第4章 螺旋桨模型的敞水试验
- 格式:doc
- 大小:536.50 KB
- 文档页数:12
CFD螺旋桨敞水试验模拟教程
(特点:适用于普通电脑,4G内存电脑计算收敛仅需5分钟,精确度高,推力误差通常小于5%,力矩误差更低。
)
1、建立螺旋桨三维模型(注意模型质量)
2、制作旋转域(用小圆柱除去螺旋桨)
剖视图
3、制作静域(不旋转域)
非旋转域剖视图4、装配,保存成STP文件。
5、打开ansys导入stp文件
6、进入mesh模块,命名好各个面,划分网格
7、Update至fluent求解器
网格优化、设置材料、设置湍流模型、设置MRF、设置边界条件、求解方法设置、收敛监测、初始化、迭代计算。
8、计算收敛,查看结果。
如果有细节之类的不懂,可以私信我,看到我会解答。
~。
0、前言1、敞水箱安装2、仪器安装及操作2.1 动力仪3、敞水试验数据处理图1 敞水箱图1 动力仪图2 电机图3 3KW稀土直流电动机调速装置图4 转速数字显示仪图5 WD990 微机电源图6 操作台整体视图图7 放大器背面接口图8 放大器正面图9 8HZ采集程序图标图10 敞水自航双桨图11 敞水系统设定图12 敞水数据采集图13 8HZ数据处理图14螺旋桨敞水性征曲线表目录表1 自航仪规格表型号参考如下表格。
类别量程系数电压(V)德国自航仪10kg25kg.cm推力:34.2扭矩:82.5推力:6.0扭矩:10.0德国自航仪(坏头)10kg25kg.cm推力:35扭矩:82推力:6.0扭矩:10.0自航仪5# (702所)10kg30kg.cm推力:33.75扭矩:69推力:6.0扭矩:10.0自航仪9# (702所)10kg30kg.cm推力:33.2扭矩:67.6推力:6.0扭矩:10.0自航仪(702所)25kg50kg.cm推力:40扭矩:167推力:12.0扭矩:12.0德国自航仪桨径( m)水密度零扭矩转速进速推力扭矩扣零扭矩进速系数推力系数扭矩系数效率系数D ρM0n(rpm) V(m/s)T(kg)M(kg.cm)Q=M-M0J=V/DnKt=T/ρn2D410Kq=Q/ρn2D5η=K1/K2*J/2π。
8.4.1 对转螺旋桨敞水试验技术敞水试验是研究螺旋桨在均匀流场中的工作特性。
敞水试验的目的是:(1)进行系列模型桨试验,建立螺旋桨设计图谱;(2)研究螺旋桨的不同几何特性参数对其水动力性能的影响,为改进设计和优化设计提供试验数据;(3)提供模型自航试验和实雷推进性能预报必要的敞水性证曲线。
一、试验方法和试验设备螺旋桨敞水试验必须满足的相似准则是进速系数J。
雷诺数、弗氏数、相对潜深都属于限制参数。
为了消除自由液面的影响(兴波和吸气),螺旋桨的轴线潜深应大于或等于一个桨径。
为了避免严重的粘性尺度效应,桨模雷诺数要求大于某一临界值,这一点在下文将作专门讨论。
试验方法有二种:(1)固定进速(拖车速度不变)、改变螺旋桨转速,此方法称等速度法;(2)固定螺旋桨转速,改变进度(变化拖车速度),此方法称等转速法。
目前使用的敞水试验装置有二种结构形式:一种是扁舟式敞水箱。
螺旋桨动力仪、换向和减速齿轮箱、电机等安装在箱体内,驱动螺旋桨的空、实轴伸出箱体外,为减小箱体对螺旋桨流动的影响,螺旋桨与箱体之间的轴向距离要求大于2—3倍桨直径。
另一种是炮弹式敞水试验装置。
其外型为流线型圆柱体,类似于炮弹形状。
动力仪及驱动螺旋桨的传动轴系安装在圆柱体内。
圆柱体上方有一空心的弓形剖面的支杆一直伸到水面上,安放在水面上的电机通过直角传动机构驱动螺旋桨轴转动。
这种结构形式的优点是对螺旋桨流动的干扰影响小,另外可以允许增大潜深,提高车速。
敞水试验的主要测量仪器是螺旋桨动力仪。
中国船舶科学研究中心水池用于正、反转螺旋桨敞水试验的动力仪有变磁阻式空、实轴螺旋桨动力仪、电阻应变式多功能螺旋桨动力仪。
