流体流动习题课
- 格式:ppt
- 大小:900.00 KB
- 文档页数:58
第一章流体流动1.某设备上真空表的读数为 13.3×103 Pa,试计算设备内的绝对压强与表压强。
已知该地区大气压强为 98.7×103 Pa。
解:由绝对压强 = 大气压强–真空度得到:设备内的绝对压强P绝= 98.7×103 Pa -13.3×103 Pa=8.54×103 Pa设备内的表压强 P表 = -真空度 = - 13.3×103 Pa2.在本题附图所示的储油罐中盛有密度为 960 ㎏/㎥的油品,油面高于罐底 6.9 m,油面上方为常压。
在罐侧壁的下部有一直径为 760 mm 的圆孔,其中心距罐底 800 mm,孔盖用14mm的钢制螺钉紧固。
若螺钉材料的工作应力取为39.23×106 Pa ,问至少需要几个螺钉?分析:罐底产生的压力不能超过螺钉的工作应力即P油≤σ螺解:P螺 = ρgh×A = 960×9.81×(9.6-0.8) ×3.14×0.762150.307×103 Nσ螺 = 39.03×103×3.14×0.0142×nP油≤σ螺得 n ≥ 6.23取 n min= 7至少需要7个螺钉4. 本题附图为远距离测量控制装置,用以测定分相槽内煤油和水的两相界面位置。
已知两吹气管出口的距离H = 1m,U管压差计的指示液为水银,煤油的密度为820Kg/㎥。
试求当压差计读数R=68mm时,相界面与油层的吹气管出口距离h。
分析:解此题应选取的合适的截面如图所示:忽略空气产生的压强,本题中1-1´和4-4´为等压面,2-2´和3-3´为等压面,且1-1´和2-2´的压强相等。
根据静力学基本方程列出一个方程组求解解:设插入油层气管的管口距油面高Δh在1-1´与2-2´截面之间P1 = P2 + ρ水银gR∵P1 = P4,P2 = P3且P3 = ρ煤油gΔh , P4 = ρ水g(H-h)+ ρ煤油g(Δh + h)联立这几个方程得到ρ水银gR = ρ水g(H-h)+ ρ煤油g(Δh + h)-ρ煤油gΔh 即ρ水银gR =ρ水gH + ρ煤油gh -ρ水gh 带入数据1.0³×10³×1 - 13.6×10³×0.068 = h(1.0×10³-0.82×10³)h= 0.418m6. 根据本题附图所示的微差压差计的读数,计算管路中气体的表压强p。
第一章流体流动习题1. 引言本习题集旨在帮助读者巩固并深入理解流体力学中的流体流动相关知识。
通过解答各式作业题和习题,读者将能够提高对流体流动的理论知识的掌握,并能运用所学知识解决实际问题。
2. 流体等压流动2.1 定常流动1.习题1:在一水力发电站,重力因子为9.8 m/s²,一台水轮机的进口直径为10 m,出口直径为4 m,水流的速度在进口和出口处分别为12 m/s和48 m/s。
求水轮机的功率。
2.习题2:一根水平管道中水流的速度为2 m/s。
管道的截面面积为1.0 m²,密度为1000 kg/m³。
若管道上安装了一过滤器,则过滤器前后水流速度分别为2.5 m/s和1.5 m/s。
求过滤器对水流影响的大小。
2.2 无粘流动1.习题3:一个圆柱体在某无粘流体中运动,其直径为1 m,流体的密度为1 kg/m³,流速为10 m/s。
若圆柱体沿流速方向行进距离为100 m,在这一过程中流体对圆柱体所做的阻力是多少?2.习题4:一道湍流水流通过一个圆柱体。
圆柱体的直径为2 m,流速为5 m/s,流体密度为1.2 kg/m³。
若圆柱体所受到的阻力为1000 N,求流过圆柱体的湍流水流的体积流量。
3. 流体定常流动3.1 流管与元素流量1.习题5:一条河的宽度为10 m,平均流速为2 m/s。
设河水的密度为1000 kg/m³。
求河水的体积流量。
2.习题6:某水管直径为0.2 m,输送液体的流速为3 m/s。
求液体的质量流量。
3.2 动量定理与波动方程1.习题7:一个质量为1000 kg的船以速度10 m/s行驶,船上一个质量为10 kg的人以速度2 m/s从船头跳进水中。
求船在跳水后的速度。
2.习题8:一个质量为500 kg的小汽车以速度20 m/s驶入河流。
汽车下沉后速度降为8 m/s。
求汽车所受的阻力大小。
4. 流体非定常流动4.1 欧拉方程与伯努利方程1.习题9:一水管中水的流速为2 m/s。
第一章 习题课1.何谓绝对压力、表压和真空度?它们之间有何关系?(A )某设备的表压强为100kPa ,则它的绝对压强为____kPa ;另一设备的真空度为400mmHg ,则它的绝对压强为____。
