三阶互调的算法
- 格式:doc
- 大小:24.50 KB
- 文档页数:2
由二个频率产生的三阶互调失真是现代通信系统中普遍存在的问题。
当系统中二个(或更多)的载频信号通过一个无源器件,如天线、电缆、滤波器和双工器时,由于其机械接触的不可靠,虚焊和表面氧化等原因,在不同材料的连接处会产生非线性因素,这就像混频二极管。
二个载频信号(F1和F2)及其二次谐波(2F1和2F2)所进一步产生的最大互调产物就是三阶互调失真(2F1-F2和2F2-F1)。
三阶互调产物(IM3)的典型指标是当二个+43dBm 的载频信号同时加到被测器件(DUT)时,其产生的IM3值不大于-110dBm,也就是-153dBc。
二阶互调失真会降低通信系统的性能。
发射信号中过大的三阶互调产物会干扰其它的接收机,最终造成接收机无法正常工作。
通常,设计者较为关心有源器件的互调测试。
但是随着通信系统的发展和系统质量的提高,对无源互调的测量也越来越重视了。
WCDMA系统的无源互调在GSM900/1800和800MHzCDMA通信系统中,由发射频段产生的三阶互调产物会落入到它们各自的接收频段。
而WCDMA频段则不同,其发射频段(2110MHz~2170MHz)产生的三阶互调产物不会落入到其自身的接收频段(1920MHz~1980MHz),而会落到发射频段。
通过以下数学计算可以来验证这个现象。
三阶互调产物FIM3=2F1-F2,其中F1=[2110、2170],F2=[2110、2170]。
要证明FIM3≠[1920、1980],只要求出FIM3的取值范围,再看这个集合与[1920、1980]是否有交集即可。
要求FIM3的取值范围,关键要求出其最小值FIM3(min)和最大值FIM3(max):FIM3(min)=2F1min-F2max=2×2110-2170=2050;FIM3(max)=2F1max-F2min=2×2170-2110=2230。
可见,FIM3=[2050、2230]与[1920、1980]无相交部分,也就是说FIM3≠[1920、1980]。
三阶互调的计算及IP3测试原理和方法详细教程三阶交截点(IP3)是衡量通信系统线性度的一个重要指标,他反映了系统受到强信号干扰时互调失真的大小。
当系统的IP3较高时,要精确测试IP3 会比较困难,因为测试环境中各种因素(如测试配件的隔离度、线性度和匹配性等)都容易影响高IP3的测试。
下面将简略介绍IP3的测试原理,详细分析高IP3的测试方法。
1IP3测试原理在无线通信设备中,器件(如放大器、混频器、调制/解调器等)的非线性通常会使同时侵入2个或多个强干扰信号发生相互调制,并产生新的频率成分,这种现象称为互调。
互调干扰不仅能降低有用信号的功率,引起信号失真,降低系统选择性,还能破坏邻近信道的性能。
因此,互调性能是系统常检指标,通常用IP3来表示。
IP3是工作频率信号在理想线性系统中的输出信号与三阶互调分量幅值相等时的交点,是一个固定点。
如图1所示[1]。
该点是虚交点,实际系统中无法直接测出,但可以通过相关的测量值计算出来。
下面将简单介绍IP3计算式的原理。
虽然侵入系统的强信号可能有2个或2个以上,但为了测试的方便,假设只有2个强的等幅单音信号侵入了系统。
若用一个幂级数来表示器件的非线性作用,并假设单音信号的频率分别为f1和f2,那么不难推出三阶互调分量的频率为(2f1-f2)或(2f2-f1)。
IP3(IIP3,OIP3)的计算式为[2]:其中:IIP3为输入IP3,是IP3的横坐标;OIP3为输出IP3,是IP3的纵坐标;Pin为单音信号的输入功率电平;Pout为单音信号的输出功率电平;G为被测件(Device Under Test - DUT)的小信号增益。
IMD3为三阶互调失真,他等于干扰信号的输出功率电平减去三阶互调量功率电平的值,即:。
在移动通信领域内,频率规划是很重要的项目之一。
频率规划的正确与否直接影响到工程完工之后实际的通信质量。
在多信道的共用系统中,因为多个信道的同时工作,必然要产生相互干扰,为了减少频率之间的相互干扰的程度,就应该选取一些适当的频点,选用无三阶互调的频点就能够有效的抑制频率间的干扰。
