旋转机械常见故障
- 格式:docx
- 大小:44.78 KB
- 文档页数:8
第5章旋转机械常见故障诊断分析案例积累典型设备诊断案例在设备监测诊断工作中具有重要作用。
首先它为设备诊断理论提供支撑。
常见的设备故障有成熟的理论基础,一个成功的案例通常是诊断理论在现场正确应用和诊断人员长期实践的结果。
典型诊断案例具有强大的说服力,一次成功而关键的诊断足可以改变某些人根深蒂固的传统观念,对现场推广设备诊断技术具有重要意义。
其次它为理论研究提供素材。
在医学上,由典型的特例研究发现病理或重大理论的案例很多。
设备故障的情形多种多样,现场疑难杂症还比较多,有许多故障很难用现有理论解释,只能作为诊断经验看待,这种经验有没有通用参考价值,需要在理论上进行说明。
另外,有许多案例无法在试验室模拟,而它们在不同的现场又常常出现,因此典型案例为同行提供了宝贵经验和经过证实的分析方法。
诊断人员可以参考相似案例的解决方案解决新的问题,提供快速的决策维护支持,并为基于案例的推理方法提供数据基础。
典型案例分析的重要性还表现在它是监测诊断人员快速成长的捷径。
目前实用的振动诊断方法、技术和诊断仪器已经相当完善,而许多企业在诊断技术推广应用方面存在困难除了思想观念方面的原因外,更主要的原因是缺乏专业人才。
研究案例的一般做法是,从新安装设备或刚检修好的设备开始,可以选择重点或典型设备进行监测,根据不同设备制定不同的监测方案和监控参数,定期测试设备的振动,包括各种幅值、振动波形和频谱等。
如果设备出现劣化迹象或异常,要缩短监测周期,倍加留心振动波形和频谱的变化,注意新出现的谱线及其幅值的变化,在检修之前做出故障原因的判断。
设备检修时要到现场,了解第一手资料,全程跟踪设备拆检情况,掌握设备参数(如轴承型号,必要时测量有关尺寸、齿轮齿数、叶片数、密封结构、联轴器和滑动轴承形式等),做好检修记录(有时需要拍照记录),比较自己的判断对在哪里,错在哪里,进行完善的技术总结。
几个过程下来,水平自然有很大提高。
总之,添置几件诊断仪器是很容易的事,诊断成果和效益的产生不是一朝一夕的事,需要柞大量艰苦、细致的工作,长期积累设备的状态数据,对此应有应清醒地认识。
旋转机械是主要依靠旋转动作来实现特定功能的机械设备,典型的旋转机械包括汽轮机、燃气轮机、离心式和轴流式压缩机等,这类机械在电力、石化、冶金和航空航天等部门都有着广泛的应用。
常见的旋转机械故障包括不平衡、不对中、轴弯曲以及油膜涡动和油膜振荡,下面我们对其作一个详细的介绍。
转子不平衡:转子不平衡是旋转机械最常发生的故障。
这一故障的产生原因是多方面的,包括转子本身的原因,如结构设计不合理、材料材质不均匀、机械加工质量没有达到要求、装配存在误差、动平衡精度差、零部件缺损等;也包括联轴器的原因,如运行中联轴器相对位置的改变等,这些原因都会造成转子旋转不平衡。
转子不对中:转子不对中指的是相邻两个转子的轴心线与轴承中心线发生了倾斜或者偏移。
具体来说又分为联轴器不对中和轴承不对中两种情况。
联轴器不对中又包括平行不对中、偏角不对中和平行偏角不对中三种情况。
平行不对中时,转子振动频率是工频的两倍。
偏角不对中会导致联轴器附加一个弯矩,以减小两个轴中心线的偏角。
轴每旋转一周,弯矩作用方向都会改变两次,这大大增加了转子的轴向力,使转子在轴向产生工频振动。