螺旋桨转速由光电式或磁电式速度仪测量。
图8-8是鱼雷对转桨试验装置的示意图。
图8-8 鱼雷对转桨试验装置示意图1- 内轴;2-外轴;3-空心万向轴节;4-空心动力仪;5-换向齿轮箱;6,7-万向联轴节8-减速齿轮箱;9-光电测速仪;10-电机。
船模与渔具水动力实验室桨模敞水试验报告姓名:专业:班级:所属课程:试验日期:同组者:年月日船模与渔具水动力实验室螺旋桨模型基本信息模型浆编号:形式:直径D(mm):螺距比P/D:盘面比Ae/Ao:叶数Z:叶厚比:毂径比:后倾角:最大叶宽比:旋向:一、螺旋桨敞水性特征计算表模型编号__________________________模型直径D__________________________叶厚分数t0/D__________________________水温__________________________ 试验编号__________________________盘面比A e/A o ________________________毂径比d b/D ___________________________ 密度ρ________________________ 比例尺λ__________________________ 螺距比P/D _________________________叶数Z____________________________日期___________________________螺旋桨雷诺数计算公式:1、曾用公式:Re=nD2/v或者V p D/v 2、1978年ITTC规定公式:Re={b0.75R[V p2+(0.75πnD)2]1/2}/v螺旋桨敞水性能无因次系数:1、进速系数:J p=V p/nD 2、推力系数:K T=T/ρn2D43、扭矩系数:K Q=Q/ρn2D54、敞水效率:η0=K T J P/K Q2π二、螺旋桨敞水性特征曲线0.10.30.20.50.60.4 1.00.80.90.70.10.20.30.60.50.40.70.80.91.0KT10K Qη三、试验结果的分析、讨论四、教师评阅成绩: 签名:。
船舶与海洋工程实验技术实验报告班级:姓名:学号:指导老师:华中科技大学船舶与海洋工程学院船模拖曳水池实验室2016年6月1日螺旋桨敞水试验一、实验目的(1)对于某一具体的螺旋桨,通过模型试验可以确定实际螺旋桨的水动力性能。
(2)通过多方案的试验研究,可以分析螺旋桨的各种几何要素对水动力性能的影响。
(3)检验理论设计的正确性,不断完善理论设计的方法。
(4)通过对螺旋桨模型的系列试验,可以绘制成专用图谱,供设计螺旋桨使用。
现时广泛使用的楚思德B 系列图谱和MAU 系列图谱等都是螺旋桨模型系列敞水试验的结果。
二、实验原理满足以下条件:几何相似; 螺旋桨模型有足够的深度; 试验时雷诺数应大于临界雷诺数。
进度系数相等。
22412252(,)(,)A A V nD T n D f nD V nD Q n D f nD ρνρν==螺旋桨雷诺数采用ITTC 推荐表达式:νπ2275.0)75.0(Re nD v c a +=临界雷诺数一般大于3×105为消除自由液面影响,桨模的沉深深度:m s D h )0.1-625.0(≥三、实验设备主要设备是螺旋桨动力仪 。
四、实验内容敞水试验通常是保持螺旋桨转速不变,改变拖车前进速度。
速度范围应从Va =0至推力小于零的进速之间,在该范围内测点取15个左右。
1、敞水箱安装敞水箱为流线型,螺旋桨的轴从敞水箱的前端伸出箱外,外伸长度必须使桨模位于箱前的距离大于螺旋桨直径的3倍,以避免箱体的影响。
敞水箱样式如下图所示。