三阶互调是由电路的非线性产生的三次项,在频率上满足:Fi-Fj=Fj-Fk(两信号三阶互调)Fi-Fj=Fk-Fl(三信号三阶互调)三阶互调的意思是,只要有几个频率满足以上的关系,相互间就会构成干扰,比如在两信号的三阶互调中,Fi=2Fj-Fk,若由Fj和Fk产生的新的频率Fi落在本系统或其他系统工作的频率或通带上,就会对系统的通信造成干扰。
无三阶互调就是要取出一组满足频率要求的点,使这些点的任何组合都满足Fi-Fj≠Fj-Fk,Fi-Fj≠Fk-Fl。
在一组数的范围内取出无三阶互调的点,我们可以考虑几种算法。
第一种是:先将所有的组合求出,然后依照无三阶互调的条件进行判断,取出所有满足无三阶互调的组,然后依照附加条件(比如信道间隔)进行挑选;第二种是:先依照附加条件选择信道组合,再将程序求出的组合进行无三阶互调比较和判断,最终求得满足的解。
在判断无三阶互调的条件时,将每两个元素进行循环比较的方法显得过于繁杂,一般采用差分三角形法。
这个例子是取5个无三阶互调的点,取出的组(1,2,5,10,12)(引自《移动通信工程》,人民邮电出版社316页,表5-5)满足无三阶的条件,约束条件为信道间隔≥1,由这个数组可以计算出上面的差分三角矩阵。
验证无三阶互调的方法是:只要这个三角矩阵中的元素不重复,则这个数组本身就满足无三阶互调。
由于矩阵本身并不会很大,可以用多重循环形成差分三角形,再进行矩阵元素之间的比较。
在具体编程描述时可以考虑选用C语言或专用数学工具Matlab或者Mathematic。
考虑到在求解较大型的无三阶互调组时,用C语言描述的工作量过大,牵涉到矩阵运算的循环次数过多,编程繁杂难以实现,且难以维护,故选用Matlab,Matlab以其矩阵运算的效率而闻名。
二阶互调x+x+45=y+95 ;x=912+(a-110*0.2) ;y=1773.2+(b-827*0.2) ;a=100~124 ;b=800~859 ;计算上述5个式子可得:2(890-0.2a)=1773.2+0.2b-165.4+50 ;计算可得:122.2=0.2a-0.4b 即2a+611=b 然后可得对应得二阶互调频点为:100-811 ,101-813 102-815 ,103-817 。
115-841 ,116-843 。
123-857 ,124-859(1)该频率计划是因为二阶互调所引起的。
115频点的发射频率和接收频率之和等于841的下行频率1871,同时124频点的发射频率和接收频率之和等于859的下行频率1874.6,因此引起了二阶互调导致系统掉话。
(2)对于该网络的频率计划主要要考虑900/1800之间的二阶互调干扰和三阶互调干扰。
二阶互调干扰:1、二阶互调表现为fA+/-fB=fC,对双频网可能的表现形式有:DCS1800Tx-GSM900Tx=GSM900Rx;Tx代表基站发射频率,Rx代表基站接收频率共站时1800发射频率与900发射频率的差频不能等于GSM900的接收频率。
2、还有一种情况就是一个基站的三个小区的BCCH之间存在这样的关系也是二阶互调:BCCH(A)+BCCH(B)=2*BCCH(C)三阶互调干扰三阶互调表现为:fA+fB+fC=fD,fA-fB-fC=fD,fA+fB-fC=fD或fA-fB+fC=fD。
对双频网前两者不可能成立,后两者其实是同一种情况。
可归结为:情况1:DCS1800Tx1-DCS1800Tx2+GSM900Tx=GSM900Rx 即:共站两1800频点发射频率的差频与GSM900频点发射频率的和不能等于GSM900的接收频率情况2:DCS1800Tx-GSM900Tx1+GSM900Tx2= DCS1800Rx 即:共站两GSM900发射频率的差频与DCS1800发射频率的和不能等于DCS1800的接收频率。
三阶互调和三阶交调
三阶互调和三阶交调是指在无线通信中,通过将两个或更多的不同频率的信号进行混频,得到一个新的信号,新的信号的频率是原信号频率之和或差。
其中,三阶互调是指信号在混频过程中发生非线性失真,产生新的频率成分,这些频率成分会对系统造成干扰;而三阶交调是指两个信号在混频过程中,产生新频率成分的过程,这些新的频率成分也会对系统造成干扰。
为了避免这种失真和干扰,需要在系统设计中采取相关的措施。