而平行偏角不对中是以上两种情况的综合,转子既发生径向振动又发生轴向振动。
轴承不对中实际上是由于轴承座标高和轴中心位置之间的偏差造成的,这回导致轴系的载荷重新进行分配。
负荷较大的轴承可能会出现高次谐波振动,负荷较轻的轴承则容易偏离稳定状态,同时还使轴系的临界转速发生改变。
转子轴弯曲:转子的中心线发生弯曲称为轴弯曲,会造成与质量偏心情况相类似的旋转矢量激振力。
轴弯曲分为永久性和临时性两种类型。
转子永久性弯曲是由转子结构不合理、加工误差大、材质不均匀、长期存放不当等因素造成的转子轴永久性的弯曲变形。
也有可能是由于热态停车时未及时盘车或盘车不当、转子的热稳定性差、长期运行后轴的自然弯曲加大等原因造成的。
转子临时性弯曲是因转子上存在较大预负荷、开机运行时的暖机操作不当、升速过快、转轴热变形不均匀等原因造成的,可以通过停止加工使转子回复正常。
旋转机械常见故障总结旋转机械的常见故障有很多,包括不平衡、不对中、轴弯曲和热弯曲、油膜涡动和油膜振荡、蒸汽激振、机械松动、转子断叶片与脱落、摩擦、轴裂纹、旋转失速与喘振、机械偏差和电气偏差等。
1不平衡不平衡是各种旋转机械中最普遍存在的故障。
引起转子不平衡的原因是多方面的,如转子的结构设计不合理、机械加工质量偏差、装配误差、材质不均匀、动平衡精度差;运行中联轴器相对位置的改变;转子部件缺损,如:运行中由于腐蚀、磨损、介质不均匀结垢、脱落;转子受疲劳应力作用造成转子的零部件(如叶轮、叶片、围带、拉筋等)局部损坏、脱落,产生碎块飞出等。
2不对中转子不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。
转子不对中可分为联轴器不对中和轴承不对中。
联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。
平行不对中时振动频率为转子工频的两倍。
偏角不对中使联轴器附加一个弯矩,以力图减小两个轴中心线的偏角。
轴每旋转一周,弯矩作用方向就交变一次,因此,偏角不对中增加了转子的轴向力,使转子在轴向产生工频振动。
平行偏角不对中是以上两种情况的综合,使转子发生径向和轴向振动。
轴承不对中实际上反映的是轴承座标高和轴中心位置的偏差。
轴承不对中使轴系的载荷重新分配。
负荷较大的轴承可能会出现高次谐波振动,负荷较轻的轴承容易失稳,同时还会使轴系的临界转速发生改变。
3轴弯曲和热弯曲轴弯曲是指转子的中心线处于不直状态。
转子弯曲分为永久性弯曲和临时性弯曲两种类型。
转子永久性弯曲是指转子的轴呈永久性的弓形,它是由于转子结构不合理、制造误差大、材质不均匀、转子长期存放不当而发生永久性的弯曲变形,或是热态停车时未及时盘车或盘车不当、转子的热稳定性差、长期运行后轴的自然弯曲加大等原因所造成。
转子临时性弯曲是指转子上有较大预负荷、开机运行时的暖机操作不当、升速过快、转轴热变形不均匀等原因造成。
转子永久性弯曲与临时性弯曲是两种不同的故障,但其故障的机理是相同的。
旋转机械常见的种故障原因旋转机械是指利用电能、燃料能、气压、水力等能源驱动转子进行动力传递和工作的机械装置。
由于旋转机械在长时间的运行中承受了较大的负荷和压力,因此容易出现各种故障。
以下是旋转机械常见的11种故障原因:1.润滑不良:润滑油的不足或质量不达标,会导致机械零件之间的摩擦增加,进而引发故障。