动力仪和电机安装在敞水箱内。
2、仪器安装及操作进入数据采集界面,如图所示。
在拖车开动之前,要对采集系统进行调零。
即在水池水面平稳状态下,点击系统设定里面的“调零保存”,使该通道的工程值基本在0附近飘动。
在拖车开动之前,我们要给螺旋桨一定的转速。
具体转速的确定,要根据具体情况确定。
由进速系数公式 可知,螺旋桨直径D已定,如果螺旋桨转速n太低,我们需要提高进速V,才能是J达到足够到。
船舶与海洋工程实验技术螺旋桨敞水试验指导书华中科技大学船舶与海洋工程学院船模拖曳水池实验室2015年5月20日0、前言............................................. 错误!未指定书签。
1、敞水箱安装....................................... 错误!未指定书签。
2、仪器安装及操作................................... 错误!未指定书签。
2.1动力仪........................................... 错误!未指定书签。
3、敞水试验数据处理错误!未指定书签。
图1敞水箱......................................... 错误!未指定书签。
图1动力仪......................................... 错误!未指定书签。
图2电机........................................... 错误!未指定书签。
图33KW稀土直流电动机调速装置...................... 错误!未指定书签。
图4转速数字显示仪................................. 错误!未指定书签。
图5WD990微机电源.................................. 错误!未指定书签。
图6操作台整体视图................................. 错误!未指定书签。
图7放大器背面接口................................. 错误!未指定书签。
图8放大器正面..................................... 错误!未指定书签。
图98HZ采集程序图标................................ 错误!未指定书签。
螺旋桨敞水实验一、实验目的和意义螺旋桨模型的敞水实验是在循环水槽中测试螺旋桨模型单独在水流条件下进行的性能试验,是《船舶推进》课程在整个教学过程中的一个重要环节,其目的: 1、 配合自航试验分析船舶推进的各种效率成分,并预估实船推进性能 2、 分析比较各种螺旋桨设计方案的优劣,选择性能最佳的螺旋桨3、 进行螺旋桨系列试验,将其结果综合绘制成图谱,供设计螺旋桨使用。
4、 根据螺旋桨试验结果,进行螺旋桨理论的验证,分析几何参数对螺旋桨性能的影响规律。
二、模型试验要求和准备工作图2.1 螺旋桨敞水试验布置图1、桨模敞水试验的相似定理:桨模和实桨满足几何相似、运动相似、动力相似才能将模型试验数据应用在实桨上。
为避免缩尺影响过大,桨模试验的雷诺数Re 必须超过临界值,螺旋桨的雷诺数根据1957年ITTC 会议推荐采用的下列定义式Re =其中0.75C -- 0.75R (半径)处叶剖面的弦长(m ) D-- 螺旋桨的直径(m ) A V-- 螺旋桨的进速(m s ) n-- 螺旋桨的转速(round s )υ--水的运动粘性系数(2m s )根据1978年ITTC 会议建议,临界雷诺数为5Re 3.010=⨯临。
2、为避免自由面兴波和吸入空气对桨性能产生不利影响,在桨模进行敞水试验时,其浸没与水中的深度应满足 1.0h D ≥,其中h 为桨轴中心线距水面的距离(m )。