三阶互调(Third Order Intermodulation 或3rd Order IMD)是指当两个信号在一个线性系统中,由于非线性因素存在使一个信号的二次谐波与另一个信号的基波产生差拍(混频)后所产生的寄生信号。
由于一个信号是二次谐波(二阶信号),另一个信号是基波信号(一阶信号),他们俩的合称为三阶信号。
又因为是这两个信号的相互调制而产生差拍信号,所以这个新产生的信号称为三阶互调失真信号。
产生这个信号的过程称为三阶互调失真。
他所表明的是确切含义是,一个线性系统所包含的非线性系数的大小.公式三阶互调公式:f1+f2-f3,2f1-f2,2f2-f1三阶互调是指当两个信号在一个线性系统中,由于非线性因素存在使一个信号的二次谐波与另一个信号的基波产生差拍(混频)后所产生的寄生信号。
比如F1的二次谐波是2F1,他与F2产生了寄生信号2F1-F2。
由于一个信号是二次谐波(二阶信号),另一个信号是基波信号(一阶信号),他们俩合成为三阶信号,其中2F1-F2被称为三阶互调信号,它是在调制过程中产生的。
又因为是这两个信号的相互调制而产生差拍信号,所以这个新产生的信号称为三阶互调失真信号。
产生这个信号的过程称为三阶互调失真。
由于F2,F1信号比较接近,也造成2F1-F2,2F2-F1会干扰到原来的基带信号F1,F2。
这就是三阶互调干扰。
既然会出现三阶,当然也有更高阶的互调,这些信号不也干扰原来的基带信号么?其实因为产生的互调阶数越高信号强度就越弱,所以三阶互调是主要的干扰,考虑的比较多。
不管是有源还是无源器件,如放大器、混频器和滤波器等都会产生三次互调产物。
这些互调产物会降低许多通信系统的性能。
1、三阶互调的产生三阶互调是指当两个信号在一个线性系统中,由于非线性因素存在使一个信号的二次谐波与另一个信号混频后所产生的寄生信号。
比如F1的二次谐波是2F1,他与F2产生了寄生信号2F1-F2和2F2-F1。
由于一个信号是二次谐波(二阶信号),另一个信号是基波信号(一阶信号),所以称之为三阶互调。
(完整word版)三阶交调三阶交调定义:当系统中两个(或更多)的连续载频信号通过一个无源器件,如天线,电缆,滤波器时,由于其非机械不可靠,虚焊和表明氧化等原因,在不同的材料连接处会产生非线性因素。
两个连续载频信号(f1,f2)及其二次谐波(2f1,2f2)所进一步产生的最大互调产物就是三阶互调失真(2f1-f2,2f2-f1)。
测试原理:测试示意图此测试系统为传输互测试调系统,当测试非互易器件时,只能采用反射互调测试系统测试。
三阶互调产物(IM3)的典型值是当两个43dBm的载频信号同时加到被测器件上,其产生的IM3不大于-77dBm,也就是-120dBc。
互调干扰是不同频率的信号在一非线性器件时,将发生互相调制并产生新的频率信号输出,如果频率正好落在某接收机工作频带内,印象该接收机的接受灵敏度。
阻塞干扰:是指一个系统发信机发出的信号处于另一系统的接受频段之外,但式当达到某一门限(阻塞)时,使得另一系统的接收机被推向饱和,无法接收有用信号。
杂散干扰:(完整word版)三阶交调一个系统发信机发射的带外信号落在另一个系统的频带内,对另一个系统的接受灵敏度造成的影响。
大功率线圈负载原理:用线圈的衰减来抑制负载本身的互调对器件的影响.原理举例说明:设定信号源1的连续输出频率为935MHz,信号源2 的连续输出频率960MHz,经过功放后,两个信号都变成20W(43dBm)的功率,然后进行合路后输入被测器件,根据定义所释,F1和F2产生的三阶互调频点应该在910MHz。
而此时我们在频谱仪上直接读出910MHz点的功率(如果得出-77dBm).那么此器件的互调指标为—120dBc[—77-(+43)]。
如何提高三阶互调指标:1、接头外壳全部采用镀银底三元合金,内芯镀银。
2、焊接点要越小越好,且圆滑,用有铅焊锡,并采用松香做助焊剂,且在焊接完成后用酒精棉球将氧化物清除干净,工艺要求高。
3、被测件要精密加工,内部无毛刺,且在组装配件要求是无磁性的材料.4、在组装时要严格按照工艺图纸装接,最重要的是阴阳接头的连接要非常到位.5、电缆焊接时要将焊锡完全流入接口缝隙处,并尽量填充满。
三阶互调干扰判断方法及例题三阶互调干扰判断方法是一种在处理多元回归问题时,用来判断自变量之间存在不同程度的互调干扰的方法。
在实际应用中,该方法可以帮助我们发掘出自变量的协变关系,更好地进行数据分析,并为建立更加有效的模型奠定基础。