(当地大气压为101.33 kPa )[答:201.33 kPa ,360mmHg]解析:表压 = 绝对压强 - 大气压 ;真空度 =大气压 - 绝对压强(B )某设备的表压强为50KPa ,则它的绝对压强为____,另一设备的真空度为50KPa ,则它的绝对压强为____。
(当地大气压为100KPa ) [答:150 kPa ,50 kPa]2.气体的密度如何计算?(A )若外界大气压为1atm ,试按理想气体定律计算0.20at (表压)、20℃干空气的密度。
空气分子量按29计。
[答:1.447Kg/m 3]解析:理想气体状态方程 得 3.流体静力学基本方程式有几种表达形式?分别说明什么问题?静力学方程式的应用条件?简述静力学方程式的应用其分析问题时如何确定等压面?①2211gz p gz p +=+ρρ J/kg 总势能守恒(静压能+位能)②)(2112z z g p p -+-=ρ Pa 等压面③gh p p ρ+=02 Pa 巴斯噶原理(传递定律) 适用条件:重力场中静止的,连续的同一种不可压缩流体。
确定等压面:静止的联通着的同一种连续流体,处于同一水平面上各点压强相等。
(A )如图所示,容器中盛有ρ=800kg/m 3的油品,U 形管中指示液为水(ρ=1000kg/m 3),a 1、a 2、a 3在同一水平面上,b 1、b 2、b 3及b 4也在同一高度上,h 1=100mm ,h 2=200mm ,则各点的表压pa 1=____,pa 2=____,pb 2=____,pb 3=____,h 3=____。
(表压值以mmH 2O 表示)[答:0,100,200,300,340,200]RT Mm PV =3/447.115.293314.829325.1012.1m Kg RT PM =⨯⨯⨯==ρ=0 pa3= p a =0 (表压)解析:静力学基本方程式 pa1= p a=ρg (h1+ h2)(表压) pa2 = pb2(表压)pb2= pb1pb3= pa2+ρ油g(h1+ h2)(表压)pb3+ρ油g h3=ρg (h1+ h2+ h3)(表压)(B)如图所示,在两个压强不同的密闭容器A,B内充满了密度为的液体,两容器的上部与下部分别连接两支规格相同的U行管水银压差计,连接管内充满密度为的液体。
第一章:流体流动二、本章思考题1-1 何谓理想流体?实际流体与理想流体有何区别?如何体现在伯努利方程上?1-2 何谓绝对压力、表压和真空度?表压与绝对压力、大气压力之间有什么关系?真空度与绝对压力、大气压力有什么关系?1-3 流体静力学方程式有几种表达形式?它们都能说明什么问题?应用静力学方程分析问题时如何确定等压面?1-4 如何利用柏努利方程测量等直径管的机械能损失?测量什么量?如何计算?在机械能损失时,直管水平安装与垂直安装所得结果是否相同?1-5 如何判断管路系统中流体流动的方向?1-6何谓流体的层流流动与湍流流动?如何判断流体的流动是层流还是湍流?1-7 一定质量流量的水在一定内径的圆管中稳定流动,当水温升高时,将如何变化?1-8 何谓牛顿粘性定律?流体粘性的本质是什么?1-9 何谓层流底层?其厚度与哪些因素有关?1-10摩擦系数λ与雷诺数Re及相对粗糙度的关联图分为4个区域。
每个区域中,λ与哪些因素有关?哪个区域的流体摩擦损失与流速的一次方成正比?哪个区域的与成正比?光滑管流动时的摩擦损失与的几次方成正比?1-11管壁粗糙度对湍流流动时的摩擦阻力损失有何影响?何谓流体的光滑管流动?1-12 在用皮托测速管测量管内流体的平均流速时,需要测量管中哪一点的流体流速,然后如何计算平均流速?三、本章例题例1-1 如本题附图所示,用开口液柱压差计测量敞口贮槽中油品排放量。
已知贮槽直径D为3m,油品密度为900kg/m3。
压差计右侧水银面上灌有槽内的油品,其高度为h1。
已测得当压差计上指示剂读数为R1时,贮槽内油面与左侧水银面间的垂直距离为H1。
试计算当右侧支管内油面向下移动30mm后,贮槽中排放出油品的质量。
HH1DR11CEFBA10mn11-1附图解:本题只要求出压差计油面向下移动30mm时,贮槽内油面相应下移的高度,即可求出排放量。
m首先应了解槽内液面下降后压差计中指示剂读数的变化情况,然后再寻求压差计中油面下移高度与槽内油面下移高度间的关系。
第一章 流体流动流体的重要性质1.某气柜的容积为6 000 m 3,若气柜内的表压力为5.5 kPa ,温度为40 ℃。