2.摩擦材料磨损:旋转机械中的摩擦材料,如轴承、齿轮、轮毂等,长时间的工作会造成磨损,从而降低机械的效率和寿命。
3.过载运行:过载运行会导致机械零件受力过大,容易引起机械结构的破坏。
4.裂纹和断裂:机械零件在长时间的运行或是受到冲击等外力作用后,容易出现裂纹和断裂,从而造成机械的故障。
5.动平衡不良:机械转子的不平衡会引起振动,使机械零件磨损加剧,并可能导致机械的进一步破坏。
6.轴承故障:轴承是旋转机械中重要的部件,承受了很大的压力和摩擦。
当轴承出现故障时,会导致机械的轴承磨损、失效及震动等问题。
7.齿轮啮合不良:旋转机械中的齿轮啮合不良会增加齿轮的磨损和噪音,甚至导致齿轮脱落,造成严重故障。
8.水质不良:旋转机械中的水泵、水轮机等设备在水质不良的环境中运行,会造成机械部件腐蚀、结垢及阻塞等故障。
9.温度过高:旋转机械长时间工作会产生热量,如果散热不良或系统冷却不足,会导致温度过高,进而引发各种故障。
10.缺乏维护:长期缺乏维护和保养,机械中的零部件容易老化、劣化,并且可能出现严重的故障。
11.设计和安装问题:旋转机械在设计和安装过程中存在问题,可能导致机械的运行不稳定、故障频发。
为避免以上故障,必须加强机械的维护、保养和定期检修,提高机械的可靠性和稳定性。
同时,在设计和安装过程中也要注意各个部件的匹配和安装准确性,以确保机械的正常运行和长久运行。
旋转机械的故障诊断1.不平衡不平衡是各种旋转机械中最普遍存在的故障。
引起转子不平衡的原因是多方面的,如转子的结构设计不合理、机械加工质量偏差、装配误差、材质不均匀、动平衡精度差;运行中联轴器相对位置的改变;转子部件缺损,如:运行中由于腐蚀、磨损、介质不均匀结垢、脱落;转子受疲劳应力作用造成转子的零部件(如叶轮、叶片、围带、拉筋等)局部损坏、脱落,产生碎块飞出等。
2.不对xx转子不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。
转子不对中可分为联轴器不对中和轴承不对中。
联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。
平行不对中时振动频率为转子工频的两倍。
偏角不对中使联轴器附加一个弯矩,以力图减小两个轴中心线的偏角。
轴每旋转一周,弯矩作用方向就交变一次,因此,偏角不对中增加了转子的轴向力,使转子在轴向产生工频振动。
平行偏角不对中是以上两种情况的综合,使转子发生径向和轴向振动。
轴承不对中实际上反映的是轴承座标高和轴中心位置的偏差。
轴承不对中使轴系的载荷重新分配。
负荷较大的轴承可能会出现高次谐波振动,负荷较轻的轴承容易失稳,同时还使轴系的临界转速发生改变。
3.轴弯曲和热弯曲轴弯曲是指转子的中心线处于不直状态。
转子弯曲分为永久性弯曲和临时性弯曲两种类型。
转子永久性弯曲是指转子的轴呈永久性的弓形,它是由于转子结构不合理、制造误差大、材质不均匀、转子长期存放不当而发生永久性的弯曲变形,或是热态停车时未及时盘车或盘车不当、转子的热稳定性差、长期运行后轴的自然弯曲加大等原因所造成。
转子临时性弯曲是指转子上有较大预负荷、开机运行时的暖机操作不当、升速过快、转轴热变形不均匀等原因造成。
转子永久性弯曲与临时性弯曲是两种不同的故障,但其故障的机理是相同的。
转子不论发生永久性弯曲还是临时性弯曲,都会产生与质量偏心情况相类似的旋转矢量激振力。