三阶互调干扰判断方法指的是,在多元回归问题中,通过检测三阶组合中自变量之间的互调干扰,以判断自变量之间存在不同程度的互调干扰。
这也就是说,如果有X1,X2,X3三个自变量,可以检测出X1X2X3、X1X3X2、X2X3X1三种三阶组合之间的关系,从而判断出自变量之间存在不同程度的互调干扰。
三阶互调干扰判断方法的步骤如下:(1)首先,计算每个三阶组合的平均值,并根据平均值的大小对相应的三阶组合进行排序。
(2)然后,计算每个三阶组合的差异值,这里的差异值是指两个三阶组合的平均值的差值。
(3)最后,根据差异值的大小,判断每个三阶组合之间存在何种程度的互调干扰。
若差异值较大,说明自变量之间存在较强的互调干扰;若差异值较小,则自变量之间存在较弱的互调干扰。
例如,在一个试验中,研究者想研究A、B、C三种因素对结果的影响,分别设置5种不同的水平,即A1、A2、A3、A4、A5;B1、B2、B3、B4、B5;C1、C2、C3、C4、C5。
共有125种三阶组合,每种组合都进行了5次实验,得到了5组实验数据。
根据上述步骤,我们可以首先计算每个三阶组合的平均值,并根据平均值的大小对相应的三阶组合进行排序;然后计算每个三阶组合的差异值,最后根据差异值的大小,判断每个三阶组合之间存在何种程度的互调干扰。
从而,我们可以得出A、B、C三种因素之间存在何种程度的互调干扰,从而为建立更加有效的模型奠定基础。
三阶互调计算什么是三阶互调?三阶互调是指当两个信号在一个线性系统中,由于非线性因素存在使一个信号的二次谐波与另一个信号的基波产生差拍(混频)后所产生的寄生信号。
由于一个信号是二次谐波(二阶信号),另一个信号是基波信号(一阶信号),他们俩的合称为三阶信号。
又因为是这两个信号的相互调制而产生差拍信号,所以这个新产生的信号称为三阶互调失真信号。
产生这个信号的过程称为三阶互调失真。
他所表明的是确切含义是,一个线性系统所包含的非线性系数的大小。
这个指标对于大动态放大器是一个非常重要的技术指标。
测试这项指标使用的测试仪器主要是频谱分析仪。
对于不同指标要求的三阶互调失真,需使用不同性能的频谱分析仪,对三阶互调失真要求越高,对频谱分析仪的要求就越高。
给定具体频率可以推算出哪些频率点有三阶互调干扰具体的算法是:计算方法:(1)将所分配或使用的频率从低向高排序;(2)按最小信道间隔计算每个频率对应的频道数;(3)计算相邻频道数的差值;(4)求差值的和(按下举例方法求和);(5)检查差值与和数中不得有相同的数出现。
举例说明:现有一组频率156.275M Hz 156.150MHz156.200MHz156.125M Hz计算是否存在互调组合。
(1)排序156.125 156.150156.200 156.275(156.300)(2)顺序频道数 1 247(8)(3)相邻频道差值 1 2 3(4)(4)差值之和35(6)6(7)(5)检查差值与和数是否有同样的数出现有相同的数字3,表明这一组频率存在互调,只有将156.275频率向上调换成156.300或其它的频率才可避开互调组合。
三阶互调是指当两个信号在一个线性系统中,由于非线性因素存在使一个信号的二次谐波与另一个信号的基波产生差拍(混频)后所产生的寄生信号。
比如F1的二次谐波是2F1,他与F2产生了寄生信号2F1-F2。
由于一个信号是二次谐波(二阶信号),另一个信号是基波信号(一阶信号),他们俩合成为三阶信号,其中2F1-F2被称为三阶互调信号,它是在调制过程中产生的。
又因为是这两个信号的相互调制而产生差拍信号,所以这个新产生的信号称为三阶互调失真信号。
产生这个信号的过程称为三阶互调失真。
由于F2,F1信号比较接近,也造成2F1-F2,2F2-F1会干扰到原来的基带信号F1,F2。
这就是三阶互调干扰。
既然会出现三阶,当然也有更高阶的互调,这些信号不也干扰原来的基带信号么?其实因为产生的互调阶数越高信号强度就越弱,所以三阶互调是主要的干扰,考虑的比较多。
不管是有源还是无源器件,如放大器、混频器和滤波器等都会产生三次互调产物。
这些互调产物会降低许多通信系统的性能。
当两个或多个干扰信号同时加到接收机时,由于非线性的作用,这两个干扰的组合频率有时会恰好等于或接近有用信号频率而顺利通过接收机,其中三阶互调最严重。