已知各组分气体的体积分数为:H 2 40%、 N 2 20%、CO 32%、CO 2 7%、C H 4 1%,大气压力为 101.3 kPa ,试计算气柜满载时各组分的质量。
解:气柜满载时各气体的总摩尔数()mol 4.246245mol 313314.860000.10005.53.101t =⨯⨯⨯+==RT pV n 各组分的质量:kg 197kg 24.246245%40%4022H t H =⨯⨯=⨯=M n m kg 97.1378kg 284.246245%20%2022N t N =⨯⨯=⨯=M n m kg 36.2206kg 284.246245%32%32CO t CO =⨯⨯=⨯=M n mkg 44.758kg 444.246245%7%722CO t CO =⨯⨯=⨯=M n m kg 4.39kg 164.246245%1%144CH t CH =⨯⨯=⨯=M n m2.若将密度为830 kg/ m 3的油与密度为710 kg/ m 3的油各60 kg 混在一起,试求混合油的密度。
设混合油为理想溶液。
解: ()kg 120kg 606021t =+=+=m m m331221121t m 157.0m 7106083060=⎪⎪⎭⎫ ⎝⎛+=+=+=ρρm m V V V 33t t m m kg 33.764m kg 157.0120===V m ρ 流体静力学3.已知甲地区的平均大气压力为85.3 kPa ,乙地区的平均大气压力为101.33 kPa ,在甲地区的某真空设备上装有一个真空表,其读数为20 kPa 。
若改在乙地区操作,真空表的读数为多少才能维持该设备的的绝对压力与甲地区操作时相同? 解:(1)设备内绝对压力 绝压=大气压-真空度= ()kPa 3.65Pa 1020103.8533=⨯-⨯ (2)真空表读数真空度=大气压-绝压=()kPa 03.36Pa 103.651033.10133=⨯-⨯4.某储油罐中盛有密度为960 kg/m 3的重油(如附图所示),油面最高时离罐底9.5 m ,油面上方与大气相通。
第一章 流体流动习题解答1.解:(1) 1atm= Pa=760 mmHg真空度=大气压力—绝对压力,表压=绝对压力—大气压力 所以出口压差为p =461097.8)10082.0(10132576.00⨯=⨯--⨯N/m 2(2)由真空度、表压、大气压、绝对压之间的关系可知,进出口压差与当地大气压无关,所以出口压力仍为41097.8⨯Pa 2.解: T=470+273=703K ,p=2200kPa混合气体的摩尔质量Mm=28×0.77+32×0.065+28×0.038+44×0.071+18×0.056=28.84 g/mol混合气体在该条件下的密度为:ρm=ρm0×T0T×pp0=28.8422.4××.3=10.858 kg/m33.解:由题意,设高度为H 处的大气压为p ,根据流体静力学基本方程,得 dp=-ρgdH大气的密度根据气体状态方程,得 ρ=pMRT根据题意得,温度随海拔的变化关系为 T=293.15+4.81000H代入上式得ρ=pMR (293.15-4.8×10-3H )=-dpgdh移项整理得dpp=-MgdHR293.15-4.8×10-3H对以上等式两边积分, pdpp=-0HMgdHR293.15-4.8×10-3H所以大气压与海拔高度的关系式为 lnp=7.13×ln293.15-4.8×10-3H293.15即:lnp=7.13×ln1-1.637×10-5H+11.526(2)已知地平面处的压力为 Pa ,则高山顶处的压力为 p 山顶=×=45431 Pa将p 山顶代入上式ln 45431=7.13×ln1-1.637×10-5H+11.526 解得H =6500 m ,所以此山海拔为6500 m 。
第一章 流体流动1.用如附图所示的U 型管压差计测定反应器内气体在A 点处的压强以及通过催化剂层的压强降。
在某气速下测得R 1为750mmH 2O ,R 2为80mmH 2g ,R 3为40mmH 2O ,试求上述值。
2.如附图所示,倾斜微压差计由直径为D 的贮液器和直径为d 的倾斜管组成。
若被测流体密度为ρ,指示液密度为ρ0,试导出用R 1表示的压强差计算式。
如倾角α为300时,若要忽略贮液器内的液面高度h 的变化,而测量误差又不得超过0.1%时,试确定D/d 比值至少应为多少?3.一水箱用如附图所示的锥阀封水,锥阀底直径为0.5m ,高为0.6m ,阀重50kg 。