4.油膜涡动和油膜振荡油膜涡动和油膜振荡是滑动轴承中由于油膜的动力学特性而引起的一种自激振动。
旋转机械状态监测保护系统常见故障分析及处理1、引言本特利公司生产的机械振动传感器系统由靠近转轴附近的趋近式电涡流传感器(探头)、延伸电缆和前置放大器三个部分组成。
趋近式传感器所产生的信号提供两类信息,一个反映机器动态运动的交流信号,一个反映机器部件之间相对运动的直流信号。
延伸电缆联接在探头和前置器之间,它的电缆长度与探头体的电缆长度结合起来,使整个系统的电长度为5m。
前置放大器是一个能屏蔽外界干扰信号的金属盒子,内装有全部测量电路,并用环氧树脂灌封。
外壳上有三个端子分别为电源、公共端和输出端,一个接头与延伸电缆相连。
由于电涡流传感器通过延伸电缆与前置器相连,其连接方式和必须严格按照规范进行操作,假如出现接头裸露等问题,将会给系统带来较大的测量误差,严重时甚至导致系统无法正常工作。
本文对旋转机械状态监测保护系统的常见故障进行分析和分类,并就处理方法给出自己的建议,以提高系统的维修和维护效率。
2、旋转机械状态监测保护系统常见故障分析2.1 探头安装质量因素引起的故障常见探头问题有锁紧螺帽松动、延伸电缆中间接头松动或接触不良、前置放大器连接接头滑动或松动等,其中以延伸电缆中间接头松动或接触不良最为常见。
一般来说,振动或位移探头通常是成对安装的,检查时如果其中一个不正常,再参考该点的温度可以大体判断此指示漂移或报警虚假的。
2.2 测量回路线路故障测量回路线路引起的常见故障有前置放大器接线端子接触不良及线路屏蔽线对地故障等。
通常这类故障不在生产期间无法彻底检查,故障的原因也错综复杂,但只要明了故障原因,处理相对较为简单。
2.3 测量回路的元件探头故障测量回路的元件探头损毁的可能原因分别是探头线圈断裂和探头线圈匝间短路。
处理故障时,首先采用万用表仪器进行测量,假如电阻值显示出现断裂或短路,通常采用调换探头延伸电缆接头的方法。
2.4 测量回路的前置器损毁故障假如前置测量回路的前置器损坏,则前置放大器性能不稳定,状态监测会指示漂移或误报警。
旋转机械的常见故障旋转机械的常见故障有很多,包括不平衡、不对中、轴弯曲和热弯曲、油膜涡动和油膜振荡、蒸汽激振、机械松动、转子断叶片与脱落、摩擦、轴裂纹、旋转失速与喘振、机械偏差和电气偏差等。
1、不平衡是各种旋转机械中最普遍存在的故障引起转子不平衡的原因是多方面的,如转子的结构设计不合理、机械加工质量偏差、装配误差、材质不均匀、动平衡精度差;运行中联轴器相对位置的改变;转子部件缺损,如:运行中由于腐蚀、磨损、介质不均匀结垢、脱落;转子受疲劳应力作用造成转子的零部件(如叶轮、叶片、围带、拉筋等)局部损坏、脱落,产生碎块飞出等。
2、转子不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。
转子不对中可分为联轴器不对中和轴承不对中。
联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。
平行不对中时振动频率为转子工频的两倍。
偏角不对中使联轴器附加一个弯矩,以力图减小两个轴中心线的偏角。
轴每旋转一周,弯矩作用方向就交变一次,因此,偏角不对中增加了转子的轴向力,使转子在轴向产生工频振动。
平行偏角不对中是以上两种情况的综合,使转子发生径向和轴向振动。
轴承不对中实际上反映的是轴承座标高和轴中心位置的偏差。