目录••三阶互调干扰••定量分析••危害性••消除方法[显示全部]三阶互调干扰编辑本段回目录三阶互调是指当两个信号在一个线性系统中,由于非线性因素存在使一个信号的二次谐波与另一个信号的基波产生差拍(混频)后所产生的寄生信号。
比如F1的二次谐波是2F1,他与F2产生了寄生信号2F1-F2。
由于一个信号是二次谐波(二阶信号),另一个信号是基波信号(一阶信号),他们俩合成为三阶信号,其中2F1-F2被称为三阶互调信号,它是在调制过程中产生的。
又因为是这两个信号的相互调制而产生差拍信号,所以这个新互调干扰三阶互调干扰产生的信号称为三阶互调失真信号。
产生这个信号的过程称为三阶互调失真。
由于F2,F1信号比较接近,也造成2F1-F2,2F2-F1会干扰到原来的基带信号F1,F2。
三阶交调和三阶互调《三阶交调》嘿,亲爱的小伙伴们!今天咱们来聊聊三阶交调这个有点神秘又有趣的话题。
你知道吗?三阶交调就像是电路世界里的一个小调皮鬼。
它老是在我们不经意的时候出来捣乱。
比如说,在通信系统里,它会让信号变得乱糟糟的,就好像原本清晰的声音突然夹杂了奇怪的杂音。
这可太让人头疼啦!想象一下,你正在和朋友打电话,结果因为三阶交调,声音一会儿清楚一会儿模糊,那得多抓狂呀!三阶交调产生的原因呢,其实也不复杂。
简单来说,就是当有多个不同频率的信号在电路里跑来跑去的时候,它们相互碰撞,就像一群调皮的孩子在打闹,然后就产生了这个让人烦恼的三阶交调。
三阶交调虽然让人头疼,但只要我们不断努力,总能找到办法把它治得服服帖帖的!《三阶互调》嗨呀,朋友们!今天咱们来唠唠三阶互调。
三阶互调这玩意儿,就像是藏在电子世界里的小怪兽。
它总是悄咪咪地搞破坏,影响着各种电子设备的正常运行。
比如说在无线通信中,三阶互调一旦出现,那信号质量可就大打折扣啦。
原本顺畅的通信可能会变得断断续续,就像说话说到一半突然卡壳一样,急死人咯!那三阶互调到底是怎么来的呢?其实呀,就是当不同频率的信号在同一个系统里相遇,它们之间发生了一些奇妙的“化学反应”,然后三阶互调就诞生啦。
不过别担心,科学家和工程师们可不会轻易放过它。
他们通过各种先进的技术和巧妙的方法,努力把三阶互调的影响降到最低。
有时候,解决三阶互调的问题就像是一场刺激的冒险。
要不断尝试新的方法,不断优化系统,就像在迷宫里寻找出口一样。
虽然三阶互调有点难缠,但相信随着技术的不断进步,我们一定能把它彻底打败,让电子世界更加美好!。
三阶交调分量系数一、三阶交调分量的概念与意义在通信系统中,信号经过传输和处理过程中,可能会产生各种失真。
其中,三阶交调分量(Third-order intercept point,简称TOI)是指在频率域中,由于非线性元件的影响,信号的第三个谐波与基波之间的相互混合产生的失真分量。
三阶交调分量系数(Third-order intercept point ratio,简称TIPR)是衡量通信系统性能的一个重要指标,它反映了系统对高频干扰和邻道干扰的抑制能力。
二、三阶交调分量系数的计算方法三阶交调分量系数的计算公式为:TIPR = (P3 + P4) / (P1 + P2)其中,P1、P2、P3 和P4 分别表示信号的基波、第一个谐波、第二个谐波和第三个谐波的功率。
在实际计算中,通常采用以下步骤:1.测量信号的功率谱密度;2.计算基波、谐波的功率;3.计算三阶交调分量;4.计算三阶交调分量系数。
三、三阶交调分量系数的应用场景1.通信系统设计:在通信系统设计中,通过优化三阶交调分量系数,可以提高系统的抗干扰性能,从而提高通信质量。
2.无线通信标准制定:在无线通信标准制定过程中,三阶交调分量系数是衡量设备性能的一个重要指标,有助于确保设备之间的兼容性和可靠性。
3.通信设备性能评估:通过测量三阶交调分量系数,可以评估通信设备的性能,为设备选型和采购提供参考。
四、提高三阶交调分量系数的策略1.设计优化:在通信系统设计中,采用线性化技术(如预失真技术、数字预处理技术等)和非线性补偿技术,降低三阶交调分量的产生。
2.滤波器设计:在频谱中,通过设计合适的滤波器,可以抑制高频干扰和邻道干扰,降低三阶交调分量系数。
3.信号处理算法优化:在信号处理过程中,采用抗干扰能力强的信号处理算法,如自适应滤波算法、谐波抑制算法等,降低三阶交调分量系数。