当水位达1.5m 时,要求阀启动泄水,问外配锤重w 应为多少?232ρ习题1 附图习题2 附图习题3 附图5.某流场可用下述速度向量式表达:u (x ,y ,z ,t )=xyz i +y j -3zt k 。
试求点(2,1,2,1)处的加速度向量。
(随体)6.国际标准大气压取海平面为基准(z=0)。
基准面上的物理量取为:t 0=288K ,p 0=101300Pa ,ρ0=1.225kg/m 3。
从海平面一直到11公里的高空是对流层。
对流层中温度与高度的关系可用下式表示:T=T 0-βz ,其中T 0=288K ,β=0.0065度/米。
11公里以上认为是温度不变(216.5K )的同温层。
试分别求出对流层及同温层内压力、密度和高度的依赖关系。
可认为重力加速度为一恒量。
(静)7.不可压缩粘性流体在两无限大平行平板间作稳态层流,试推导其速度分布、截面上的平均流速、壁面处的剪切力。
(运动)8.不可压缩流体在两根同心的套管环隙间作轴对称的稳态层流,试导出其速度分布,截面上的平均流速,体积流量,壁面处的剪切力。
(运动) 9.不可压缩粘性流体在重力作用下,沿内径为R 的圆筒内壁面向下流动。
设流动是定常的平行直线运动,流体厚度为δ。
求流体速度分布、流量、平均流速、最大流速及作用在圆筒内壁面上的摩擦力(忽略端效应)。
第一章 流体流动习题解答1-1 已知甲城市的大气压为760mmHg ,乙城市的大气压为750mmHg 。
某反应器在甲地操作时要求其真空表读数为600mmHg ,若把该反应器放在乙地操作时,要维持与甲地操作相同的绝对压,真空表的读数应为多少,分别用mmHg 和Pa 表示。
[590mmHg, 7.86×104Pa]解:P (甲绝对)=760-600=160mmHg 750-160=590mmHg=7.86×104Pa1-2用水银压强计如图测量容器内水面上方压力P 0,测压点位于水面以下0.2m 处,测压点与U 形管内水银界面的垂直距离为0.3m ,水银压强计的读数R =300mm ,试求 (1)容器内压强P 0为多少?(2)若容器内表压增加一倍,压差计的读数R 为多少?习题1-2 附图[(1) 3.51×104N ⋅m -2 (表压); (2)0.554m] 解:1. 根据静压强分布规律 P A =P 0+g ρH P B =ρ,gR因等高面就是等压面,故P A = P B P 0=ρ,gR -ρgH =13600×9.81×0.3-1000×9.81(0.2+0.3)=3.51×104N/㎡ (表压) 2. 设P 0加倍后,压差计的读数增为R ,=R +△R ,容器内水面与水银分界面的垂直距离相应增为H ,=H +2R∆。
同理, ''''''02Rp gR gH gR g R gH gρρρρρρ∆=-=+∆--000p g g p p 0.254m g g 10009.81g g 136009.812R H R ρρρρρρ⨯∆⨯⨯,,,4,,-(-)- 3.5110====---220.30.2540.554m R R R ∆,=+=+=1-3单杯式水银压强计如图的液杯直径D =100mm ,细管直径d =8mm 。
流体力学课后习题第一章思考题1.什么是连续介质为何要做这种假定2.流体的粘度与流体的压力有关吗3.流体的重度,比重和密度之间是怎样的关系4.什么是理想流体什么是粘性流体它们有什么区别5.流体的动力粘性系数与运动粘性系数有什么不同它们之间有什么关系6.液体和气体的粘性系数μ随温度的变化规律有何不同为什么7.牛顿流体是怎样的流体非牛顿流体有哪些它们之间有什么区别8.为什么将压力和切应力称为表面力而又将惯性力和重力称为质量力9.怎样理解静止流体或理想流体中一点处的压力是一个标量流体静压强有何特性气体和液体在压缩性方面有何不同10.题习1.海面下8km 处水的压力为81.7 ×106N/m2,若海面水的密度ρ=1025kg/m2,压力为1.01 ×105N/m2,平均体积弹性模量为2.34 ×109N/m2,试求水下8km 处的密度 .2.如图1-12 所示,半径为a的圆管内流体作直线单向流动,已知管道横截面上的流体速度分布为这里流体粘性并指出切应力的方向 . r=a :r=0,r= 和处的流体切应力,其中umax=const,求. μ系数为筒与轴之D, ,同心轴和筒中间注入牛顿型流体,轴的直径为3.如图1-13 所示的旋转粘度计假定间隙中的流体作周.