轴承不对中使轴系的载荷重新分配。
负荷较大的轴承可能会出现高次谐波振动,负荷较轻的轴承容易失稳,同时还会使轴系的临界转速发生改变。
3、轴弯曲是指转子的中心线处于不直状态。
转子弯曲分为永久性弯曲和临时性弯曲两种类型。
转子永久性弯曲是指转子的轴呈永久性的弓形,它是由于转子结构不合理、制造误差大、材质不均匀、转子长期存放不当而发生永久性的弯曲变形,或是热态停车时未及时盘车或盘车不当、转子的热稳定性差、长期运行后轴的自然弯曲加大等原因所造成。
转子临时性弯曲是指转子上有较大预负荷、开机运行时的暖机操作不当、升速过快、转轴热变形不均匀等原因造成。
转子永久性弯曲与临时性弯曲是两种不同的故障,但其故障的机理是相同的。
旋转机械故障诊断旋转机械故障指的是各种旋转设备在使用中出现的故障,例如电机、风扇、泵等。
为了确保机械设备的正常运转,需要及时检修旋转机械故障。
本文介绍了旋转机械故障的基本知识和常见故障处理方法。
旋转机械故障的基本知识旋转机械故障包括机械故障和电气故障两种。
机械故障主要指机械部分的损坏,例如轴承损坏、磨损、过热等;电气故障主要指电路部分的故障,例如电机烧毁、线路短路等。
为了保障机械设备的安全运行,需要及时检查机械设备中存在的故障并进行有效的处理。
常见的旋转机械故障1. 轴承故障轴承故障是旋转机械故障中最常见的一种故障。
轴承损坏的原因有很多,例如使用时间过长、润滑脂不足、使用温度过高等。
轴承受到过大的负荷或不正确的安装方式也会导致轴承故障。
轴承故障通常会导致机械设备的振动、噪音和温度升高等现象。
轴承故障的处理方法一般包括更换轴承、加强润滑等。
在更换轴承时,需要选择与原轴承参数相同的新轴承,并且必须正确安装、调整轴承预紧力和润滑方式。
2. 汽蚀汽蚀是液体在高速旋转设备内形成的气蚀现象。
汽蚀会导致机械设备的泵体、叶轮、轴承等部件受到损坏。
汽蚀的主要原因是设计不合理、液位过低、磨损等。
汽蚀的处理方法一般包括更换设备、改善设计、加大进口直管长度等。
在更换设备时,需要选择与原设备相同参数的新设备,并且必须正确安装。
3. 电气故障电气故障主要包括电机烧蚀、电路短路、线路老化等。
电气故障通常会造成设备的停止运转,需要及时检查机械设备中电气部分的故障。
电气故障的处理方法一般包括更换电机、修复电路等。
在更换电机时,需要选择与原电机参数相同的新电机,并且必须正确安装并接好电源。
检修旋转机械设备的步骤1. 确定故障部位在进行旋转机械设备的检修时,需要先确定故障部位。
通过观察、听到故障声音和故障所引起的振动等现象,可以初步判断故障部位。
2. 检查机械设备检查机械设备包括拆卸、清洁机械部件和更换损坏部件等。
在拆卸时,需要根据机械设备的结构图和工作原理,按照规范的步骤拆卸。
转轴磨损特点范文转轴磨损是指旋转机械的主轴在长时间使用过程中所产生的磨损现象。
转轴磨损是一种常见的机械故障,它会导致机械运行不稳定、噪音大、能效低下甚至机械寿命缩短。
下面将详细介绍转轴磨损的特点。
首先,转轴磨损主要有以下几个特点:1.表面磨损:转轴在长时间运行过程中,受到载荷的作用,会产生与之接触的零部件表面的磨损。
这种表面磨损主要包括磨粒磨损、疲劳磨损和磨擦磨损。
其中,磨粒磨损是由被带入油膜中的磨粒引起的,疲劳磨损是由反复应力引起的疲劳破坏,磨擦磨损是由于零件表面间的相对运动而产生的磨擦。