五、总结三阶交调分量系数是衡量通信系统性能的一个重要指标,通过计算和优化三阶交调分量系数,可以提高通信系统的抗干扰性能。
三阶交调截点级联公式好的,以下是为您生成的关于“三阶交调截点级联公式”的文章:在我们探索电子世界的奇妙旅程中,有一个神秘而又重要的概念——三阶交调截点级联公式。
这玩意儿听起来是不是有点让人摸不着头脑?别担心,让我来给您细细道来。
想象一下,您正在收听广播,里面传来的声音清晰而稳定。
但是,如果存在一些干扰,声音就会变得模糊不清,甚至让人难以忍受。
在电子电路中,也会出现类似的情况。
当不同频率的信号相互作用时,就可能产生一些不希望有的交调产物,而三阶交调就是其中的“捣蛋鬼”之一。
三阶交调截点呢,就像是一个衡量电子电路性能的“裁判”。
它能告诉我们电路在处理信号时,能够承受多大的干扰而不至于“乱了套”。
咱们来说说这个级联公式。
它可不是凭空出现的,而是经过无数科学家和工程师们的努力和实践总结出来的。
就好像盖房子一样,一块砖一块砖地积累起来。
我还记得有一次,在实验室里调试一个放大器电路。
为了找到最佳的工作点,我不停地调整参数,眼睛紧紧盯着示波器上的波形。
那时候,心里就想着一定要把这个三阶交调的问题解决掉。
汗水都湿透了额头,可我一点儿都没在意。
经过一番折腾,终于看到了理想的波形,那一刻的喜悦,简直无法用言语形容。
这个级联公式的应用可广泛了。
在通信系统中,它能帮助我们设计出更高效、更稳定的信号传输线路;在雷达系统中,能提高目标检测的准确性;在音频设备中,能让我们享受到更纯净的声音。
比如说,手机信号的传输。
如果三阶交调截点不够高,您打电话的时候可能就会听到奇怪的杂音,甚至通话中断。
这可太让人恼火了!所以,这个公式对于保证我们日常通信的质量至关重要。
再比如,在卫星通信中,信号要经过长距离的传输和多个放大器的处理。
如果不考虑三阶交调截点级联公式,信号可能会严重失真,导致信息丢失。
总之,三阶交调截点级联公式虽然看起来复杂,但它却是电子领域中非常实用的工具。
它就像一把神奇的钥匙,能够打开高质量电子系统设计的大门。
不管是在小小的电子元件中,还是在庞大的通信网络里,这个公式都在默默地发挥着作用,为我们的科技生活保驾护航。
三阶互调算法简介
胡皓;钱志红
【期刊名称】《警察技术》
【年(卷),期】2004(000)005
【摘要】在移动通信领域内,频率规划是很重要的项目之一。
频率规划的正确与否直接影响到工程完工之后实际的通信质量。
在多信道的共用系统中,因为多个信道的同时工作,必然要产生相互干扰,为了减少频率之间的相互干扰的程度,就应该选取一些适当的频点,选用无三阶互调的频点就能够有效的抑制频率间的干扰。
【总页数】2页(P3-4)
【作者】胡皓;钱志红
【作者单位】公安部第一研究所通信事业部;公安部第一研究所通信事业部
【正文语种】中文
【中图分类】N2
【相关文献】
1.移动通信中无三阶互调的实时频率分配算法及实现方案 [J], 周峻颖;张祖荫
2.基于遗传算法无三阶互调频率配置方法 [J], 邹昳琨;戴伏生;肖烨
3.AES决赛算法--Rijndael算法简介 [J], 锁延锋
4.机器学习及其相关算法简介 [J], 周昀锴
5.C语言生成线性代数考卷及答案的算法简介 [J], 康建
因版权原因,仅展示原文概要,查看原文内容请购买。
地铁POI三阶互调干扰LTE处理案例(湖南电信长沙无线维护中心)摘要:地铁、高铁、隧道等特殊场景因场地和费用限制一般都会要求多运营商多系统(2/3/4G)联合组网。
本文基于长沙地铁2号线多网多制式信号合路导致三阶互调干扰,描述了三阶互调干扰问题的发现,干扰的处理和规避方法。
本文对使用合路方式进行地铁等特殊场景的信号覆盖的方案,具有较强的指导借鉴意义。
关键字:多网多制式信号合路三阶互调干扰 RSSI1、问题描述长沙地铁2号线电信LTE1.8GRRU在与联通GL双模RRU合路后出现RSSI抬升问题,部分站点抬升情况较严重。
地铁站点均采用多频合路方式(POI),多运营商共享室分天馈系统。