ω旋转,且保持流体的温度不变间的间隙δ很小 .筒以等角速度求流M, 故底部摩擦影响可不计 .若测得轴的扭矩为向流动且速度为线性分布,设L 很长, .体的粘性系数两平=2mm的油, ,一平板在另一平板上作水平运动,其间充满厚度为δ4.如图1-14 所示求单位面·s/cm2,粘性系数μ=1.10 ×10-5N假定油膜内的速度分布为线性分布板平行 . , .积上的粘性阻力轴与轴套之间充满,5.有金属轴套在自重的作用下沿垂直轴下滑的润滑=900kg/m3,ρ试确定轴套等速h=250mm, d2=100mm ,重100N,轴的直径油.轴套内经d1=102mm,高 .下滑的速度与空气接触的上表面阻力可,流层厚度为t,6.如图1-15 所示,牛顿型流体从一倾斜板流下,μ粘性系数为θ)流体流动速度恒定,若流体的密度为ρ,忽略不计 .在斜面上(倾角为 .求流层内的速度分布直径为5.01cm)内运动,当其间的润滑油温度由00C 变到5cm,7.活塞直径为在气缸(试确定活塞运动所需的力减少的百分比,120°C 时在-2N10·s/m2,, .设在0°C 时μ1=1.7 ×s/m2.×120°C 时, μ2=2-103N ·由于转轴与轴套之间的流后,重一飞轮回转半径为30cm, 500N,当其转速达到600r/min 8.0.05cm, 2cm,这里轴套长5cm,轴的直径为径向间隙为1r/min. 体的粘性而使其转速减少 .试确定流体的粘度设)(209.试求常温下°C,一个大气压使水的体积减少0.1%,所需的压力-8cm2/N10.p=4.8 β×求此流体的体积弹性×p 10.当压力增量Δ=5104N/m2 0.02%,某种流体的密度增长时, .模量第二章思考题1欧拉平衡微分方程综合式可积分的条件是什么2何谓等压面等压面与质量力作用线之间的关系如何3何谓连通器原理工程上有何应用4压力p 和总压力P 有何不同如何计算静止流体中平板上的总压力和压力中心水箱中储有重度不同的两种流体,如图2-28 所示 .容器和测管都与大气相通,问测管 1和2 中的液面是否与o-o 面平齐是高于还是低于o-o 面中的水平面是等压面吗连)静止流体(包括相对静止两种流体的分界面是等压面吗通容器中的水平面是等压面吗水箱橡皮管连接容器B,所示的密闭水箱A,顶部自由液面的压力为p0,7 如图2-29 : 2 问接有测压管1 和两测压管的水面是否平齐 2 (1)1 和对吗若平齐,pa=pb还两测压管的水面将如何变化p0 的值是增加减少(2)若将容器B 提高一些,是不变中水面正好与直至 B 若将容器 B 下降(测压管 1 和2 均封闭)(3)问此时点平齐,CC点的压力为多少8 何谓压力体它由哪几个面构成实压力体与虚压力体有何异同9如图2-30 所示各AB 段壁面均为二向曲面,试画出AB 段上的压力体 .10如图2-31 所示水平台面上置放五个形状各异,但底面积相等的容器,若容器内的水深H 均相等,试比较容器底面积上所受静水总压力的大小.11 如图2-32 所示形状各异,但面积相等的闸门,浸没在同一种液体中,试比较各闸门所受静水总压力的大小 .问其若该物体的表面接触的流体压力处处相等, 12 一个任意形状的物体处于静止流体中,上的流体总压力为多少表征各种) (绘出示意图船舶的平衡条件是什么船舶的漂浮状态通常有哪几种情况. ,列出各种浮态的平衡方程浮态的参数有哪几个根据静力平衡条件题习的中其余液体为水2-33 所示的差动式比压计中的水银柱高h=0.03m, ,容器A,B 1.如图.容器中心处的压力差H=1m,求A,B 心位置高差该球直径为,用金属球封闭, 2-34 2.如图所示的容器底部有一圆孔圆孔的直径为5cm,.求水作用于圆球上的总压力3cm.3.如图2-35 所示,H=3m, α=45°,闸门宽为b=1m,求扇形闸门上所受静水总压力 .设水的密度为1000kg/m3..分别按下列三种情况计算.所示的单位长圆柱体上所受静水总压力 4.试确定图2-36 (1)H1=d,H2=0;(2)H1=d/2,H2=0;(3)H1=d,H2=d/2.5.如图2-37 所示,当闸门关闭时,求水作用于闸门上合力对0 点的力矩 .设γ=9802N/m3.6.如图2-38 所示,重度为9100 N/m3 的油液所充满的容器中的压力p 由水银压力计读数h 来确定,水银的重度为1.33 ×105 N/m3,若压力不变,而使压力计下移至a点的位置 .求压力计读数的变化量h.水压力经闸门的面板传到三条水平梁上,所示,矩形平板闸门7.