2.表面质量下降:由于表面磨损的存在,转轴表面的质量会下降。
这会导致机械的运行不稳定,造成振动和噪音增加,并且可能会导致机械失效。
3.润滑不良:转轴在长时间运行过程中,由于磨损的存在,油膜的质量和厚度会受到影响,从而导致润滑不良。
这会加剧转轴的磨损,使磨擦和热量增加,进一步加速转轴磨损的发展。
4.轴承磨损:转轴和轴承之间的摩擦是转轴磨损的主要原因,而轴承的磨损又会进一步影响转轴的运行。
轴承磨损会导致转轴的不稳定运转,出现噪音和振动,并且会缩短轴承的寿命。
5.温度升高:由于磨损产生的摩擦热会使转轴的温度升高。
温度升高会导致机械的热膨胀不均,加剧转轴的磨损,同时也会影响机械的工作性能。
为了减少转轴磨损的发生1.减少负荷:通过合理调整机器的工作参数,减少转轴受到的负荷。
这样可以降低转轴的磨损程度,延长其使用寿命。
2.加强润滑:选择合适的润滑方式和材料,保证转轴和轴承之间的良好润滑。
良好的润滑可以减少磨损的发生,并有效降低转轴的温度。
3.定期维护:定期对转轴进行维护和检查,及时发现和处理转轴的磨损问题。
及时更换磨损严重的零部件,保证机械的正常运行。
总之,转轴磨损是机械运行过程中不可避免的一种现象。
了解转轴磨损的特点,并采取相应的措施,可以减少转轴磨损的发生,延长机械的使用寿命。
同时,在实际的生产和使用过程中,还需要根据不同机械和工况的特点,有针对性地进行转轴磨损的预防和处理。
旋转机械常见故障
1. 转子质量不平衡
转子质量不平衡是汽轮发电机组最常见的振动故障,它约占故障总数的80%。
转子质量不平衡的一般特征
(1)量值上,工频振幅的绝对值通常在30μm以上,相对于通频振幅的比例大于80%
(2)频振幅为主的状况应该是稳定的,这包括:
1) 各次启机
2) 升降速过程
3) 不同的工况(负荷,真空,油温,氢压,励磁电流等)
(3)工频振动同时也是稳定的
1.1原始质量不平衡
原始质量不平衡指的是转子开始转动之前在转子上已经有的不平衡。
它通常是在加工制造过程中产生的,或是在检修时更换转动部件造成的。
这种不平衡的特点除了上面介绍的振幅和相位的常规特征外,它的最显著特征是“稳定”,这个稳定是指在一定的转速下振动特征稳定,振幅和相位受机组参数影响不大,与升速或带负荷的时间延续没有直接的关联,也不受启动方式的影响。
具体所测数据中,在同一转速下,工况相差不大时,振幅波动约20%,相位在10°~20°范围内变化的工频振动均可视为是稳
定的。
1.2松动
发生松动的部件可能有转子线圈.槽楔.联轴器等。
这类松动包括设备底脚、基础平板和混凝土基础强度刚度不够,出现变形或开裂,地脚螺栓松动等。
这类松动的振动频谱中占优势的是工频(或转速频率),这与不平衡状态相同,但振动幅值大的部位很确定,有局限性,这点与不平衡或不对中情况不同。
另外,还要进一步比较各方向之间的相对幅值,观察它们的相位特性。
如轴承座水平与垂直方向振幅、相位差,这类松动的振动具有方向性,在松动方向振动较大,如垂直方向振动远大于水平方向,水平和垂直方向相位差为0°或180° (而不平衡故障中水平和垂直方向相位差约为90°)。
详见《振动故障松动》pdf文档
1.3 部件缺损、飞脱
振动发生转动部件飞脱可能有叶片、围带、拉金以及平衡质量块。
飞脱时产生的工频振动是突发性的,在数秒内以某一瓦振或轴振为主,振幅迅速增大到一个固定值,相位也同时出现一个固定的变化。