现场具体合路方式如图一:图一:地铁合路组网示意图2、问题处理2.1 问题诊断1)选择地铁2号线锦泰广场站点进行测试,后台诊断测试RSSI发现上行POI对应的RRU ANT1底噪正常(-99dBm),下行POI对应的ANT4底噪为-88dBm,因此现场针对下行POI产生的底噪问题进行排查;2)断开电信侧R8862A ANT4端口,连接频谱仪测试该端口上行接收情况,连接方式和频谱扫描情况图二:图二:直连设备频谱分析图从频谱扫描结果来看,电信LTE接收频带内共有3个干扰频点,分别为1774.51MHz、1779.43MHz、1781.89MHz。
收集POI系统各路输入信号频点信息后分析认为,干扰信号来源于不同频点交互后产生的三阶互调,经估算并验证测试确定中国移动GSM+中国联通DCS+中国电信CDMA合路后,产生的三阶互调落在了中国电信LTE1765~1780MHz频段范围内。
2.2 问题定位验证过程锦泰广场地铁站站厅合路系统中对电信LTE 1.8G频段有影响的各运营商网络对应的中心频率配置如表一:表一:与三阶互调影响电信LTE1.8G频段有关网络中心频率三阶互调公式包括:(1)f1+f2-f3;(2)2f1-f2;(3)2f2-f1。
三阶互调仪校准规程
一、开机准备
1、打开互调仪及专用电脑;
2、在专用电脑上打开测试软件;
3、测试软件测试界面会有“机器预热,请等待”字样,等机器进行预热,该过程30分钟左右;
4、预热后机器操作界面激活,开始进行校准。
二、参数设置
机器预热后,请确认下表各项参数设置正确:
标准值增量精确度(ALC激活)反射功率保护
49 dBm,
0.1 dB ±0.35 dB, maximum 50dBm (100 Watt)
maximum
三、校准
1、反射互调校准
RF OUT
a、将7/16NM转7/16NM测试线一端与无源互调分析仪RF OUT端口相连接,另一端与低
互调功率负载连接,并保证接触良好;
b、在工作频带内选择合适的两个频率f1、f2,使互调产物f3=2f1-f2 或(2f2- f1)落在工作频带内;
c、调整输出功率,使输送到被测天线上的f1,f2的功率为20W(+43dBm);
d、在测试软件测试结果显示屏上显示“≤-122dBm”。
2、传输互调校准
a、将7/16NM转7/16NM测试线的两端分别与无源互调分析仪RF OUT和RF IN端口相连接,并保证接触良好;
b、在工作频带内选择合适的两个频率f1、f2,使互调产物f3=2f1-f2 或(2f2- f1)落在工作频带内;
c、调整输出功率,使输送到被测电缆上的f1,f2的功率为20W(+43dBm);
d、在测试软件测试结果显示屏上显示“≤-117dBm”。
四、校准周期
仪器校准周期为7天。
但是由于外部原因导致仪器出现异常的将对仪表及时进行校准。
在移动通信领域内,频率规划是很重要的项目之一。
频率规划的正确与否直接影响到工程完工之后实际的通信质量。
在多信道的共用系统中,因为多个信道的同时工作,必然要产生相互干扰,为了减少频率之间的相互干扰的程度,就应该选取一些适当的频点,选用无三阶互调的频点就能够有效的抑制频率间的干扰。
三阶互调是由电路的非线性产生的三次项,在频率上满足:
Fi-Fj=Fj-Fk(两信号三阶互调)
Fi-Fj=Fk-Fl(三信号三阶互调)
三阶互调的意思是,只要有几个频率满足以上的关系,相互间就会构成干扰,比如在两信号的三阶互调中,Fi=2Fj-Fk,若由Fj和Fk产生的新的频率Fi落在本系统或其他系统工作的频率或通带上,就会对系统的通信造成干扰。
无三阶互调就是要取出一组满足频率要求的点,使这些点的任何组合都满足Fi-Fj≠Fj-Fk,Fi-Fj≠Fk-Fl。
在一组数的范围内取出无三阶互调的点,我们可以考虑几种算法。
第一种是:先将所有的组合求出,然后依照无三阶互调的条件进行判断,取出所有满足无三阶互调的组,然后依照附加条件(比如信道间隔)进行挑选;第二种是:先依照附加条件选择信道组合,再将程序求出的组合进行无三阶互调比较和判断,最终求得满足的解。
在判断无三阶互调的条件时,将每两个元素进行循环比较的方法显得过于繁杂,一般采用差分三角形法。
这个例子是取5个无三阶互调的点,取出的组(1,2,5,10,12)(引自《移动通信工程》,人民邮电出版社316页,表5-5)满足无三阶的条件,约束条件为信道间隔≥1,由这个数组可以计算出上面的差分三角矩阵。
验证无三阶互调的方法是:只要这个三角矩阵中的元素不重复,则这个数组本身就满足无三阶互调。
由于矩阵本身并不会很大,可以用多重循环形成差分三角形,再进行矩阵元素之间的比较。