如图2-39 为使各横,6宽已知闸门高梁的负荷相等,试问应分别把它们置于距自由液面多深的地方4m,H=3m.m,水深,的流体γ8.如图),浸入重度为即与液面平行所示等腰三角形平面的一边水平2-40 (中三角形高为a,水平边宽b,水平边距自由液面为a,求作用于三角形上的静水总压力及压力中心 .9.求图2-41 所示,d=4m 的单位长圆柱体上的静水总压力 .10.船沿水平方向作匀加速直线运动,其液体舱的液面倾斜45°,求船的加速度 .11.某船从内河出海,吃水减少了20cm,接着在港口装了一些货物后吃水复又增加了15cm.设该船最初的排水量为100t, 吃水线附近船的倾面为直壁, 海水的密度为ρ=1025kg/m3.问该船在港口装了多少货物.试证流体静止的必要条件是质量力必须满足式中为质量力12.加速, 2m,在与水平面成30°的倾斜面上向上运动矩形水箱高13.如图2-42 所示, 1.2m,长 .试求箱内液面与水平面之间的倾角度为4m/s2.处θ .C处开口通大气,A ,一细长直管,长L=20cm, 与铅垂轴的夹角为2-43 14.如图所示B 求截面 A 和若管子绕Z 轴作等角速度ω旋转,管内盛满密度为封死. ρ的均质流体 .设流体相处流体质点的质量力的大小和方向 . .对管子是静止的求作用于该板上的静水总压,15.直径为4m 的圆板铅垂地浸入水中,上面与水面相切时 ..力及压力中心以下缘连接铰链, A 处设有转轴,160 一矩形闸门的位置与尺寸如图2-44 所示,闸门上缘=)ξ,求开启闸门所需的拉力T.(Ic 若忽略闸门自重及轴间摩擦力备开闭 .水闸一侧的°当),α17.如图3-45 所示为一绕铰链O 转动的自动开启式水闸(倾角=60 x. ,试求铰链至水闸下端的距离水深h1=2m,另一侧的水深h2=0.4m 时,闸门自动开启已知闸门18.求图2-46 所示封闭容器斜壁上的圆形闸门所受的静水总压力及作用点.=)ξ容器内水面的相对压强=98.1kN/m2.(Ic 直径d=2m,a=1m,a=60°,阀门上缘有一1m,其上斜盖一椭圆形阀门,泄水孔道直径19.一泄水装置如图2-47 所示,试求开启阀门的, H=2m.若不计阀门重量及铰链的摩擦力,铰链泄水孔上缘距水面距离力T.(Ic ξ=)第三章思考题拉格朗日法与欧拉法有何异同欧拉法中有哪两种加速度它与速度场的定常与否及均匀与否有什么关系如何理解欧拉法求质点加速度时,其表达式中空间位置(x,y,z)是时间的函数陨星下坠时在天空中划过的白线是什么线流线与轨迹线有何区别在如何判断流线方向流线有什么基本性质同一时刻不同流体质点组成的曲线是否都是流线同一流场中,那么是否一定有和, ,每一流体质点的密度都保持不变如果在运动过程中观察者在什么坐标系下可以观察到定常运动一条船在静水中作等速直线运动,则是船而船模在水槽中试验船模在水池中试验,拖车拖带船模在静水中作等速直线运动 . ,试讨论这两种流动坐标系的相对于地球),水槽中的水以均匀来流绕船模流动, (模固定不动选择及流动的定常或非定常性流体微团一定做直线运无旋运动时流场为有旋运动时,流体微团一定做圆周运动吗,动吗流体微团的旋转角速度与刚体的旋转角速度有什么本质差别11.题习:求,已知流场的速度分布为 1.流体的剪切变形角速度;(1)点(3,1)处流体质点的加速度 .(2)给定速度场,,vz=0 且令t=0 时,r=a, θ=b, τ=c.2.求流场的加速度 .3.已知平面流速度场为vx=1+2t,vy=3+4t, 求: (1)流线方程;(2)t=0 时经过点(0,0),(0,1),(0,-1) 的三条流线方程; (3)t=0 时经过点(0,0)的流体质点的迹线方程 . 4.已知平面流动的速度分布为式中Γ为常数,求流线方程 .5.给定速度场vx=-ky,vy=kx,vz=w0. 式中k,w0 是常数 .求通过x=a,y=b,z=c 的流线 .已知不可压缩液体平面流动的流速场为6.vx=xt+2y vy=xt2-yt处液体质点的加速度A(1,2)求当t=1s 时,点:m/s2).单位(7.已知流体中任一点的速度分量,由欧拉变数给出为vx=x+tvy=-y+t vz=0试求t=0 时,通过点(-1,1)的流线 .8.已知流体的速度分布为vx=1-y,vy=t, 求:t=1 时过(0,0)点的流线及t=0 时位于(0,0)点的质点轨迹 . . t=1 时的加速度(3,0,2)求:空间点在9.