设备网第三种接线方式:把高压侧的CT二次接成11点,中压倒为5点,低压侧接成6点。
第四种接线方式,把高压侧的CT二次接成5点,中压侧为11点,低压侧为12点。
变压器差动保护的接线方式有四种,选CT变比时每侧就有两种;一种是星型接线,一种是三角型接线。
如果用第一种接线方式接,对三卷变压器来说,高中低三侧CT中有两侧的CT接成星型,只有一侧接成三角型。
接线较为简单。
在特定条件下,采用此种接线方式能解决差流回路中无法解决的不平衡电流。
当然无论采用那种接线方式,效果都一样,但因各地区的技术水平不一,为使差动保护不致因CT接线错误造成保护跨动,最好选其中一种接线做为典设。
多个零序电流互感器的接法
一、
查了一下资料,在《DL5153-2002T 火力发电厂厂用电设计技术规定》的9.2.4条有一段“如回路中有2根及以上电缆并联,且每根电缆上分别装有零序电流互感器时,则应将各电流互感器的二次绕组串联后接至继电器”
二、
1. 电压源,电压恒定,内阻为零;
2. 电流源,电流恒定,内阻无穷大。
对于零序互感器,也是互感器的一种,它是电流源。
如果把两个理想互感器串联,结果就是什么也出不来,因为如果一个输出为5A,另一个输出为0A,5A的电流是通不过输出0A的互感器的。
如果并联,就不一样了,5A的电流到保护仪表去了,不会通过无穷大阻抗的另一个互感器的。
对于实际使用中的互感器,阻抗虽不可能为为无穷大,但还是很高的
经过多年的经验,高压出线零序电流互感器在2个或以上时,二次侧并联要比串联的灵敏度高。
原理:多根电缆不可能同时发生单相接地故障,那么在一个零序CT 二次有电流时,串联接法阻抗大,到电流继电器(或到综保)的电流小;并联接法会在另外的零序CT二次有一些分流,经试验非常小,90%以上二次电流经电流继电器(或综保),(经多年运行发现)并联接法与单个CT基本上无区别。
请注意二次接线的极性。
上海欧宜电气有限公司
常用的几种电流互感器接线图
?
?
三相四线电表接线图/接线方法
?
翻过接线端子盖,就可以看到三相四线电表接线图。
其中1、4、7接二次侧S1端,即电流进线端;
3、6、9接电流互感器二次侧S2端,即电流出线端;
?
2、5、8分别接三相电源;
?
10、11是接零端。
为了安全,应将电流互感器S2端连接后接地。
注意的是各电流互感器的电流测量取样必须与其电压取样保持同相,即1、2、3为一组;4、5、6 为一组;7、8、9 为一组。
?
不带电流互感器的三相四线电表接线图
?
带电流互感器的三相四线电表接线
?
三相四线式(三相三元件)电度表经电流互感器接线图、原理图
?
三相三线式(三相两元件)电度表经电流互感器接线原理图
?
?
?
三相四线电表加互感器实物接线图。