3、敞水动力仪的流线罩与桨模安装位置应有足够大的距离,以避免因流线罩干扰的水流影响试验结果。
一般要求桨轴伸出在罩外的长度大于三倍桨模直径。
4、螺旋桨轴端身在前面,其轴端平面对水流的干扰将影响进入桨面的水流,因此在试验时应加装导流罩帽。
桨模后方也应装有光顺的过渡导流罩,以使将毂到桨轴的阶梯处不致产生涡流。
5、螺旋桨动力仪在试验前应作静校验,并应测量轴承摩擦损耗和桨轴在水中旋转时的摩擦损耗s Q ∆和s T ∆,以便对试验结果进行修正。
校验时,将动力仪按照试验要求装载拖车上,在装桨模的位置处安装个假毂,其外形与桨毂相同,重量与桨模相近,可用铜或铅制成,桨轴埋水深度按试验要求放置。
螺旋桨模型敞水试验实验报告
螺旋桨模型敞水试验的目的:
螺旋桨模型单独地在均匀水流中的试验称为敞水试验,该试验可以在船模试验水池、循环水池中进行。
它是鉴定和分析螺旋桨性能的较为简便可靠的方法。
该试验的目的是为了配合自航试验分析船舶推进的各种效率成分,或对若干方案进行比较分析。
试验步骤:
(1)在准备工作完成后,使螺旋桨叶背向拖车前进方向安装。
(2)按选定的螺旋桨转速保持转速不变,改变拖车的前进速度,在适当的速度范围内测量(10~15)个点,速度范围的选取应从0=Am V 到使推力0<m T 。
(3)在某一速度下同时记录以下数据: a 、螺旋桨转速m n 。
b 、螺旋桨前进速度Am V 。
c 、推力t T 。
d 、扭矩m Q 。
在试验操作时应注意下列事项: a 、 每次开车前水面要平静
b 、 待螺旋桨转速和车速达到预定值且稳定一段时间后,方可记录数据。
c 、 每次测试要先开车后启动电机,数据记录完毕后要先电机后停车,以防系泊情况发生,保证动力仪的安全。
试验数据处理:
由试验得到数据; 1、螺旋桨试验相关参数 浆模直径: m D 1175.0= 桨叶数:
4=Z 螺距比: 8.0=D P
模型缩尺: 40=λ
试验水温:
C t 20淡水=
由以上数据求J 、T K 、Q K 、0η 进速系数nD
V J A
=
推力系数4
2D n T
K T ρ=
扭矩系数5
2D
n Q
K Q ρ=
效率Q
T
K K J ⋅
=
πη20 1、 求进速系数J 由以上数据得。
第4章螺旋桨模型的敞水试验第四章螺旋桨模型的敞水试验螺旋桨模型单独地在均匀水流中的试验称为敞水试验,试验可以在船模试验池、循环水槽或空泡水筒中进行。
它是检验和分析螺旋桨性能较为简便的方法。
螺旋桨模型试验对于研究它的水动力性能有重要的作用,除为螺旋桨设计提供丰富的资料外,对理论的开展也提供可靠的根底。
螺旋桨模型敞水试验的目的及其作用大致是:①进行系列试验,将所得结果分析整理后绘制成专门图谱,供设计使用。
现时各类螺旋桨的设计图谱都是根据系列试验结果绘制而成的。
②根据系列试验的结果,可以系统地分析螺旋桨各种几何要素对性能的影响,以供设计时正确选择各种参数,并为改善螺旋桨性能指出方向。
③校核和验证理论方法必不可少的手段。
④为配合自航试验而进行同一螺旋桨模型的敞水试验,以分析推进效率成分,比拟各种设计方案的优劣,便于选择最正确的螺旋桨。
螺旋桨模型试验的重要性如上所述,但模型和实际螺旋桨形状相似而大小不同,应该在怎样的条件下才能将模型试验的结果应用于实际螺旋桨,这是首先需要解决的问题。
为此,我们在下面将分别研究螺旋桨的相似理论以及尺度作用的影响。
§ 4-1 敞水试验的相似条件从“流体力学〞及“船舶阻力〞课程中,在流体中运动的模型与实物要到达力学上的全相似,必须满足几何相似、运动相似及动力相似。
研究螺旋桨相似理论的方法甚多,所得到的结果根本上是一致的。