给出流速场为,已知空间不可压缩液体运动的两个流速分量为10. :试求vx=10x,vy=-6y,方向上的流速分量的表达式z流动是否为有旋运动,哪些满足连续性方程11.试证明下列不可压缩均质流体运动中,哪些不满足连续性方.程vx=-ky vy=kx vz=0 (1)vx=kx vy=-ky vz=0 (2) (3)(4) vx=ay vy=v vz=0vx=4 vy=vz=0 (5)vx=1 vy=2(6)=0 是不为零的常数) v θ(7)vr=k/r(k 在柱坐标系中提示: ,连续性微分方程为) 是不为零的常数=k/r(k(8)vr=0 v θvx=4x vy=c (9) vx=4xy vy=0(10):为常数式中给定速度场12. vx=ax,vy=ay,vz=-2az, a ,求;体积膨胀率剪切角速度分量线变形速率分量(1) , ,., 该流场是否为无旋场(2)若无旋写出其速度势函数,试证明通过圆心为原点的所有设有从坐标原点引出的径向线上流速分布为13.vr=4/r,圆周上的流量都相等 .14.已知流场的速度分布为,该流场是否满足不可压缩流体的连续性方程15.在不可压缩流体的三元流场中,已知速度场vx=x2+y2+x+y+2和vy=y2+2yz,试求vz 的表达式 .16.下列各流场中哪几个满足连续性条件,它们是有旋流动还是无旋流动其中k为常.数(1)vx=k vy=0(2)vx= vy=(3)vx=x2+2xyvy=y2+2xy(4)vx=y+z vy=z+x vz=x+y确定下列各流场是否连续17.k 为常数是否有旋式中(1)vr=0 v=krθ(2)vr=- k/r vθ=0(3)vr= v θ=-2r.vx=x+y,vy=y+z,vz=x2+y2+z2, 求过点(2,2,2)18.已知有旋流动的速度场为的角速度分.量19.已知速度场vx=2y+3z,vy=2z+3x,vz=2x+3y, 求流体微团的角速度 .20.证明平面不可压缩流场vx=2xy+x, 和vy=x2-y2-y 满足连续性方程,是有势流并求出速度势函数 .其它U, 所示,求孔口处出流的平均速度在管道壁上有一面积为1m2 的孔口,如图3-25 21. .数据如图所示.=,试验证该函数在二维和三维流动中是否满足拉普拉斯方程22.已知流场中势函数φ.求速度场φ=ln(x2+y2)1/2除原点外处处无旋,23.已知势函数第四章思考题欧拉平衡微分方程与欧拉运动微分方程有何关系1.2.拉格朗日积分和伯努利积分各自适用什么条件3.拉格朗日积分中的通用常数与柏努利方程中的流线常数有何差别4.叙述柏努利方程的几何意义和物理意义.5.说明柏努利方程反映了能量的何种关系6.为什么应用柏努利方程时,其中的位置水头可以任意选取基准面来计算7.在推导柏努利方程时,没有考虑外界对流线上的流体质点做功或输入(出)能量,若实际解柏努利方程时将如何处理出),问题中有能量的输入(动压力以及伯努利常数的含义是什么,静压力,8.总压力,驻点压力在不同液体或气体的界面上是否可将压力视为常数9.为什么,出口处的压力怎管道出口流入大气中或者流入静止流体中10.在求解柏努利方程时, 样确而静止流体流入管道时定管道进口处的压力一般是否为已知量,11.如图4-20 所示虹吸管,不计损失,流动定常 .问:(1)管子出口处(2-2 截面)的静压为多少(2)哪段管路为低压向高压的流动此时伯努利方程中的三项能头是如何变化的(3)S 处的压力是高于大气压力还是低于大气压力若S处管子破裂流动将如何12.应用积分形式动量方程时,因动量是矢量,其方向如何确定在计算合外力时,为什么通常压力项只计相对压力而不计绝对压力13.积分形式动量方程是适合于控制体的,其控制体内流场是否要求流动无旋无粘习题v.直径,如图1.求管内流速所示的管流d=30cm,4-21 如图2.所示的水银比压计与一水平放置的流量计相连接4-22 现读得比压计中水银面.求通过的体积流量,流动定常,不计损失h=800mm已.知d1=250mm,d2=100mm,高差(管内流体为水).3.用图4-23 所示的水银比压计测油速 .已知油的比重为0.8,水银比重为13.6,h=60mm, 求管内油的流动速度 .设流动定常,不计粘性影响 .将液体吸入然后向大, ,喉部处空气造成低压所示的喷雾器,活塞以v 等速运动4-24 4.如图求能喷,理想定常流动ρ′,假定流动为不可压缩,气喷雾 .若空气密度为ρ,液体密度为h.雾的吸入高度处横断面上的入口处即截面 1 4-25 所示的不可压缩流体在半径为R 的管中流动,5.