相邻轴承振动也会增大,但变化的量值不及前者大。
这种故障一般发生在机组带有某一负荷的情况。
1.4 转子热弯曲
转子热弯曲引起的质量不平衡的主要特征是工频振动随时间的变化,随机组参数的提高和高参数下运行时间的延续,工频振幅逐渐增大,相位也随之缓慢变化,一定时间内这种变化趋缓,基本保持不变。
存在热弯曲的转子降速过程的振幅,尤其是过临界转速时的振幅,要比转子温度低启机升速是的振幅大。
两种情况下的波特图可以用来判断是否存在热弯曲。
新机转子的热弯曲一般来自材质热应力。
这种热弯曲是固有的,可重复的,因而可用平衡的方法处理。
有时运行原因也会导致热弯曲,如汽缸进水.进冷空气.动静摩擦等。
只要没有使转子发生永久朔性变行,这类热弯曲都是可以恢复的,引起热弯曲的根源消除后,工频振动大的现象也会随之自行消失。
2. 不对中
不对中是汽轮发电机组振动常见故障关于机组轴线的几何形状有两个定义,一个是轴承的对中,它是指轴承内孔几何中心在横截面的垂直和水平方向上与转子轴颈中心预定位置的重合程度。
另一个是联轴器的对中,也就是轴系转子个轴线的对中。
联轴器不对中是指相邻两根转轴轴线不在同一直线上;或不是一根光滑的曲线,在联轴器部位存在拐点或阶跃点。
3. 动静摩擦
转动部件与静止部件的碰摩是运行中常见故障。
随着现代机向着高性能.高效率发展.动静间隙变小,碰摩的可能性随之增加。
碰摩使转子产生非常复杂的振动,是转子系统发生失稳的一个重要原因轻者使得机组出现强烈振动,严重的可以造成转轴永久弯曲,甚至整个轴系毁坏。
机组动静碰摩通常有下列起因
(1)转轴振动过大。
造成振动过大可以是质量不平衡.转子弯曲.轴系失稳等,不管何种起因,大振动下的转轴振幅一旦大到动静间隙植,都
可能与静止部位发生碰摩。
因此,和动静碰摩有关的机组故障中,碰摩常常是中间过程,而非根本原因。
(2)由于不对中等原因使轴颈处于极端的位置,使转子偏斜。
非转动部件的不对中或翘曲也会导致碰摩。
(3)动静间隙不足。
有时设计上的缺陷所造成的,设计人员将间隙定为过小的量值,向安装部门提供的间隙要求同样太小。
它也是安装.检修的原因,动静间隙调整不符合规定所致。
(4)缸体跑偏,弯曲或变形。
国产200MW机组高压转子前汽封比较长,启机中参数不当容易造成这个部位发生摩擦,进而造成大轴朔性弯曲。
全国大约有30多台机组发生过这样的故障。
开机过程中,上下缸温差过大,造成缸体弯曲变形,是碰摩弯轴的主要运行原因之一。
4. 油膜涡动,震荡
油膜的楔形按油的平均流速绕轴瓦中心运动的现象称为油膜涡动,因其平均速度为轴颈圆周速度的一半,故又称为半速涡动。
油润滑滑动轴承工作时,以薄的油膜支承轴颈。
在轴瓦表面的油膜速度为零(轴瓦静止),而在轴颈表面的油膜速度与轴颈表面相同(轴颈高速旋转)。
因此,不论在圆周上的任何剖面,油膜的平均速度均为轴颈圆周速度的一半。
轴颈高速旋转时,油膜厚度随楔形变化,但油的平均流速却相对不变。
由于油的不可压缩性,多出的油将从轴承两端流出,或者油膜的楔形按油的平均流速绕轴瓦中心运动。
油膜涡动产生后就不消失,随着工作转速的升高,其涡动频率也不断
增强,振幅也不断增大,如果转子的转速继续升高到第一临界转速的2倍时,其涡动频率与一阶临界转速相同,产生共振,振幅突然骤增,振动非常剧烈,轴心轨迹突然变成扩散的不规则曲线,半频谐波振幅值就增加到接近或超过基频振幅,若继续提高转速,则转子的涡动频率保持不变,始终等于转子的一阶临界转速,这种现象称为油膜振荡。