下面将用量纲分析法进行讨论,也就是用因次分析法那么求出螺旋桨作用力的大致规律,然后研究所得公式中各项的物理意义。
可以设想,一定几何形状的螺旋桨在敞水中运转时产生的水动力(推力或转矩)与直径D(代表螺旋桨的大小)、转速n、进速VA、水的密度ρ、水的运动粘性系数ν及重力加速度g有关。
换言之,我们可用以下函数来表示推力T和各因素之间的关系,即T = f1(D,n,VA,ρ,ν,g),为了便于用因次分析法确定此函数的性质,将上式写作:T = k D a n b VAc ρ d ν e g f (4-1) 式中k为比例常数,a、b、c、d、e、f均为未知指数。
274第四章 螺旋桨模型的敞水试验螺旋桨模型单独地在均匀水流中的试验称为敞水试验,试验可以在船模试验池、循环水槽或空泡水筒中进行。
它是检验和分析螺旋桨性能较为简便的方法。
螺旋桨模型试验对于研究它的水动力性能有重要的作用,除为螺旋桨设计提供丰富的资料外,对理论的发展也提供可靠的基础。
螺旋桨模型敞水试验的目的及其作用大致是:① 进行系列试验,将所得结果分析整理后绘制成专门图谱,供设计使用。
现时各类螺旋桨的设计图谱都是根据系列试验结果绘制而成的。
② 根据系列试验的结果,可以系统地分析螺旋桨各种几何要素对性能的影响,以供设计时正确选择各种参数,并为改善螺旋桨性能指出方向。
③ 校核和验证理论方法必不可少的手段。
④ 为配合自航试验而进行同一螺旋桨模型的敞水试验,以分析推进效率成分,比较各种设计方案的优劣,便于选择最佳的螺旋桨。
螺旋桨模型试验的重要性如上所述,但模型和实际螺旋桨形状相似而大小不同,应该在怎样的条件下才能将模型试验的结果应用于实际螺旋桨,这是首先需要解决的问题。
为此,我们在下面将分别研究螺旋桨的相似理论以及尺度作用的影响。
§ 4-1 敞水试验的相似条件从“流体力学”及“船舶阻力”课程中已知,在流体中运动的模型与实物要达到力学上的全相似,必须满足几何相似、运动相似及动力相似。
研究螺旋桨相似理论的方法甚多,所得到的结果基本上是一致的。
下面将用量纲分析法进行讨论,也就是用因次分析法则求出螺旋桨作用力的大致规律,然后研究所得公式中各项的物理意义。
可以设想,一定几何形状的螺旋桨在敞水中运转时产生的水动力(推力或转矩)与直径D (代表螺旋桨的大小)、转速n 、进速V A 、水的密度ρ、水的运动粘性系数ν及重力加速度g 有关。
换言之,我们可用下列函数来表示推力T 和各因素之间的关系,即T = f 1(D ,n ,V A ,ρ,ν,g ),为了便于用因次分析法确定此函数的性质,将上式写作:T = k D a n b c A V ρ d ν e g f (4-1) 式中k 为比例常数,a 、b 、c 、d 、e 、f 均为未知指数。
将(4-1)式中各变量均以基本量(即质量M 、长度L 、时间T )来表示,则得:2T ML =f2e2d3cba 1⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛T L T L L M T L T kL275比较上述等式两端的基本因次,可得未知指数之关系为:⎪⎭⎪⎬⎫----=-++-+== f e c b T f e d c a L d M 22:231:1: (4-2)由(4-2)式中解得:⎪⎭⎪⎬⎫---=---== f e c b f e c a d 22241 (4-3)将(4-3)式代入(4-1)式得:T = kD4-c-2e-f n2-c-e-2fc AV ρ1νe g f = k ρn 2D 4f22e 2c A g ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛D n D nD νnD V式中,cA ⎪⎭⎫ ⎝⎛nD V 、e2⎪⎭⎫ ⎝⎛nD ν、f22g ⎪⎭⎫⎝⎛D n D 均为无因次数。