如图,假定是使截面,流动为u=umax 表示的速度分布流速是均匀的,其值为v,下游截面2 处 .,L,R和表示的压力降 .试求以umax,ρ1-2 之间流动减速的平均壁面剪应力. ,设宽度为b=5cm,厚度为单位厚度的水平射流射向直立固定的平板如图6. 4-26 所示. .求平板所受射流的冲击力已知v0=20m/s,不计摩擦,流动定常,周围都是大气压力所示的设喷流方向如图4-27 7.有一股射流以速度20m/s从直径为5cm 的喷嘴向外喷水. .使船保持稳定的力,流体密度为ρ=1000kg/m3求.水平面位置河中水流速度为的速度(相对岸边)逆流而上 .摩托艇在河中以8.如图4-28 所示, 9m/s流18m/s, 船尾排水 . .若射流相对艇的速度为6.5m/s.该艇用的喷水推进装置,由船首进水问产生的推力为多少0.15m3/s,量为Q=16m3/h,d1=50mm,d2=100mm,所通过的流量9.如图4-29 所示为一突然扩大的管道其中充满,的水 .在截面突变处置一差压计读得液面高差γ=15689N/m3的液体,. h=173mm,试求管径突然扩大的阻力系数流体从无, , 50km/h 的速度运动,据相对性原理可认为鱼雷不动10.鱼雷在水下5m 深处以 .流过鱼雷穷远处以流速50km/h点A 4-30 所示的如图(1)若流体流过鱼雷表面时,其最大速度为无穷远处速度的 1.5 倍( . A 求鱼雷点处的压力处),. ,(2)设水温为15℃产生空泡的压力为2.33kN/m2, 求鱼雷产生空泡时,鱼雷的速度,此时上游水位升高为开启状态为关闭状态,图(a) ,图(b)所示的圆柱形闸门11.如图4-31两种情况下的合力都,0.6m.计算作用在闸门上水平方向的分力,并比较两垂直分力的大小通过圆心吗第五章思考题能否用斯托克斯定,1.速度环量是否一定存在于闭曲线情况下对于非闭曲线的速度环量 .理来计算试归纳一下环量的几种计算法如何理解流体涡线与流线的差别2.求压力时要用, (rR 3.在涡核区的范围内,求压力分布时用拉格郎日方程而在的范围内,欧拉方程直接积分呢求这两直线涡, r>R ,8.在求解兰金组合涡流场时为什么须先解的外部流场再解2>0, r Γ .的运动轨迹 .vx=-,vy, 已知速度场为4.其中 .为大于零的常数k 求沿周线x2+y2=32 的速度环量5.流体在平面环形区域a1<="" p="" ω为常数,k="" 为柱坐标系中z="" 方向的单位矢量,设速度分布是轴对称的,="" 求此速度分布="">15.已知流线为同心圆族,其速度分别为()(r>5)试求:沿圆周x2+y2=R2 的速度环流,其中圆的半径分别为R=3,R=5 和R=10.16.给定柱坐标内平面流动vr=(1- )cos θ其中,k,a 均为常数,求包含r=a 圆周在内的任意封闭曲线的速度环量 ..的速度环量求:沿圆x2+y2=1 17.已知速度场为, .的速度环量求:沿椭圆4x2+9y2=36 18.已知速度场为,, 等于常数的点涡上分别有环量Γ(0,-1)如图5-26 所示,初瞬时在(1,0),(-1,0),(0,1)和19. .求其运动轨迹第六章思考题1.举例说明势流理论解决流体力学问题的思路.2.速度势和流函数同时存在的条件是什么各自具有什么样的性质3.举例说明用保角变换解决势流问题的思路.4.举例说明附加质量和附加惯性力的概念.5.均质不可压缩理想流体绕物体的定常,三维流动,若物体有升力,问物体是否有阻力习题1试确定下列流函数所描述的流场是否为势流.a) ψ=kxy, c)ψ=klnxy2=x2-y2, d)b) ψ=k(1-1/r2)rsinψθ式中k 为常数 .2.已知不可压缩流体平面流动的速度势为φ=x2-y2+x求其流动的流函数 .给定速度场3.:问vx=x2y+y2,vy=x2-y2x,vz=0,是否同时存在流函数和势函数(1).求出其具体形式如存在,(2):问已知4. vx=2xy+x,vy=x2-y2-y,vz=0, .是否存在势函数如存在,试求出其具体形式.求流函数及速度分布已知不可压缩平面流动的势函数φ=xy,5.. C 为常数6.下列流函数描述的流场是否为有势流,式中=2y-52y2+52x2-3x+C (1)ψ=x+x2-y2ψ(2)已知速度势7..为常数对应的流函数=Ccosψθ求r,.式中C.求流函数8. ψ=x+x2-y2 和点(-2,4) (3,5)之间的压力差并求点的速度势,: , y , (a,0)Γ一强度为9. 的平面点涡位于点若轴。