在具体编程描述时可以考虑选用C语言或专用数学工具Matlab或者Mathematic。
考虑到在求解较大型的无三阶互调组时,用C语言描述的工作量过大,牵涉到矩阵运算的循环次数过多,编程繁杂难以实现,且难以维护,故选用Matlab,Matlab以其矩阵运算的效率而闻名。
在编程的实现上,Matlab提供了很多的可以供使用的函数,这方便了我们的编程过程。
对于第一种算法,COMBNK(n k)函数可以生成在n个元素里每次取出k个元素的所有组合,使用此函数很快就能获得所有组合,然后能对每一种组合求得差分三角矩阵,进而求出我们需要的无三阶互调组,这种方法在求得维数较低的无三阶互调数组时易于使用。
例如在取数范围<56时使用比较方便,在CPU主频为2G的情况下,15分钟左右能求出结果,无三阶互调组的维数为7(不加任何限定条件);但是当数组变大的时候就不再适合了,此时生成矩阵的规模成几何级数增长,当要在100个点中取出维数为10的组时,有1.7310e+013种组合,这在生成矩阵的时候是不可实现的,因为Matlab不允许对默认的存储变量的大小进行修改,每个变量用8个字节来表示,那么要求系统存储矩阵的容量不能低于1.3848e+005GBytes,这在物理上也是不可行的,最终因耗尽内存而不能继续。
这时应该作出在系统内存和CPU占用率上的取舍。
故比较合理的解决方案是采用第二种算法。
第二种算法是将所需要的前提条件放在循环生成数组矩阵的约束条件内,尽管使用多重循环会占用大量CPU时间片,但是却大大的节省出了内存,每生成一个符合附加条件的数组后就立即进行三角矩阵的运算和无三阶条件的判断,这样的确会降低求解的速度,但是目前CPU的运算速度比较快,相比之下内存就要珍贵的多。
在取数范围<56时,大概20分钟左右能计算出正确的结果,经过验算,用此方法求得的无三阶互调组,都能够和《移动通信工程》(人民邮电出版社)提供的无三阶互调的频道序列相符。
当取数范围为120,维数为8,频点间间隔不小于10时,求出第一组满足条件数的时间大概在1小时左右,为(1,11,22,34,47,61,76,92),若需要几组频率,则可以使用简便的方法。
但当维数取到10以上的时候,运算的复杂度也是几何级数的增加,其运算时间以天计。
当求满足条件的组合时,将组合的第一个数设置为1即可,因为若第一个数大于1时可以求得结果的话,那么当第一个数为1时也有解(相应地在解出的组中都减去一个相同的数),这样能相对减少一些计算时间。
上面提供了两种无三阶互调的算法,可以因实际情况不同而取舍,在维数较小的时候可以使用前者,编程比较简单,运算速度较快;在维数较大的时候,第一种算法基本不能使用,应采用第二种算法,并且采用高性能的计算机。
鉴于对每次不同的要求都需要单独求出符合条件的解,使得重复计算量很大,我们可以构造一个分组号码表格以供查询。
如对于120选8,若对信道间隔没有特别苛刻的要求,一般可以构造出12组,每组信道间隔不小于6,并且用到了96个频点,信道利用率极高;相应地,可以由120选8的表观察出103选7,也能极大地利用频点。
但是这种方式也不能表达出全部的无三阶互调组,而且对信道间隔也只能在排表时估算,这是一大缺点。
信道安排的效果如下表:
构造上表的原理:假设求得的无三阶互调组为(i,j,k,l,m,n,o,p),为了极大限度地利用频道资源,为组中每个变量(从i到p)划分出取值范围,如上表将120个频点均匀地分成8份,每个变量可以取15个值(例如i可以从1取到15),然后在这种约束条件下运用第二种算法进行判断,每判断出一组无三阶互调频点,那么在下次判断中这些频点不允许再次使用,这样构造的图表能有极高的频道利用率。
可见,用上述方法计算的话,其信道间隔并不可控,但是当取数范围大,而所求频点少时,还是可以达到要求的,如表,在120中选取含8个信道的组时,每组最小的频道间隔为6,而在58中选取含4个信道的组时,每组最小的频道间隔可以达到14。
若想求出在限定频点范围内的所有无三阶互调的点,采用第二种算法可以全部求出,但是这样的计算量很大,笔者推荐使用上述排表的方法,求得结果后,挑选出满足使用条件(信道间隔)的若干组即可。
总之,求无三阶互调频点有两大类解法,在应用中可以灵活地选择,并且笔者希望读者能开发出更高效的算法。