从而可以推想到更普遍一些的写法是T =)g ,,(222A 142DD n νnD nD V f D n ρ⋅ 或K T =)g ,,(222A 142DD n νnD nD V f D n ρT= (4-4) 式中,K T 为推力系数。
与上述推导相类似,我们可以求得螺旋桨的转矩系数K Q 及效率0η的表达式为:K Q =)g ,,(222A 252D D n νnD nD V f D n ρQ= (4-5) 0η =)g ,,(π2222A 3Q T DD n νnD nD V f J K K =⋅ (4-6)(4-4)、(4-5)及(4-6)式所表示的函数1f 、2f 及3f 视螺旋桨的形状而定。
根据相似理论,对于几何相似的螺旋桨及其模型说来,必然具有相同的函数1f 、2f 及3f ,若函数内各无因次数相同,则几何相似的螺旋桨成为动力相似,其推力系数K T 转矩系数K Q 及效率0η相等。
现分别讨论函数f 内各项的物理意义: ①nD V A 为进速系数J ,两几何相似螺旋桨的nD V A 相同,即nDVπA 数相等,则螺旋桨及其模型在各对应点处流体质点的速度具有相同的方向,且其比值为一常数,亦即对应点处流体质点的行迹相似。
因此,这是运动相似的基本条件。
② νnD 2为雷诺数Re (螺旋桨的雷诺数可有多种表示方法,见本章§4-2),模型和实桨粘性力相似必须满足雷诺数相同的条件,当螺旋桨及其模型之雷诺数相同时,两者之粘性力系 数相等,亦即由粘性而产生的力也与42D n ρ成比例。
③ D D n g 22相当于傅汝德数Fr=D nDg π (也可用DV g A 来表示),表示模型和实物的重力相似条件,与螺旋桨运转时水面的兴波情况有关,也可以说与螺旋桨在水面下的沉没深度有关。
276实践证明,当桨轴的沉没深度h s >0.625D (D 为螺旋桨直径),兴波的影响可以忽略不计。
故在水面下足够深度处进行模型试验时,傅汝德数可不予考虑。
综上所述,当螺旋桨在敞水中运转时,如桨轴沉没较深,则其水动力性能只与进速系数J 和雷诺数Re 有关,亦即K T =),(1Re J f (4-7) K Q =),(2Re J f (4-8)0η=),(3Re J f (4-9)现在进一步讨论满足相似定理的两几何相似螺旋桨(简称桨模和实桨)转速和进速之间的关系。
令V As 、n s 、D s 、s ν及V Am 、n m 、D m 、m ν分别表示实桨及桨模的进速、转速、直径和水的运动粘性系数,λ为实桨与桨模的尺度比数,即λ=m s D D由进速系数相等的条件可得:m m AmD n V =s s As D n V 或 λn n V V 1s m As Am ⋅= (4-10)由雷诺数相等的条件可得:m 2m m νD n =s2s s νD n 因s ν与m ν相差很小,设s ν=m ν,则满足雷诺数相等的条件为:2mm D n =2s s D n 或 s m n n =2m2s D D =2 λ (4-11)由此可见,要保持桨模和实桨的进速系数和雷诺数同时相等,则必须满足:⎪⎪⎭⎪⎪⎬⎫=== 1.s m As Am 2smλλn n V V λn n (4-12)此时,桨模发出的推力T m 将等于实桨发出的推力T s ,因为:T m =K T 4m 2m D n ρ= K T 44s42sλD λn ρ= T s显然,在模型试验时如要求满足进速系数和雷诺数同时相等的条件,则桨模的转速和进速都将过高而难以实现,推力过大而无法测量。
因此,在进行螺旋桨模型的敞水试验时,通常只满足进速系数相等,对于雷诺数则仅要求超过临界数值(以c Re 表示),即当Re >c Re 的条件下,⎭⎬⎫== J f K J f K )()(2Q 1T (4-13)至于桨模和实桨因Re 不同而引起两者水动力性能之差异称为尺度作用(或尺度效应)。