(当转子转速升至两倍于第一临界转速时,涡动频率与转子固有频率重合,使转子一轴承系统发生共振性振荡而引起。
)
5. 转轴裂纹
石油化工行业的旋转机械一般转速都非常高,载荷也较大,长期运转后,转轴上易出现横向疲动裂纹,导致断轴的严重事故。
转轴裂纹对振动的响应与裂纹所处的轴向位置、裂纹深度及受力情况有关。
视裂纹所处部位应力状态的不同,裂纹会呈现出三种不同的形态。
(1)闭裂纹
转轴在压应力情况下旋转时,裂纹始终处于闭合状态。
例如,转子重量不大、不平衡离心力较小或不平衡力正好处于裂纹的对侧时就是这种情况。
闭裂纹对转轴振动影响不大,难以察觉。
(2)开裂纹
当裂纹区处于拉应力状态时,轴裂纹始终处于张开状态。
开裂纹会造成轴刚度不对称,使振动带有非线性性质,伴有2×、3×、…等高频成分,随着裂纹的扩展,l×、2×、等频率的幅值也随之增大。
(3)开闭裂纹
当裂纹区的应力是由自重或其他径向载荷产生时,轴每旋转一周,裂
纹就会开闭一次,对振动的影响比较复杂。
理论分析表明,带有裂纹的转子的振动响应可分别按偏心及重力两种影响因素考虑,再作线性叠加。
由于偏心因素的影响,振动峰值会出现在与两个不对称刚度相应的临界转速之间;而重力因素的影响结果,是在转速约为无裂纹转轴的临界转速处时,会出现较大峰值。
裂纹的张开或闭合与裂纹的初始状态、偏心、重力的大小及涡动的速度有关,同时也与裂纹的深度有关。
若转子是同步涡动,裂纹会只保持一种状态,即张开或闭合,这与其初始态有关。
在非同步涡动时,裂纹在一定条件下也可能会一直保持张开或闭合状态,但通常情况下,转轴每旋转一周,裂纹都会有开有闭。
在这种情况下,裂纹越深,其在一周内张开的时间会越长,会超过一半周期长度,同时裂纹张开的时间也会越晚。
这可以作为判断裂纹深度的一个定性标准。
6. 轴承损伤
详细资料参见《轴承损坏原因分析》.ppt
装配不当16%
润滑不当
36%
污染
14%
疲劳
34%轴承损伤原因
7. 旋转失速与喘振
旋转失速的形成过程大致如下。
离心压缩机的叶轮结构、尺寸都是按额定流量设计的,当压缩机在正常流量下工作时,气体进入叶轮的方向β
1与叶片进口安装角βS一致,气体可以平稳地进人叶轮,如图 (a)所示,此时,气流相对速度为ω1,入口径向流速为C1。
当进人叶轮的气体流量小于额定流量时,气体进人叶轮的径向速度减少为C1′气体进人叶轮的相对速度的方向角相应的减少到β1′,因而与叶片进口安装角βS不相一致。
此时气体将冲击叶片的工作面(凸面),在叶片的凹面附近形成气流旋涡,旋涡逐渐增多使流道有效流通面积减小。
如果某一流道中[图(b)中的流道2]气流旋涡较多,则通过这个流道的气量就要减少,多余的气量将转向邻近流道(流道1和3)。
在折向前面的流道(流道1)时,因为进人的气体冲在叶片的凹面上,原来凹面上的气流旋涡有一部分被冲掉,这个流道里的气流会趋于畅通。
而折向后面流道(流道3)的气流则冲在叶片的凸面上,使得叶片凹面处的气流产生更多的旋涡,堵塞了流道的有效流通面积,迫使流道中的气流又折向邻近的流道。
如此轮番发展,由旋涡组成的气流堵塞团(称为失速团或失速区)将沿着叶轮旋转的相反方向轮流在各个流道内出现。
喘振是旋转失速在流量进一步减少后的结果。