277§ 4-2 临界雷诺数和尺度效应一、临界雷诺数前已述及,螺旋桨模型试验时的雷诺数无法保持与实桨相同,若雷诺数过低,则由于桨叶切面上流动状态与实桨不同,将使试验结果无实用价值,因此必须确立一个模型桨试验的最低雷诺数值——称为临界雷诺数。
决定粘性流体流动状态的基本参数之一为雷诺数,当雷诺数足够大时,界层中的流动才能达到紊流状态,故临界雷诺数乃为保证模型界层中达到紊流状态的最低雷诺数。
雷诺数是以特征速度×特征尺度/ν来表示的一个无因次数。
对螺旋桨的雷诺数过去曾用过许多不同的表示方法(如νnD 2、νD V A 等等)。
为统一起见,1978ITTC (国际船模试验池会议的简称,全文为“International Towing Tank Conference ”)规定,螺旋桨的雷诺数以0.75R 处叶切面的弦长及其合速来表示,即Re=νnD V b 22A R 75.0)π75.0(+ (4-14)式中,V A 为进速,n 为转速,D 为螺旋桨的直径,b 0.75R 为0.75R 处叶切面的弦长,ν为水的运动粘性系数。
实桨的Re 数在710上下,处于紊流状态工作,为了使模型试验数据稳定可靠,并能用于实桨,就有必要正确地确定临界雷诺数的数值。
肯夫在汉堡试验池中曾对五个大小不同(直径分别为0.10、0.15、0.20、0.406及0.6m )的νnD 0.20.10R e =×51.00.90.80.70.60.50.40.3ηJ ,××255图 4-1278几何相似模型进行了试验,图4-1为J =0.85时,K T 、K Q 和η0随雷诺数(肯夫用νnD 2来表示)而变化的情况,图中还绘制了K T =0时的J 及K Q 曲线。
由图中可见,当Re (=νnD 2)>4~5×105时,各曲线几乎与横坐标相平行,意即此时螺旋桨的性能几乎与雷诺数无关。
因此这个数值即为临界雷诺数。
六十年代初日本三菱水池谷口中对三个直径不同的几何相似螺旋桨(直径分别为130.14、216.90和309.86mm )进行了试验,图4-2为J =0.4、0.5和0.6时K T 、K Q 和η0随雷诺数(谷0.6η0.40.50.7K Q100.100.050.250.200.15K T3245R e ×10-5图 4-2279口中用0.7R 处叶切面的弦长及合速来表示)而变化的情况。
由图可见,当Re >4.0510⨯时K T 值近似为常数,K Q 值随雷诺数Re 的增加而略有减小。
近年来,我国上海交通大学船舶流体力学研究室为研究尺度作用的需要,对五个几何相似的桨模(直径分别为214.6、169.1、139.5、118.7和103.3mm )进行了敞水试验,试验中,以0.75R 处叶切面弦长计算的雷诺数变化范围为:Re=νnD V b 22A R 75.0)π75.0(+=(1.17~8.09)×510图4-3为K T 、K Q 随雷诺数而变化的情况。
图4-4为敞水效率η0随雷诺数的变化情况。
从图中可见,螺旋桨的临界雷诺数可取为3.0×510。
1978年ITTC 性能委员会报告中原先提出此数值为 2.0×510,经上海交通大学船舶流体力学研究室提出意见后同意改为3.0×510。
R e ×10(b )(a )R e ×1010K QK T-5-5PM 24-54, D = 103.3mmPM 24-47, D = 118.7mm PM 24-33, D = 169.1mm PM 24-40, D = 139.5mmD = 214.6mm图 4-3280二、尺度作用及修正方法因雷诺数不同而对螺旋桨性能的影响通常称为尺度作用。